BOUNDEDNESS AND COMPACTNESS OF HANKEL OPERATORS ON THE SPHERE

1. Introduction

$S=\left\{z \in \mathbf{C}^{n}:|z|=1\right\}$, the unit sphere in \mathbf{C}^{n}.
$\sigma=$ the positive, regular Borel measure on S which is invariant under the orthogonal group $O(2 n)$.

Normalization: $\sigma(S)=1$.

The Cauchy projection P is defined by the integral formula

$$
(P f)(w)=\int \frac{f(\zeta)}{(1-\langle w, \zeta\rangle)^{n}} d \sigma(\zeta), \quad|w|<1
$$

P is the orthogonal projection from $L^{2}(S, d \sigma)$ onto the Hardy space $H^{2}(S)$.

Normalized reproducing kernel for $H^{2}(S)$:

$$
k_{z}(w)=\frac{\left(1-|z|^{2}\right)^{n / 2}}{(1-\langle w, z\rangle)^{n}}, \quad|w| \leq 1, \quad|z|<1 .
$$

The formula

$$
\begin{equation*}
d(\zeta, \xi)=|1-\langle\zeta, \xi\rangle|^{1 / 2}, \quad \zeta, \xi \in S \tag{1.1}
\end{equation*}
$$

defines a metric on the sphere (anisotropic metric).
For $\zeta \in S$ and $r>0$, denote

$$
B(\zeta, r)=\left\{x \in S:|1-\langle x, \zeta\rangle|^{1 / 2}<r\right\}
$$

There is a constant $A_{0} \in\left(2^{-n}, \infty\right)$ such that

$$
2^{-n} r^{2 n} \leq \sigma(B(\zeta, r)) \leq A_{0} r^{2 n}
$$

for all $\zeta \in S$ and $0<r \leq \sqrt{2}$.
A function $f \in L^{1}(S, d \sigma)$ is said to have bounded mean oscillation if

$$
\|f\|_{\mathrm{BMO}}=\sup _{\substack{\zeta \in S \\ r>0}} \frac{1}{\sigma(B(\zeta, r))} \int_{B(\zeta, r)}\left|f-f_{B(\zeta, r)}\right| d \sigma<\infty,
$$

where $f_{B}=\int_{B} f d \sigma / \sigma(B)$, the average of f over B. A function $f \in L^{1}(S, d \sigma)$ is said to have vanishing mean oscillation if

$$
\lim _{\delta \downarrow 0} \sup _{\substack{\zeta \in S \\ 0<r \leq \delta}} \frac{1}{\sigma(B(\zeta, r))} \int_{B(\zeta, r)}\left|f-f_{B(\zeta, r)}\right| d \sigma=0 .
$$

$\mathrm{BMO}=$ all functions of bounded mean oscillation on S.
$\mathrm{VMO}=$ all functions of vanishing mean oscillation on S.

The Hankel operator $H_{f}: H^{2}(S) \rightarrow L^{2}(S, d \sigma)$ is defined by

$$
H_{f}=(1-P) M_{f} \mid H^{2}(S)
$$

Relation between commutator and Hankel operators:

$$
\left[P, M_{f}\right]=H_{f}^{*}-H_{f},
$$

We can think of $\left[P, M_{f}\right]$ as a matrix with respect to the space decomposition

$$
L^{2}(S, d \sigma)=H^{2}(S) \oplus\left\{H^{2}(S)\right\}^{\perp}
$$

That is, with respect to this space decomposition,

$$
\left[P, M_{f}\right]=\left[\begin{array}{cc}
0 & H_{f}^{*} \\
-H_{f} & 0
\end{array}\right] .
$$

A fundamental result:

Theorem. (Coifman, Rochberg and Weiss, 1976)
(a) $\left[P, M_{f}\right]$ is bounded if and only if $f \in \mathrm{BMO}$.
(b) $\left[P, M_{f}\right]$ is compact if and only if $f \in \mathrm{VMO}$.
(c) Moreover, $\left\|\left[P, M_{f}\right]\right\| \leq C\|f\|_{\text {BMO }}$.

The "only if" part is easy; it follows from the inequality

$$
\left\|\left(f-\left\langle f k_{z}, k_{z}\right\rangle\right) k_{z}\right\|^{2} \leq\left\|H_{f} k_{z}\right\|^{2}+\left\|H_{\bar{f}} k_{z}\right\|^{2} .
$$

The hard part of this theorem is the "if" part.

A basic fact: if $h \in H^{2}(S)$, then $H_{h}=0$. Therefore

$$
H_{f}=H_{f-P f} .
$$

Also,

$$
f-P f=H_{f} 1
$$

Recall that there is a famous T1-Theorem for singular inetgral operators on L^{2}. In analogy with that, the theorem of Coifman, Rochberg and Weiss implies what might be called

H1-Theorem.

(a) If $f-P f \in \mathrm{BMO}$, then H_{f} is bounded.
(b) If $f-P f \in \mathrm{VMO}$, then H_{f} is compact.

But in the T1-Theorem, the sufficient conditions for boundedness are well known to be necessary. So one naturally asks, what happens in the case of the H1-Theorem ?

This talk is about the various converses to the $H 1$-Theorem stated above.

In general, there are two kinds of problems in the theory of Hankel operators, namely "two-sided" problems and "onesided" problems. A "two-sided" problem concerns H_{f} and $H_{\bar{f}}$ simultaneously. "Two-sided" problems are equivalent to the study of the commutator $\left[P, M_{f}\right]$. Therefore there is a large body of literature on "two-sided" problems.

By contrast, a "one-sided" problem is the study of H_{f} alone. Almost invariably, a "one-sided" problem is more difficult than the corresponding "two-sided" problem. The reason for this is very simple: for a "one-sided" problem, the inequality

$$
\left\|\left(f-\left\langle f k_{z}, k_{z}\right\rangle\right) k_{z}\right\|^{2} \leq\left\|H_{f} k_{z}\right\|^{2}+\left\|H_{\bar{f}} k_{z}\right\|^{2}
$$

is useless, because one assumes nothing about $H_{\bar{f}}$. To solve a "one-sided" problem, one must find a way to control mean oscillation by other methods.
"One-sided" problems are all about these other methods.

