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Abstract

We consider the question for which square integrable analytic funcifcarsd g on the polydisk
the densely defined producty T; are bounded on the Bergman space. We prove results analogous
to those we obtained in the setting of the unit disk [K. Stroethoff, D. Zheng, J. Funct. Anal. 169
(1999) 289-313].
0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Throughout letz be a fixed integer > 2. Denote the unit disk i€ by D, and letv be
Lebesgue volume measure B, normalized so that(D") = 1.

Forx € D, let g, be the fractional linear transformation Bingiven by, (z) = (A — z)/
(1 — xz). Eachgy is an automorphism on the disk, in fagpgl =g,. Forw = (w1, ...,
wy) € D" the mappingp,, on the polydiskD” given byg,, (z) = (¢u, (z1), - - -, Qu, (zn)) iS
an automorphism of”. The Bergman spack?(D") is the space of analytic functiots
on D" which are square-integrable with respect to Lebesgue volume measiite dhe
reproducing kernel inLg(]D)") is given by
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Ko@) =[] =—

o (I W;zj)?

forz, w e D". If (-, -) denotes the inner productirf(D"), then(h, K,,) = h(w), for every
h e L2(D") andw € D". The orthogonal projectioR of L2(D") onto L2(D") is given by

(Po)w) = 5. Ku) = [ 2) [t v
k] 1- wjzl,')2

D

for g € L2(D") andw € D". Given f € L>®(D"), the Toeplitz operatof s is defined on
L2(D") by Th = P(fh). We have

‘ 1
(Trh)(w) Z/f(Z)h(Z)jl_[lmdv(Z),
Dn =

Zj)

for h e Lﬁ(ID)”) andw € D". Note that the above formula makes sense, and defines a
function analytic oD, also if f € L2(D"). So, ifg € L2(D") we defineT; by the formula

(]_szj)zdv(Z)’

(Tzh)(w) = / g@h@ ]
j=1

D

forh e L2(D") andw € D". Ifalso f € L2(D"), thenT; T3k is the analytic functiorf Tzh.
We consider the following problem, which far= 1 was raised by Sarason in [2].

Problem of boundedness of Toeplitz productson L2(D"). For which f andg in L2(D")
is the operatof’s T; bounded on.2(D")?

In this paper we extend our results for boundedness of these Toeplitz products on the
Bergman space of the unit disk [4] to higher dimension. In the next section we will first give
a necessary condition for boundedness of the Toeplitz pratjuct on L2(D"). A recent
counter-example of Nazarov [1] for Toeplitz products on the Hardy space indicates that it
may not be possible to prove that this necessary condition is also sufficient. In the final
section of the paper we will show that this condition is, however, very close to being suf-
ficient, as shown for Toeplitz products on the Hardy space of the unit circle in [5].

2. Necessary condition for boundedness

Supposef andg are inL2(D"). Consider the operatgf ® g on Lg(]D)") defined by

(fR®gh=(hgf

for h € L2(D"). It is easily proved thay ® g is bounded or.2(D") with norm equal to
If@gl=1fIgl-

We will obtain an expression for the operatfr® g, where f, g Lﬁ(D”). This is
most easily accomplished by using the Berezin transform: writingor the normalized
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reproducing kernels, we define the Berezin transform of a bounded linear opgrator
L2(D") to be the functiors defined orD" by

S(w) = (Sku, k),

for w € D". The boundedness & implies that the functiors is bounded or”". The
Berezin transform is injective, fof(w) = 0, for all w € D", implies thatS = 0, the zero
operator or‘Lﬁ(ID)") (see [3] for a proof). Using the reproducing propertykaf we have
. 1
Ky 2= Ky, Ky) =Ky = A oo
1Kwll? = ) (w) H AT P2
j=1
thus

n

ko0 = [ | o

(1—12),'1,')2’

2
(2.1)

j=1

for z, w € D". It follows from (2.1) that

Sw) =T (@~ w2 *(SKw, Ku).
j=1
forw e D". Itis easily seen thal; K, = g(w) Ky, ThuS(T Tz Koy, Kuy) = (T Ku, TiKu)
= (g(w)Ky, f(w)Ky) = f(w)g(w)(Ky, Ky), and we see that
Ty Tg(w) = f(w)g(w). (2.2)
Since((f ® ) Kuw, Kuw) = ((Kuw, &) f> Ku) = (Ku, 8)(f, Kuw) = f (w)g(w), we also have

n

F@gw) =[](1-w;?’f wgw). (2.3)
j=1
For a multi-indexg = (81, ..., ), it follows from (2.2) that the Berezin transform of the
Toeplitz productl s T¢T;Tzs = Tzﬂng? is equal to the functiow — w? f(w)g(w)wh =
lw1|?P1 .. |w,|%P f(w)g(w). Writing

