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Abstract. In this paper we completely characterize when the commutator of
two Toeplitz operators or two Hankel operators on the Hardy space has finite
rank.

1 Introduction

Let D be the open unit disk in the complex plane and ∂D the unit circle.
Let L2 denote the Lebesgue square integrable functions on the unit circle. The
Hardy space H2 is the Hilbert space consisting of the analytic functions on the
unit disk D whose boundary functions are also in L2. Let H∞ denote the set
of bounded analytic functions on the unit disk.

Let P be the orthogonal projection of L2 onto H2. For f ∈ L∞, the space
of essentially bounded measurable functions on the unit circle, ∂D, the Toeplitz
operator Tf and the Hankel operator Hf with symbol f are defined by

Tfh = P (fh),

and
Hfh = P (Ufh),

for h in H2. Here U is the unitary operator on L2 defined by

Uh(w) = w̄h̃(w)

where f̃(w) denotes the function f(w̄). Clearly,

H∗
f = Hf∗

where f∗(w) = f̄(w̄). In fact, U is a unitary operator which maps H2 onto
(H2)⊥ and has the following useful property : UP = (1−P )U, and U∗ = U.

An operator on the Hardy space H2 is said to have finite rank if the range
of the operator has finite dimension. In this paper, we will study the following
problem:

Problem 1.1 When does the commutator [Tf , Tg] = TfTg−TgTf of two Toeplitz
operators Tf and Tg have finite rank?

Brown and Halmos [2] have shown that the commutator TfTg −TgTf is zero
if and only if one of the following conditions holds:



1. f ∈ H∞ and g ∈ H∞;

2. f̃ ∈ H∞ and g̃ ∈ H∞;

3. There exist constants a, b, not both zero, such that af + bg is constant.

Gorkin and the second author [5] have shown that the commutator of two
Toeplitz operators is compact on H2 if and only if for each support set S, one
of the following holds:

1. f |S and g|S are in H∞|S ;

2. f̃ |S and g̃|S are in H∞|S ;

3. There exist constants a, b, not both zero, such that af + bg|S is constant.

The Toeplitz operators and Hankel operators are connected by the following
relations: for f and g in L∞,

(1.2) Tfg − TfTg = Hf̃Hg

and

(1.3) Hfg = HfTg + Tf̃Hg.

(1.3) gives that if f is in H∞ then

(1.4) Tf̃Hg = Hfg = HgTf .

One of the well-known results about Hankel matrices was Kronecker’s the-
orem that describes the Hankel matrices of finite rank. Kronecker’s theorem
states that for f ∈ L∞, Hf is of finite rank if and only if f is the sum of an
analytic function h and a rational function r(z). Thus for a rational function
r(z) ∈ L∞, Hr(z) and Hr̃(z) both are finite rank operators. In fact, the following
theorem is another form [7] of Kronecker’s theorem, which we will use often in
this paper.

Theorem 1.5 (Kronecker’s theorem) Suppose that f is in L∞. Hf has finite
rank if and only if there exists a nonzero analytic polynomial p(z) such that
pf ∈ H∞.

(1.2) gives immediately that the semicommutator (Tf , Tg](:= Tfg −TfTg) =
Hf̃Hg and the commutator

[Tf , Tg] = Hg̃Hf −Hf̃Hg.

So Problem 1.1 is equivalent to the problem of when Hg̃Hf − Hf̃Hg has finite
rank. If the commutator [Tf , Tg] is replaced by the semicommutator

(Tf , Tg] = Hf̃Hg
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in Problem 1.1, the complete solution of the problem was obtained by S. Axler,
A. Chang and D. Sarason in [1] and is stated in the following theorem.

Theorem 1.6 (The Axler-Chang-Sarason Theorem ) Suppose that f and
g are in L∞. The semicommutator (Tf , Tg] has finite rank if and only if one of
the operators Hf̃ or Hg does.

Some purely algebraic proofs of the theorem were obtained in [8], [9]. But
the analysis of the commutator turned out to be more difficult than that of the
semicommutator. The reason is that the semicommutator equals the product of
two Hankel operators while the commutator is the sum of two products of Hankel
operators. So one needs to find out precisely how the two summands cancel
each other to make the product have finite rank. The commutator is the sum of
two products of Hankel operators. Clearly, a much more involved cancellation
may happen. The Kronecker theorem, the Axler-Chang-Sarason theorem, the
Brown-Halmos theorem [2] and the result in [5] on compact commutators of
two Toeplitz operators suggest the following theorem, which completely solves
Problem 1.1.

Theorem 1.7 For f , g in L∞, the commutator TfTg − TgTf has finite rank if
and only if one of the following conditions holds:

1. there is a nonzero analytic polynomial p such that pf ∈ H∞ and pg ∈ H∞;

2. there is a nonzero analytic polynomial q such that qf̃ ∈ H∞ and qg̃ ∈ H∞;

3. there are analytic polynomials A1, A2, B1 and B2 with |A1|+ |A2| 6= 0 and
|B1|+ |B2| 6= 0, such that

A1(z)B̃1(z) = A2(z)B̃2(z),

A1g̃ + A2f̃ ∈ H∞ and B1f + B2g ∈ H∞.