In the case $n=1$, i.e., on the unit circle, because

$$
\begin{equation*}
\overline{f-P f} \in H^{2} \tag{1.3}
\end{equation*}
$$

every "one-sided" problem is actually a "two-sided" problem. But when $n \geq 2$, (1.3) no longer holds, and a difference between "two-sided" problems and "one-sided" problems appears. The main difficulty in "one-sided" problems is the fact that the subspace

$$
\begin{equation*}
L^{2}(S, d \sigma) \ominus\left\{H^{2}(S)+\overline{H^{2}(S)}\right\} \tag{1.4}
\end{equation*}
$$

is huge and intractable when $n \geq 2$.

A good example of a "one-sided" result is the following:
Theorem 1.1. (Dechao Zheng) Let $f \in$ BMO. Then the Hankel operator H_{f} is compact if and only if

$$
\lim _{|z| \uparrow 1}\left\|H_{f} k_{z}\right\|=0
$$

Although this is the best existing result on the compactness of H_{f}, questions still remain. Note that Theorem 1.1 is really a statement about the FAMILY

$$
\left\{H_{f}: f \in \mathrm{BMO}\right\}
$$

as a whole. We know that a necessary condition for any operator X to be compact is

$$
\begin{equation*}
\lim _{|z| \uparrow 1}\left\|X k_{z}\right\|=0 \tag{1.5}
\end{equation*}
$$

What Theorem 1.1 really says is that if

$$
X \in\left\{H_{f}: f \in \mathrm{BMO}\right\},
$$

then (1.5) is also a sufficient condition for X to be compact. This is certainly very nice, but it does not say much about f.

We would like to determine the compactness of H_{f} in terms of f, such as the membership of f in some easily-defined function class.

As it turns out, the Hankel operator H_{f} actually tells us a great deal about the commutator [$P, M_{f-P f}$]. That is, in many situations, a "one-sided" problem actually has a "two-sided" solution! In other words, notwithstanding the size of

$$
L^{2}(S, d \sigma) \ominus\left\{H^{2}(S)+\overline{H^{2}(S)}\right\}
$$

the theory of Hankel operators in the case $n \geq 2$ resembles the case $n=1$ in more ways than we previously realized.

What initially led to this investigation was the consideration of the subset

$$
\mathcal{A}=\left\{f \in L^{\infty}(S, d \sigma): H_{f} \text { is compact }\right\}
$$

of $L^{\infty}(S, d \sigma)$. As Davie and Jewell observed, \mathcal{A} is in fact a Banach subalgebra of $L^{\infty}(S, d \sigma)$.

When $n=1$, i.e., in the case of the unit circle, it is well known that

$$
\mathcal{A}=H^{\infty}+C(\mathbf{T})
$$

which is unquestionably a direct condition for compactness. But when $n \geq 2, \mathcal{A}$ is known to be strictly larger than $H^{\infty}(S)+C(S)$ (Davie and Jewell).

So here at least, there is a genuine difference between the case $n=1$ and the case $n \geq 2$. But wait, for difference is not the whole story. Even for \mathcal{A}, there is similarity between the case $n=1$ and the case $n \geq 2$.

Let us also consider the subset

$$
\mathcal{A}_{1}=\left\{f \in L^{\infty}(S, d \sigma): f-P f \in \mathrm{VMO}\right\}
$$

of $L^{\infty}(S, d \sigma)$. By the H1-Theorem of Coifman, Rochberg and Weiss we have

$$
\mathcal{A}_{1} \subset \mathcal{A}
$$

One might say that \mathcal{A}_{1} is the obvious part of \mathcal{A}. Our first result is the reverse inclusion, i.e., \mathcal{A} consists of nothing but its obvious part.
Theorem 1.2. $\mathcal{A} \subset \mathcal{A}_{1}$.
As it turns out, this result can be refined and improved in many different ways.

For each $f \in L^{1}(S, d \sigma)$ and each $\zeta \in S$, denote
$\operatorname{LMO}(f)(\zeta)=\lim _{\delta \downarrow 0} \sup _{B(\xi, r) \subset B(\zeta, \delta)} \frac{1}{\sigma(B(\xi, r))} \int_{B(\xi, r)}\left|f-f_{B(\xi, r)}\right| d \sigma$,
which is called the local mean oscillation of f at ζ.
Theorem 1.3. If f is a function in BMO and ζ is a point in S such that

$$
\begin{equation*}
\lim _{\substack{z \rightarrow \zeta \\|z|<1}}\left\|H_{f} k_{z}\right\|=0 \tag{1.6}
\end{equation*}
$$

then $\operatorname{LMO}(f-P f)(\zeta)=0$.
Corollary 1.4. Suppose that $f \in \mathrm{BMO}$. If

$$
\begin{equation*}
\lim _{|z| \uparrow 1}\left\|H_{f} k_{z}\right\|=0 \tag{1.7}
\end{equation*}
$$

then $f-P f \in \mathrm{VMO}$.
Corollary 1.4 explains why Theorem 1.1 holds: if f belongs to BMO and satisfies (1.7), then $f-P f \in \mathrm{VMO}$, which implies the compactness of $\left[P, M_{f-P f}\right]$, which in turn implies the compactness of $H_{f-P f}=H_{f}$.
Corollary 1.5. Suppose that $f \in$ BMO and that

$$
f \perp H^{2}(S)+\overline{H^{2}(S)}
$$

Then H_{f} is compact if and only if $H_{\bar{f}}$ is compact.
This is reminds us a theorem about Hankel operators on the Segal-Bargmann space $H^{2}\left(\mathbf{C}^{n}, d \mu\right)$ due to Berger and Coburn.