- 2\(2 2\ & )
]1:[1(1—xj)2 = Z(_l)k<kl> <k2> ...(kn>x11 . xkn

wherek = k1 + ko + --- + k, and the sum is over ally, ..., k, from {0, 1, 2}, we see
from (2.3) and the injectivity of the Berezin transform that

2 2 2
=Y Dk T TyTgT ,
fos =D (kl) (k2> <kn) et R

wherek = k1 +ko+---+k, andthe sumis overath, ..., k, ranging over the s€0, 1, 2}.
Using that||7;, || = 1, for eachy, it follows that|| f ® gll < 4"(|Ty T;ll, and thus

If gl <4 TrTgll, (2.4)
for f andg in L2(D").
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We will next apply the invariance under composition of the symbols with the fractional
transformations. We need some preliminaries to make this precise. The magping
has real Jacobiafl]}_, ¢}, (z/)¢;,, (z)) = [1j_1 19}, (zj)|, which by (2.1) is equal to
lkw(2)|2, so we have the following change-of-variable formula

/ h(¢w(@) |k ()2 dv(2) = / hu) dv(w), (2.5)

Dn Dn

for everyh € L1(D"). It follows from (2.5) that the mapping., i = (h o ¢y)k, is an
isometry onZ?2(D"):

||Uwh||2=/|h(¢w<z>)\2|kw(z>|2du(z>=/\h<u>|2dv<u>= IR]I2,
]D)ll ]D)n

forall h e L2(D"). ltis easily verified that

Ky (Qaw (Z)) = k(@)

Sincegy,, o ¢, = id, we see that
(Un(Uwh))(2) = (Unh) (9w (2) )kw(2) = h(@)kw (0w (2))kw(2) = h(2),

forall z e D" andh € L2(D"). ThusU,* = U,,, and hencé/,, is unitary. Furthermore,
Tfopy U = Uy T (2.6)

Proof. Forh € H*® andg € L2(D") we have
(Uwah,Uwg)=(Tfh,g)=(fh,g)=/f(u)h(u)de(Z)
]D)’l

:/f(Qow(Z))h((pw(Z))g(ww(Z))|kw(Z)|2dV(Z)
]D)n

= / F (0w (@)1 (0w (2))kw (2) 8 (9w (2))kw (2) dv(z)
]:D))l
={(fUwh, Uyg) = (Tfop, Uwh, Uyg),

establishing (2.6). O

It follows from (2.6), applied tof andg, that
Tf‘?ﬁﬂw Té;O(/Jw = (Tfogow Uw)Uw(Tgogow Un)Uy
= (Uwa)Uw(Ung)Uw = Uw(Tng)Uw'

So if the Toeplitz producT s T; is bounded ori.2(D"), then so is the produdtyoy, Tzop, ,
and||Tfog, Tzop, | = IT¢ Tzl By (2.4) we have

If opuli2llg o puwllz < &' Tfog, Tgop, | = 4" IIT¢ Tz I,
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hence
Lf12(w)[g1?(w) < 4”||Tng||2,

for all w € D". So, for £, g € L2(D"), a necessary condition for the Toeplitz prodiigt;
to be bounded o2 (D") is

sup [ £12(w)|gl2(w) < oo, 2.7)

welD”

In the next section we will show that this condition is very close to being sufficient for
boundedness.
3. Sufficient condition

In this section we will prove that a condition slightly stronger than (2.7) is sufficient for
boundedness of the Toeplitz prodBiT; . In fact we have the following result.

Theorem 3.1. Let f andg be in L2(D"). If for & > 0,

sup | f12+ (w)|g12+¢ (w) < oo,
welD”

then the operatof s T; is bounded orL.2(D").

In the proof of Theorem 3.1 we will need estimates?gm and its derivatives, as well
as an alternative way to write the inner product formul& fiD").