Theorem 1.6. There exists a constant $0<C<\infty$ which depends only on the complex dimension n such that

$$
\|f-P f\|_{\mathrm{BMO}} \leq C \sup _{|z|<1}\left\|H_{f} k_{z}\right\|
$$

for every $f \in \mathrm{BMO}$.
This and the H1-Theorem of Coifman, Rochberg and Weiss together give us the inequality

$$
\begin{equation*}
\left\|\left[P, M_{f-P f}\right]\right\| \leq C_{1}\left\|H_{f}\right\| \tag{1.8}
\end{equation*}
$$

$f \in$ BMO.
Corollary 1.7. There exists a constant $0<C<\infty$ which depends only on the complex dimension n such that for $f \in$ BMO satisfying the condition $f \perp H^{2}(S)+\overline{H^{2}(S)}$, we have

$$
C^{-1}\left\|H_{f}\right\| \leq\left\|H_{\bar{f}}\right\| \leq C\left\|H_{f}\right\| .
$$

Suppose that A is a bounded operator on a Hilbert space \mathcal{H}. Recall that the essential norm of A is defined by the formula

$$
\|A\|_{\mathcal{Q}}=\inf \{\|A+K\|: K \text { is compact on } \mathcal{H}\}
$$

An analogue of (1.8) holds for essential norms.
Theorem 1.8. There exists a constant $0<C<\infty$ which depends only on the complex dimension n such that

$$
\left\|\left[P, M_{f-P f}\right]\right\|_{\mathcal{Q}} \leq C\left\|H_{f}\right\|_{\mathcal{Q}}
$$

for every $f \in$ BMO.

Note that in all the results above the condition $f \in \mathrm{BMO}$ was a part of the assumption. But the bound provided by Theorem 1.6 enables us to deal with symbol functions which are not a priori assumed to be in BMO. For $\psi \in L^{2}(S, d \sigma)$, we can still define the Hankel operator H_{ψ} on the dense subset $H^{\infty}(S)$ of $H^{2}(S)$. That is, $H_{\psi} h=(1-P)(\psi h)$ for $h \in H^{\infty}(S)$.

Theorem 1.9. If $\psi \in L^{2}(S, d \sigma)$ and if

$$
\sup _{|z|<1}\left\|H_{\psi} k_{z}\right\|<\infty,
$$

then $\psi-P \psi \in \mathrm{BMO}$.

Combining Theorem 1.9 and Corollary 1.4, and using the fact that $H_{\psi}=H_{\psi-P \psi}$, we have the following improvement of Theorem 1.1:

Corollary 1.10. Suppose that $\psi \in L^{2}(S, d \sigma)$ and that

$$
\lim _{|z| \uparrow 1}\left\|H_{\psi} k_{z}\right\|=0 .
$$

Then $\psi-P \psi \in \mathrm{VMO}$. Consequently H_{ψ} extends to a compact operator from $H^{2}(S)$ to $L^{2}(S, d \sigma) \ominus H^{2}(S)$.

Summarizing, we now have the

Complete Version of H1-Theorem.

Let $f \in L^{2}(S, d \sigma)$. Then
(a) H_{f} is bounded if and only if $f-P f \in \mathrm{BMO}$;
(b) H_{f} is compact if and only if $f-P f \in \mathrm{VMO}$.

Recall that the "if" part is due to Coifman, Rochberg and Weiss; our contribution is the "only if" part.

2. An Estimate of Mean Oscillation

Coifman, Rochberg and Weiss showed that the Cauchy projection P maps $L^{\infty}(S, d \sigma)$ into BMO. In fact, something slightly stronger is also true:

Proposition 2.1. If $f \in \mathrm{BMO}$, then $P f \in \mathrm{BMO}$.

As it turns out, the key to the proofs of the results in Section 1 is the following quantitative refinement of Proposition 2.1.

Proposition 2.2. There exists a constant $0<C_{2.2}<\infty$ which depends only on the complex dimension n such that for all $f \in$ $L^{2}(S, d \sigma)$ and $B=B(\zeta, r)$, where $\zeta \in S$ and $r>0$, we have

$$
\begin{aligned}
& \left\{\frac{1}{\sigma(B)} \int_{B}\left|P f-(P f)_{B}\right|^{2} d \sigma\right\}^{1 / 2} \\
& \quad \leq C_{2.2}\left\{\frac{1}{\sigma\left(B_{1}\right)} \int_{B_{1}}\left|f-f_{B_{1}}\right|^{2} d \sigma\right\}^{1 / 2} \\
& \quad+C_{2.2} \sum_{k=2}^{\infty} \frac{2^{-k}}{\sigma\left(B_{k}\right)} \int_{B_{k}}\left|f-f_{B_{k}}\right| d \sigma
\end{aligned}
$$

where $B_{k}=B\left(\zeta, 2^{k} r\right)$ for every $k \geq 1$.

Proof. Given $f \in L^{2}(S, d \sigma)$ and $B=B(\zeta, r)$, we may assume $\left\|\left(P f-(P f)_{B}\right) \chi_{B}\right\| \neq 0$, for otherwise there is nothing to prove. Define

$$
g=\frac{1}{\left\|\left(P f-(P f)_{B}\right) \chi_{B}\right\|}\left(P f-(P f)_{B}\right) \chi_{B}
$$

which is, of course, a unit vector in $L^{2}(S, d \sigma)$. Write 1 for the constant function of value 1 on S. Then obviously $\langle 1, g\rangle=0$. Thus

$$
\begin{align*}
\left\{\frac{1}{\sigma(B)} \int_{B}\left|P f-(P f)_{B}\right|^{2} d \sigma\right\}^{1 / 2} & =\frac{\left\langle P f-(P f)_{B}, g\right\rangle}{\sigma^{1 / 2}(B)} \\
& =\frac{\langle P f, g\rangle}{\sigma^{1 / 2}(B)} \tag{2.1}
\end{align*}
$$

To estimate $\langle P f, g\rangle$, note that $P 1=1$, which leads to $\langle 1, P g\rangle=$ $\langle 1, g\rangle=0$. Hence

$$
\langle P f, g\rangle=\langle f, P g\rangle=\left\langle f-f_{B_{1}}, P g\right\rangle
$$

$$
\begin{equation*}
=\int_{B_{1}}\left(f-f_{B_{1}}\right) \overline{P g} d \sigma+\sum_{k=2}^{\infty} \int_{B_{k} \backslash B_{k-1}}\left(f-f_{B_{1}}\right) \overline{P g} d \sigma . \tag{2.2}
\end{equation*}
$$

Next we estimate the terms in (2.2), using the properties of g and P. For the first term in (2.2), we have

$$
\int_{B_{1}}\left|f-f_{B_{1}}\|P g \mid d \sigma \leq\|\left(f-f_{B_{1}}\right) \chi_{B_{1}}\| \| P g\|\leq\|\left(f-f_{B_{1}}\right) \chi_{B_{1}} \| .\right.
$$

Recall that $\sigma\left(B_{1}\right) \leq 2^{3 n} A_{0} \sigma(B)$. Let $C_{1}=\left(2^{3 n} A_{0}\right)^{1 / 2}$. Then

$$
\begin{align*}
& \int_{B_{1}}\left|f-f_{B_{1}}\|P g \mid d \sigma \leq\|\left(f-f_{B_{1}}\right) \chi_{B_{1}} \|\right. \\
& \quad=\sigma^{1 / 2}\left(B_{1}\right)\left\{\frac{1}{\sigma\left(B_{1}\right)} \int_{B_{1}}\left|f-f_{B_{1}}\right|^{2} d \sigma\right\}^{1 / 2} \\
& \quad \leq C_{1} \sigma^{1 / 2}(B)\left\{\frac{1}{\sigma\left(B_{1}\right)} \int_{B_{1}}\left|f-f_{B_{1}}\right|^{2} d \sigma\right\}^{1 / 2} \tag{2.3}
\end{align*}
$$

To estimate the other terms in (2.2), we need the fact that there is a constant C_{2} which depends only on n such that
(2.4) $\left|\frac{1}{(1-\langle x, y\rangle)^{n}}-\frac{1}{(1-\langle x, \zeta\rangle)^{n}}\right| \leq C_{2} \frac{|1-\langle y, \zeta\rangle|^{1 / 2}}{|1-\langle x, \zeta\rangle|^{n+(1 / 2)}}$
if $y \in B$ and $x \in S \backslash B_{1}$.
Thus if $y \in B$ and $x \in B_{k} \backslash B_{k-1}, k \geq 2$, then

$$
\begin{aligned}
\left\lvert\, \frac{1}{(1-\langle x, y\rangle)^{n}}\right. & -\frac{1}{(1-\langle x, \zeta\rangle)^{n}} \left\lvert\, \leq \frac{C_{2} r}{\left(2^{k-1} r\right)^{2 n+1}}\right. \\
& =\frac{2^{2 n+1} C_{2}}{2^{k}} \cdot \frac{1}{\left(2^{k} r\right)^{2 n}} \leq \frac{C_{3}}{2^{k} \sigma\left(B_{k}\right)} .
\end{aligned}
$$

By the definition of g, we have $g=0$ on $S \backslash B$ and

$$
\int_{B} g d \sigma=0 .
$$

Also, by the Cauchy-Schwarz inequality,

$$
\int_{B}|g| d \sigma \leq \sigma^{1 / 2}(B)\|g\|=\sigma^{1 / 2}(B)
$$

For $x \in S \backslash B_{1}$ we have

$$
\begin{aligned}
(P g)(x) & =\int_{B} \frac{g(y)}{(1-\langle x, y\rangle)^{n}} d \sigma(y) \\
& =\int_{B}\left(\frac{1}{(1-\langle x, y\rangle)^{n}}-\frac{1}{(1-\langle x, \zeta\rangle)^{n}}\right) g(y) d \sigma(y)
\end{aligned}
$$

Therefore
(2.6)
$|(P g)(x)| \leq \frac{C_{3}}{2^{k} \sigma\left(B_{k}\right)} \int_{B}|g| d \sigma \leq \frac{C_{3} \sigma^{1 / 2}(B)}{2^{k} \sigma\left(B_{k}\right)} \quad$ if $\quad x \in B_{k} \backslash B_{k-1}$,
$k \geq 2$. Integrating the above over $B_{k} \backslash B_{k-1}$, we see that (2.7)

$$
\int_{B_{k} \backslash B_{k-1}}|P g| d \sigma \leq \frac{C_{3} \sigma^{1 / 2}(B)}{2^{k} \sigma\left(B_{k}\right)} \sigma\left(B_{k} \backslash B_{k-1}\right) \leq \frac{C_{3}}{2^{k}} \sigma^{1 / 2}(B)
$$

if $k \geq 2$. Applying (2.6) and (2.7), for each $k \geq 2$ we have

$$
\begin{aligned}
\int_{B_{k} \backslash B_{k-1}} & \left|f-f_{B_{1}}\right||P g| d \sigma \leq \int_{B_{k} \backslash B_{k-1}}\left|f-f_{B_{k}}\right||P g| d \sigma \\
& +\left|f_{B_{k}}-f_{B_{1}}\right| \int_{B_{k} \backslash B_{k-1}}|P g| d \sigma \\
& \leq \frac{C_{3} \sigma^{1 / 2}(B)}{2^{k} \sigma\left(B_{k}\right)} \int_{B_{k} \backslash B_{k-1}}\left|f-f_{B_{k}}\right| d \sigma \\
& +\frac{C_{3}}{2^{k}} \sigma^{1 / 2}(B)\left|f_{B_{k}}-f_{B_{1}}\right|
\end{aligned}
$$

But

$$
\begin{aligned}
\left|f_{B_{k}}-f_{B_{1}}\right| \leq \sum_{j=2}^{k}\left|f_{B_{j}}-f_{B_{j-1}}\right| & \leq \sum_{j=2}^{k}\left(\frac{\sigma\left(B_{j}\right)}{\sigma\left(B_{j-1}\right)}\right) \\
& \frac{1}{\sigma\left(B_{j}\right)} \int_{B_{j}}\left|f-f_{B_{j}}\right| d \sigma
\end{aligned}
$$