3.1. Inner product formula i (D")

In this subsection we will establish a formula for the inner produdtj(ﬂD)") needed
to prove our sufficiency condition for boundedness of Toeplitz products. Our point of
departure is the following inner product formula proved in [4]:

[w@iGaam =3 [uoi@- ) dae
D D
1 _
+ 6/u/(z)u'(z)(l— 121%)%(5— 21212 dA(2),
D
foru,v e L2(D). Let f, g € L2(D?). For fixedz € D we have

/f(ZLzz)g(Zl, Zz)dA(Zl)=3/f(Zl, Zz)g(ZLzz)(l—IZlIZ)ZdA(Zl)
D D

a d
+ /—f(m,zz)a—fl(m,zz)(l— |z1|2)2(5—2|11|2) dA(z1).

1
6J) 071
D
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Integrating both sides of the above equation with respegt tesults in

/ f(z1,22)8(z1,22) dA(z1) d A(z2)
= 9//f(z1, 22)8(z1,22)(1— Izzlz)z(l— IZ1|2)2dA(Z1)dA(Z2)
D

of dg
/ / 98 (1 12112 (1 - 122)2(5 — 20212) dAG1) dA(z2)

0z1 8z1

of dg
// / g 1|2)2(1—|z2|2)2(5—2|zz|2)dA(z1)dA(z2)

022 8z2

1 g 2 -
J— 1_
3 // 0721072 8218Z2( |21 ) ( |z2] )
D

x (5— 2|z )(5— 2|ZZ|2) dv(za, 22).

To formulate a formula for the inner productlrf,(]]])") we first introduce some notation.
For a nonempty subset= {«1, ..., a,} of {1,...,n} with a1 < --- < a;, let uy be the
measure of” defined by

1n—m

dpg(z) = &n (1

—121?)?... (1= 1znl)? [ ] (5 21z 2) dAG) ... dAGn).

jea
for z =(z1, ..., zn), Wherem is the cardinality ofx, and let
D*h =Dy, ...Dq, h,
whereD;h(z) = dh/dz;. DefineD’h = h. Note that
dpp@) =3"(1- [11)?... (1 - 21} ?dAG) ... dAG)
and
dia() <3'(1—1z112)%. .. (1= 2P ° dAGD) . .. dA(za),

for all subsetsx of {1, ..., n}. Then the following formula for the inner productlrg(D”)
is proved by repeating the above procedure:

/f(z)g(z)dV(Z) Z/Daf(Z) D*g(2) dpua(2), (3.2)

D

wherea runs over all subsets ¢1, ..., n}.
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3.2. Estimates

In the proof of our sufficiency condition for boundedness of Toeplitz products we will
also need the estimates contained in the following lemmas.

Lemma 3.3. For f € L2(D") andh € H>®(D") we have

n

1 —~
(T )] < [T =z PV in

j=1

for all w e D".

Proof. By the inequality of Cauchy—Schwarz,

2
\(Tf—.h)(w)‘Zg ( /|f(z)\|h(z)\ ]_[ - dv(z))

ID))‘I
/|f(z)| T dv(z)/|h(z)| dv(z)
Dn Dr

1
= 7If|2(w)llh||2
,-1:[1(1 lw;[2)2

and the stated inequality follows.OO

Lemma 3.4. Let f € L2(D"), h € H®(D") ande > 0. If & = {a1, ..., &y} iS @ Subset of
{1,...,n}withay <--- < ay, then

n 1 —_—
e A CO R

D" (@ @)| <2” [ 7

joi t I

1 1/
(/|h(z)| Hﬁd (z)> ,

]D))‘l
forall w e D", where§ = (2+¢)/(1+ ¢).

Proof. We will first prove the estimate fox = {1,...,n}. For f € LE(]D)") andh €
H°(D") we have

(Trh)(w) = /f(z)h(z) l_[ édv(z)
! (1_ w;z;)? ,
D)l
thus
9" "
) =2 [ f(z)h(z)nmdv(z)