We see that if we set $C_{4}=\left(1+2^{3 n} A_{0}\right) C_{3}$, then

$$
\int_{B_{k} \backslash B_{k-1}}\left|f-f_{B_{1}}\right||P g| d \sigma \leq \frac{C_{4}}{2^{k}} \sum_{j=2}^{k} \frac{\sigma^{1 / 2}(B)}{\sigma\left(B_{j}\right)} \int_{B_{j}}\left|f-f_{B_{j}}\right| d \sigma .
$$

Therefore

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \int_{B_{k} \backslash B_{k-1}}\left|f-f_{B_{1}}\right||P g| d \sigma \\
& \quad \leq C_{4} \sigma^{1 / 2}(B) \sum_{k=2}^{\infty} \frac{1}{2^{k}} \sum_{j=2}^{k} \frac{1}{\sigma\left(B_{j}\right)} \int_{B_{j}}\left|f-f_{B_{j}}\right| d \sigma \\
& \quad=C_{4} \sigma^{1 / 2}(B) \sum_{j=2}^{\infty}\left(\sum_{k=j}^{\infty} \frac{1}{2^{k}}\right) \frac{1}{\sigma\left(B_{j}\right)} \int_{B_{j}}\left|f-f_{B_{j}}\right| d \sigma \\
& \quad=2 C_{4} \sigma^{1 / 2}(B) \sum_{j=2}^{\infty} \frac{2^{-j}}{\sigma\left(B_{j}\right)} \int_{B_{j}}\left|f-f_{B_{j}}\right| d \sigma .
\end{aligned}
$$

Combining this with (2.1-3), we find that $C_{2.2}=\max \left\{C_{1}, 2 C_{4}\right\}$ will do for the proposition.

3. Möbius Transform

For each $z \in \mathbf{C}^{n}$ with $0<|z|<1$, let

$$
\begin{aligned}
& \varphi_{z}(w)= \\
& \frac{1}{1-\langle w, z\rangle}\left\{z-\frac{\langle w, z\rangle}{|z|^{2}} z-\left(1-|z|^{2}\right)^{1 / 2}\left(w-\frac{\langle w, z\rangle}{|z|^{2}} z\right)\right\}
\end{aligned}
$$

$|w| \leq 1$. Then φ_{z} is an involution, i.e., $\varphi_{z} \circ \varphi_{z}=\mathrm{id}$.

The formula

$$
\left(U_{z} g\right)(\xi)=g\left(\varphi_{z}(\xi)\right) k_{z}(\xi), \quad \xi \in S \text { and } g \in L^{2}(S, d \sigma)
$$

defines a unitary operator with the property $\left[U_{z}, P\right]=0$. Moreover, there exist constants $0<\alpha<\beta<\infty$ such that

$$
\begin{equation*}
\alpha\left\|f \circ \varphi_{a}\right\|_{\mathrm{BMO}} \leq \beta\|f\|_{\mathrm{BMO}} \tag{3.3}
\end{equation*}
$$

for all $f \in \mathrm{BMO}$ and $a \in \mathbf{C}^{n}$ with $0<|a|<1$.

Lemma 3.1. Given any $f \in \mathrm{BMO}$ and $z \in \mathbf{C}^{n}$ with $0<|z|<$ 1, there exist functions h_{z} and v_{z} satisfying the following four conditions:
(a) $h_{z} \in H^{2}(S)$.
(b) $h_{z}+v_{z}=f-P f$.
(c) $\left\|v_{z} k_{z}\right\|=\left\|H_{f} k_{z}\right\|$.
(d) $\left\|v_{z}\right\|_{\mathrm{BMO}} \leq C_{3.1}\|f\|_{\mathrm{BMO}}$, where the constant $C_{3.1}$
depends only on the complex dimension n.

Proof. Given $f \in \mathrm{BMO}$ and $0<|z|<1$, set

$$
h_{z}=\left(P\left(f \circ \varphi_{z}\right)\right) \circ \varphi_{z}-P f
$$

and

$$
v_{z}=f-\left(P\left(f \circ \varphi_{z}\right)\right) \circ \varphi_{z} .
$$

Then (a) and (b) are obvious. Using the identities $\varphi_{z} \circ \varphi_{z}=\mathrm{id}$ and $\left[U_{z}, P\right]=0$, we have

$$
\begin{aligned}
\left\|H_{f} k_{z}\right\| & =\left\|(1-P) M_{f} k_{z}\right\| \\
& =\left\|(1-P) M_{f \circ \varphi_{z} \circ \varphi_{z}} k_{z}\right\| \\
& =\left\|(1-P) U_{z} M_{f \circ \varphi_{z}} 1\right\| \\
& =\left\|U_{z}(1-P) M_{f \circ \varphi_{z}} 1\right\| \\
& =\left\|U_{z}\left\{f \circ \varphi_{z}-P\left(f \circ \varphi_{z}\right)\right\}\right\| \\
& =\left\|v_{z} k_{z}\right\|,
\end{aligned}
$$

proving (c). To verify (d), note that Proposition 2.2 provides a constant C such that $\|P \eta\|_{\text {BMO }} \leq C\|\eta\|_{\text {BMO }}$ for every $\eta \in$ BMO. Combining this with (3.3), we have

$$
\begin{aligned}
\left\|v_{z}\right\|_{\mathrm{BMO}} & \leq\|f\|_{\mathrm{BMO}}+\left\|\left(P\left(f \circ \varphi_{z}\right)\right) \circ \varphi_{z}\right\|_{\mathrm{BMO}} \\
& \leq\|f\|_{\mathrm{BMO}}+(\beta / \alpha)\left\|P\left(f \circ \varphi_{z}\right)\right\|_{\mathrm{BMO}} \\
& \leq\|f\|_{\mathrm{BMO}}+(\beta / \alpha) C\left\|f \circ \varphi_{z}\right\|_{\mathrm{BMO}} \\
& \leq\|f\|_{\mathrm{BMO}}+(\beta / \alpha)^{2} C\|f\|_{\mathrm{BMO}} .
\end{aligned}
$$