]D))‘I
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Lete > 0. Applying Holder’s inequality we get

n

‘8 (Tfhxw)‘
1
|f(Z)| l_[ |1 |4/(2+8) |h(z)| l_[ |]_ w;Z |(2+3£)/(2+£) dv(2)
1/(2+¢)
2+£
f@ = dv (@)
( / o =y e
]D)ﬂ
1 1/
(/|h(z>| 1_[ 1wz |(2+3s)/(1+s)d”(1)>
Dﬂ
1/(2+¢)
( ey |f|2+€(w))
1 1/
( |h(Z)| 1_[ 1wz |2+30)/(T+e) d”(Z)> :
For eachy,
1 < 2
11— ijj|(2+3€)/(l+€) = 11— ijj|2(1— |wj|2)s/(l+s)’
SO
n
T:zh
‘Bwl Bwn( Y )(w)‘
n . 1/s
< 221 l_[ T |wj|2|f|2+8(w)l/(2+s)< /|h( )| l_[ |1 dv(z)) ,
j=1

proving the estimate fax = {1, ..., n}.
Now suppose that = {a1, ..., &y}, Whereay < --- < ay,. For f € L2(D") andh €
H°®(D") we have

o
D*(Th)(w) = 2/]_[ T f(z)h(z) ]_[ T
Dn lea
Noting that
1 1
I1 = _ _ [T 11-wzl
g 11— wezel |1_wlzl|~-~|1_wn1n|j€{1 ’’’’’ ha

on—m
~ - - )
11—wiz1|... |1 — wnZsl
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we get

o n—m - 1
|D*(Th)(w)| < 2 +1/\f(z)|\h(z)|j]:[1mdv(z),

Zjl
]D)ll
and the stated inequality follows from the proof of the first part of the lemnma.

3.3. Sufficient condition for boundedness

We are now in a position to prove our sufficiency condition for boundedness of Toeplitz
products.

Proof of Theorem 3.1. Let andk be bounded analytic functions @#. It follows from
Lemma 3.3 that
[(Th) () (Tgh) )| <]

j=1

T @) ) P,

f (T ) ()(Tp) ()| dua(z) < 3" IRNIK] Sup | F12w) Y2 (g2 w) 2,
]D)n

weD”

Using Lemma 3.4 we have
| DT sh(w) D*Tgk(w)| <[]
j=1
x Q111 ] (w)° Q[IkI* ] (w)*?,
where is the integral operator defined by

z 1
Olul(w) =/u(z>]‘[ Tws @
j=1 '

]D)ll
foru e LY(D", dv) andw € D". If

1 —_— ——
Ao e /P @ gt ) &
J

|12+ ()Y @+0) [ g 2re (1) M (@+) < pyp,

for all w € D", then the above inequality implies

f |DYT h(w) D* Tgk(w)| dpe(z) <3'M f O[In1P 1@ Q[IkI°] @)Y dv(z).
Dr Dn
That the operato is L? bounded, for each & p < oo, is easily shown as in the one-

dimensional case (see, for example, Chapter 4 in [6]). Sine@, p =2/8 > 1, so there
exists a constant such that

/Q[u](z)l’dv(z) < Cp/|u(z)|pdv(z).

Dn Dn
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In particular,

/Q[|h|‘3](z>"du(z> < CP|h|?,
]D)n

and a similar inequality for functiok. By the Cauchy—Schwarz inequality,

/ O[1n1°]@Y° Q[IkI°] ()™ dv(z)

]D)n
1/2
< ( /Q[|h|5](z)2/‘sdv(z)> (/Q[lkls](z)z/sdv(z)>
]D)n

]D))‘I

1/2

1/2 1/2
< (CPIRIR) Y2 (CPIKIR) Y = 2B h) k]l
Thus
f |DYT th(w) D Tgk(w)| d e (z) < 3" MC?P||h|[|[k]l,
]D)n

for every subset of {1, ..., n}. Using (3.2) we conclude that there is a finite constant
such that

(T Tek. )| < 'Rl
for all bounded analytic function'sandk onD". Hence the operatdf;T; is bounded on
L2D"). O
3.4. Compact Toeplitz products

The following theorem states that the Toeplitz prodfigf; is only compact in the
trivial case that it is the zero operator.

Theorem 3.5. Let f andg be in Lg(]D)"). ThenT;T; is compact if and only iff =0 or
g=0.

Proof. If T;Tg is compact or.2(D"), then its Berezin transform vanishes near the bound-
ary of D"*:

fffg(u)) —-0
asw in D" approaches(ID"). We have seen thd/t;T/g(w) = f(w)g(w), so
| f(w)g(w)| = |TTg(w)| — 0

asw in D" approached(D"), and it follows from the maximum modulus principle that
fe=0. O
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