Thus $C_{3.1}=1+(\beta / \alpha)^{2} C$ will do for (d). \square

Proof of Theorem 1.6. We first pick an integer $L>2$ such that

$$
\begin{equation*}
C_{2.2} C_{3.1} \sum_{k=L+1}^{\infty} 2^{-k} \leq \frac{1}{4}, \tag{3.9}
\end{equation*}
$$

where $C_{2.2}$ and $C_{3.1}$ are the constants in Proposition 2.2 and lemma 3.1 respectively. Let $f \in \mathrm{BMO}$ be given and write

$$
u=f-P f .
$$

Proposition 2.2 tells us that $\|u\|_{\text {BMO }}<\infty$ (crucial). By this finiteness, there exist $\xi \in S$ and $r>0$ such that
(3.10)

$$
\frac{1}{\sigma(B(\xi, r))} \int_{B(\xi, r)}\left|u-u_{B(\xi, r)}\right| d \sigma \geq \frac{1}{2}\|u\|_{\mathrm{BMO}}
$$

Write

$$
B=B(\xi, r)
$$

as in the proof of Theorem 1.3. Also, let $\rho=2^{L} r$. Now the proof divides into two cases.
(1) Suppose that $\rho<1 / 2$. In this case we define

$$
z=\left(1-\rho^{2}\right)^{1 / 2} \xi .
$$

Applying Lemma 3.1 to u and z, we obtain h_{z} and v_{z} such that
(i) $h_{z} \in H^{2}(S)$;
(ii) $h_{z}+v_{z}=u-P u=u$;
(iii) $\left\|v_{z} k_{z}\right\|=\left\|H_{u} k_{z}\right\|$;
(iv) $\left\|v_{z}\right\|_{\text {ВМО }} \leq C_{3.1}\|u\|_{\text {ВмО }}$.

By (i) and (ii), $h_{z}=-P v_{z}$. Applying Proposition 2.2 to v_{z} and B, we have

$$
\begin{aligned}
\left\{\frac{1}{\sigma(B)}\right. & \left.\int_{B}\left|h_{z}-\left(h_{z}\right)_{B}\right|^{2} d \sigma\right\}^{1 / 2} \\
& =\left\{\frac{1}{\sigma(B)} \int_{B}\left|P v_{z}-\left(P v_{z}\right)_{B}\right|^{2} d \sigma\right\}^{1 / 2} \\
& \leq C_{2.2} \sum_{k=1}^{L}\left\{\frac{1}{\sigma\left(B_{k}\right)} \int_{B_{k}}\left|v_{z}-\left(v_{z}\right)_{B_{k}}\right|^{2} d \sigma\right\}^{1 / 2} \\
& +C_{2.2} \sum_{k=L+1}^{\infty} 2^{-k}\left\|v_{z}\right\|_{\mathrm{BMO}}
\end{aligned}
$$

where $B_{k}=B\left(\xi, 2^{k} r\right), k \geq 1$. We have

$$
\begin{aligned}
\sum_{k=1}^{L} & \left\{\frac{1}{\sigma\left(B_{k}\right)} \int_{B_{k}}\left|v_{z}-\left(v_{z}\right)_{B_{k}}\right|^{2} d \sigma\right\}^{1 / 2} \\
& \leq L \frac{\sigma\left(B_{L}\right)}{\sigma\left(B_{1}\right)}\left\{\frac{1}{\sigma\left(B_{L}\right)} \int_{B_{L}}\left|v_{z}-\left(v_{z}\right)_{B_{L}}\right|^{2} d \sigma\right\}^{1 / 2}
\end{aligned}
$$

Combining the above with (iv) and with (3.9), we see that

$$
\begin{aligned}
& \frac{1}{\sigma(B)} \int_{B}\left|h_{z}-\left(h_{z}\right)_{B}\right| d \sigma \\
& \leq C_{2.2} C(n, L)\left\{\frac{1}{\sigma\left(B_{L}\right)} \int_{B_{L}}\left|v_{z}-\left(v_{z}\right)_{B_{L}}\right|^{2} d \sigma\right\}^{1 / 2}+\frac{1}{4}\|u\|_{\mathrm{BMO}}
\end{aligned}
$$

where $C(n, L)$ depends only on n and L.

It is easy to show that

$$
\begin{gathered}
\left\{\frac{1}{\sigma\left(B_{L}\right)} \int_{B_{L}}\left|v_{z}-\left(v_{z}\right)_{B_{L}}\right|^{2} d \sigma\right\}^{1 / 2} \leq\left\{\frac{1}{\sigma\left(B_{L}\right)} \int_{B_{L}}\left|v_{z}\right|^{2} d \sigma\right\}^{1 / 2} \\
\leq 8^{n / 2}\left\|v_{z} k_{z}\right\|=8^{n / 2}\left\|H_{u} k_{z}\right\|
\end{gathered}
$$

Since $u=h_{z}+v_{z}$, from the above we deduce

$$
\frac{1}{\sigma(B)} \int_{B}\left|u-u_{B}\right| d \sigma \leq\left(1+C_{2.2}\right) C(n, L) 8^{n / 2}\left\|H_{u} k_{z}\right\|+\frac{1}{4}\|u\|_{\mathrm{BMO}}
$$

Recalling (3.10) and using the fact that $H_{u}=H_{f}$, we now have

$$
\frac{1}{2}\|u\|_{\mathrm{BMO}} \leq\left(1+C_{2.2}\right) C(n, L) 8^{n / 2}\left\|H_{f} k_{z}\right\|+\frac{1}{4}\|u\|_{\mathrm{BMO}}
$$

Cancelling out $(1 / 4)\|u\|_{\text {BMO }}$ form both sides, we obtain

$$
\frac{1}{4}\|u\|_{\mathrm{BMO}} \leq\left(1+C_{2.2}\right) C(n, L) 8^{n / 2}\left\|H_{f} k_{z}\right\|
$$

in the case $\rho<1 / 2$. (Note that this last step required the fact $\|u\|_{\mathrm{BMO}}<\infty$.)
(2) Suppose that $\rho \geq 1 / 2$. This the trivial case.

Remark. In the above proof, the fact $\|u\|_{\mathrm{BMO}}<\infty$ was used non-trivially in two places. This is the reason why Theorem 1.9 requires a separate proof.

4. Smoothing

Let $\mathcal{U}=\mathcal{U}(n)$ denote the collection of unitary transformations on \mathbf{C}^{n}. For each $U \in \mathcal{U}$, define the operator W_{U} : $L^{2}(S, d \sigma) \rightarrow L^{2}(S, d \sigma)$ by the formula

$$
\left(W_{U} g\right)(\zeta)=g(U \zeta)
$$

$g \in L^{2}(S, d \sigma)$. By the invariance of σ, W_{U} is a unitary operator on $L^{2}(S, d \sigma)$. Obviously, $\left[P, W_{U}\right]=0$ for every $U \in \mathcal{U}$.

With the usual multiplication and topology, \mathcal{U} is a compact group. Write $d U$ for the Haar measure on \mathcal{U}.

It is easy to see that for each $g \in L^{2}(S, d \sigma)$, the map $U \mapsto W_{U} g$ is continuous with respect to the norm topology of $L^{2}(S, d \sigma)$. Let Φ be a continuous function on \mathcal{U}. Then for each $g \in L^{2}(S, d \sigma)$ we can define the integral

$$
Y_{\Phi} g=\int_{\mathcal{U}} \Phi(U) W_{U} g d U
$$

in the sense that

$$
\left\langle Y_{\Phi} g, f\right\rangle=\int_{\mathcal{U}} \Phi(U)\left\langle W_{U} g, f\right\rangle d U
$$

for every $f \in L^{2}(S, d \sigma)$.

Lemma 4.1. If $\Phi \in C(\mathcal{U})$, then $\left\|Y_{\Phi} g\right\|_{\infty}<\infty$ for every $g \in$ $L^{2}(S, d \sigma)$.

Proof. Recall that the equality

$$
\int_{\mathcal{U}} f(U \zeta) d U=\int f d \sigma
$$

holds for all $f \in C(S)$ and $\zeta \in S$. Thus for $q, p \in C(S)$ we have

$$
\begin{aligned}
\left|\left\langle Y_{\Phi} q, p\right\rangle\right| & =\left|\int_{\mathcal{U}} \Phi(U)\left\langle W_{U} q, p\right\rangle d U\right| \\
& =\left|\int_{\mathcal{U}} \Phi(U)\left\{\int q(U \zeta) \overline{p(\zeta)} d \sigma(\zeta)\right\} d U\right| \\
& =\left|\int\left\{\int_{\mathcal{U}} \Phi(U) q(U \zeta) d U\right\} \overline{p(\zeta)} d \sigma(\zeta)\right| \\
& \leq\|\Phi\|_{\infty} \int\left\{\int_{\mathcal{U}}|q(U \zeta)| d U\right\}|p(\zeta)| d \sigma(\zeta) \\
& =\|\Phi\|_{\infty} \int|q| d \sigma \int|p| d \sigma .
\end{aligned}
$$

Since Y_{Φ} is obviously a bounded operator on $L^{2}(S, d \sigma)$ and since $C(S)$ is dense in $L^{2}(S, d \sigma)$, the above implies

$$
\left|\left\langle Y_{\Phi} g, f\right\rangle\right| \leq\|\Phi\|_{\infty} \int|g| d \sigma \int|f| d \sigma
$$

for all $g, f \in L^{2}(S, d \sigma)$. This obviously means $\left\|Y_{\Phi} g\right\|_{\infty}<\infty . \square$

Proof of Theorem 1.9. Let $\eta:[0, \infty) \rightarrow[0,1]$ be a continuous function satisfying the conditions that $\eta=1$ on $[0,1]$ and that $\eta=0$ on $[2, \infty)$. For each $j \in \mathbf{N}$, define

$$
\Phi_{j}(U)=\frac{\eta(j\|1-U\|)}{\int_{\mathcal{U}} \eta(j\|1-V\|) d V}, \quad U \in \mathcal{U} .
$$

Then the following properties are obvious:
(1) $\Phi_{j} \in C(\mathcal{U})$.
(2) $\Phi_{j} \geq 0$ on \mathcal{U}.
(3) $\Phi_{j}(U)=0$ if $\|1-U\| \geq 2 / j$.
(4) $\int_{\mathcal{U}} \Phi_{j}(U) d U=1$.

Let ψ be given as in the statement of the theorem and denote

$$
R=\sup _{|z|<1}\left\|H_{\psi} k_{z}\right\|
$$

Furthermore, for each $j \in \mathbf{N}$ denote

$$
\psi_{j}=Y_{\Phi_{j}} \psi
$$

By Lemma 4.1, $\left\|\psi_{j}\right\|_{\infty}<\infty$. Thus we can apply Theorem 1.6 to obtain

$$
\begin{equation*}
\left\|\psi_{j}-P \psi_{j}\right\|_{\text {BMO }} \leq C \sup _{|z|<1}\left\|H_{\psi_{j}} k_{z}\right\|, \tag{4.1}
\end{equation*}
$$

where C depends only on the complex dimension n. We claim that

$$
\begin{equation*}
\sup _{|z|<1}\left\|H_{\psi_{j}} k_{z}\right\| \leq R \tag{4.2}
\end{equation*}
$$

for every $j \in \mathbf{N}$.

To prove (4.2), note that for all $U \in \mathcal{U}$ and $z \in \mathbf{C}^{n}$ with $|z|<1$, we have $W_{U} H_{\psi} W_{U^{*}} k_{z}=H_{W_{U} \psi} k_{z}$ and $W_{U^{*}} k_{z}=k_{U z}$. Thus for all $j \in \mathbf{N},|z|<1$ and $f \in L^{2}(S, d \sigma) \ominus H^{2}(S)$ we have

$$
\begin{aligned}
\left\langle H_{\psi_{j}} k_{z}, f\right\rangle & =\left\langle\psi_{j} k_{z}, f\right\rangle=\left\langle\psi_{j}, \bar{k}_{z} f\right\rangle=\left\langle Y_{\Phi_{j}} \psi, \bar{k}_{z} f\right\rangle \\
& =\int_{\mathcal{U}} \Phi_{j}(U)\left\langle W_{U} \psi, \bar{k}_{z} f\right\rangle d U \\
& =\int_{\mathcal{U}} \Phi_{j}(U)\left\langle k_{z} W_{U} \psi, f\right\rangle d U \\
& =\int_{\mathcal{U}} \Phi_{j}(U)\left\langle H_{W_{U} \psi} k_{z}, f\right\rangle d U \\
& =\int_{\mathcal{U}} \Phi_{j}(U)\left\langle W_{U} H_{\psi} k_{U z}, f\right\rangle d U
\end{aligned}
$$

By properties (2) and (4) we now have

$$
\left|\left\langle H_{\psi_{j}} k_{z}, f\right\rangle\right| \leq \int_{\mathcal{U}} \Phi_{j}(U)\left\|H_{\psi} k_{U z}\right\|\|f\| d U \leq R\|f\|
$$

for all $j \in \mathbf{N},|z|<1$ and $f \in L^{2}(S, d \sigma) \ominus H^{2}(S)$. This proves (4.2).

Now consider an arbitrary $B=B(\zeta, r)$, where $\zeta \in S$ and $r>0$. By (4.1) and (4.2),

$$
\begin{equation*}
\frac{1}{\sigma(B)} \int_{B}\left|\psi_{j}-P \psi_{j}-\left(\psi_{j}-P \psi_{j}\right)_{B}\right| d \sigma \leq C R \tag{4.3}
\end{equation*}
$$

for every $j \in \mathbf{N}$. Clearly, the proof will be complete if we can show $\lim _{j \rightarrow \infty}\left\|\psi_{j}-\psi\right\|=0$, for this convergence and (4.3) together will give us

$$
\frac{1}{\sigma(B)} \int_{B}\left|\psi-P \psi-(\psi-P \psi)_{B}\right| d \sigma \leq C R
$$

Thus the proof is now reduced to that of the convergence

$$
\begin{equation*}
\text { s- } \lim _{j \rightarrow \infty} Y_{\Phi_{j}}=1 \tag{4.4}
\end{equation*}
$$

on the Hilbert space $L^{2}(S, d \sigma)$. But this works just like in the case of convolution and is absolutely routine.

It is easy to see that if $q \in C(S)$, then

$$
\left(Y_{\Phi_{j}} q\right)(\zeta)=\int_{\mathcal{U}} \Phi_{j}(U) q(U \zeta) d U, \quad \zeta \in S
$$

Applying properties (1)-(4), we have

$$
\begin{equation*}
\lim _{j \rightarrow \infty}\left\|Y_{\Phi_{j}} q-q\right\|_{\infty}=0, \quad q \in C(S) . \tag{4.5}
\end{equation*}
$$

Also, by (2) and (4), the norm of the operator $Y_{\Phi_{j}}$ on the Hilbert space $L^{2}(S, d \sigma)$ satisfies the estimate $\left\|Y_{\Phi_{j}}\right\| \leq 1$. Obviously, (4.4) follows from (4.5) and this norm bound.

5. Open Questions

Suppose that $n \geq 2$. Recall that what initially lead to this investigation was the consideration of the Banach subalgebra

$$
\mathcal{A}=\left\{f \in L^{\infty}(S, d \sigma): H_{f} \text { is compact }\right\}
$$

of $L^{\infty}(S, d \sigma)$. Davie and Jewell showed that

$$
\mathcal{A} \neq H^{\infty}(S)+C(S)
$$

We have figured out that
(5.1) $\mathcal{A}=\left\{f \in L^{\infty}(S, d \sigma): f-P f \in \mathrm{VMO}\right\}$,
which is progress. One can see that (5.1) and the fact that \mathcal{A} is a Banach algebra together have interesting multiplicative consequences.

On the other hand, there is plenty of unknown about \mathcal{A}. To discuss the unknown, observe that

$$
\mathcal{A} \supset H^{\infty}(S)+\left\{\mathrm{VMO} \cap L^{\infty}(S, d \sigma)\right\} .
$$

The following questions were raised by Davie and Jewell in 1977. More than thirty years later, these questions remain open.

Question 1. Is it true that

$$
\mathcal{A}=H^{\infty}(S)+\left\{\mathrm{VMO} \cap L^{\infty}(S, d \sigma)\right\} ?
$$

Note that an affirmative answer to Question 1 would imply that $H^{\infty}(S)+\left\{\mathrm{VMO} \cap L^{\infty}(S, d \sigma)\right\}$ is a Banach subalgebra of $L^{\infty}(S, d \sigma)$. Therefore the following are weaker versions of Question 1.

Question 2. Is the subset

$$
H^{\infty}(S)+\left\{\operatorname{VMO} \cap L^{\infty}(S, d \sigma)\right\}
$$

closed in $L^{\infty}(S, d \sigma)$ with respect to the norm $\|\cdot\|_{\infty}$?
Question 3. Is the $\|\cdot\|_{\infty}$-closure of

$$
H^{\infty}(S)+\left\{\mathrm{VMO} \cap L^{\infty}(S, d \sigma)\right\}
$$

an algebra?
Question 4. Does the Banach algebra generated by

$$
H^{\infty}(S)+\left\{\mathrm{VMO} \cap L^{\infty}(S, d \sigma)\right\}
$$

coincide with \mathcal{A} ?