Another natural question is about the commutator of two Hankel opera-
tors.

Problem 1.8 When does the commutator HfHg−HgHf of two Hankel operators
Hf and Hg have finite rank?

The solution of Problem 1.8 is given in the following theorem.

Theorem 1.9 For f and g in L∞, the commutator HfHg − HgHf has finite
rank if and only if one the following conditions holds:

1. there is a nonzero analytic polynomial p such that pf ∈ H∞;

2. there is a nonzero analytic polynomial q such that qg ∈ H∞;

3. there are nonzero analytic polynomials A(z) and B(z) such that

A(z)B̃(z) = B(z)Ã(z)

and
Af + Bg ∈ H∞.

Recently, the following problem was studied in [3]:
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Problem 1.10 When is the product HfHg of two Hankel operators equal to a
compact perturbation of a Hankel operator?

Problem was solved 1.10 if both f and g are complex conjugates of inner
functions [3]. The authors showed that there are products of two Hankel op-
erators which are compact perturbations of noncompact Hankel operators. So
Problem 1.10 turns out to be quite subtle. In this paper, we will show that if we
replace ”a compact perturbation” by ”a perturbation of finite rank operators”
in Problem 1.10, the problem has a trivial solution, i.e., HfHg − Hh has finite
rank if and only if both HfHg and Hh have finite rank.

In this paper we use
A = B mod (F )

to denote that the operator A−B has finite rank.

2 Some lemmas

We begin with a (possibly known) lemma.

Lemma 2.1 Let A be a bounded linear operator on H2. Suppose that p(z) and
q(z) are nonzero analytic polynomials. If T ∗p ATq has finite rank, then A has
finite rank.

Proof: Factorize q(z) as the product q(z) = B(z)F (z) of a finite Blaschke
product B(z) and an outer function F (z). Let M = T ∗p ATqH

2. Since T ∗p ATq

has finite rank, M is a finite dimension subspace of H2. Since F (z) is an outer
function ,

closure{TF H2} = H2.

Thus

T ∗p ATBH2 = closure{T ∗p ATBTF H2}
= M.

This gives that T ∗p ATB has finite rank and then

T ∗p A = T ∗p ATBTB = T ∗p ATBTB mod (F ).

So T ∗p A has finite rank. By the same argument, we have that A∗ has finite rank.
Hence A has finite rank also. This completes the proof.

Gu and the second author [6] obtained a necessary and sufficient for the
sum

∑n
i=1 Hfi

Hgi
to be zero. It remains open to characterize when the sum

has finite rank. The next result gives a necessary condition for the sum to have
finite rank.

For x and y in H2, the operator x⊗ y of rank one is defined by

(x⊗ y)(h) = 〈h, y〉x,
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for h ∈ H2.

Lemma 2.2 For fi, gi in L∞, i = 1, 2, ..., n, if
∑n

i=1 HfiHgi has rank k, then
there are analytic polynomials Ai(z), Bi(z) with

max{degAi(z) : 1 ≤ i ≤ n} = k, and max{degBi(z) : 1 ≤ i ≤ n} = k,

such that
n∑

i=1

Aifi ∈ H∞ or
n∑

i=1

Bigi ∈ H∞.

Proof: Let K be the rank of
∑n

i=1 Hfi
Hgi

. We prove the result by induction
on the rank K.

Assume that the rank K = 0. Then
n∑

i=1

Hfi
Hgi

= 0.

If one of Hf1 , · · · ,Hfn
and Hg1 , · · · ,Hgn

is zero, obviously there are constants
ai or bi with

∑n
i=1 |ai| > 0, and

∑n
i=1 |bi| > 0 such that

n∑
i=1

aifi ∈ H∞ or
n∑

i=1

bigi ∈ H∞.

If none of Hf1 , · · · ,Hfn
and Hg1 , · · · ,Hgn

is zero, let Kλ(z) be the repro-
ducing kernel 1/(1− λ̄z) at λ ∈ D. Noting

n∑
i=1

Hfi
1⊗Hg∗i

1 =
n∑

i=1

Hfi
(1− TzTz̄)Hgi

=
n∑

i=1

Hfi
Hgi

− Tz̄(
n∑

i=1

Hfi
Hgi

)Tz

= 0,

we have
n∑

i=1

Hg∗i
1(λ)Hfi

1 =
n∑

i=1

〈Kλ,Hg∗i
1〉Hfi

1

= [
n∑

i=1

Hfi
1⊗Hg∗i

1]Kλ

= 0.

Because none of Hg1 , · · · ,Hgn
is zero, there is a λ0 ∈ D such that

ai = Hg∗i
1(λ0) 6= 0
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for all i. Thus we have
n∑

i=1

|ai| > 0,

and
n∑

i=1

aiHfi
1 = 0,

and so
n∑

i=1

aifi ∈ H∞.

Assume that the result is true if the rank K < k. We need to show that the
result is true for K = k.

Write
n∑

i=1

Hfi
Hgi

=
k∑

j=1

xj ⊗ yj

where xj , yj are in H2 and

dimspan{x1, · · · , xk} = dimspan{y1, · · · , yk} = k.

If Tz̄y1, · · · , Tz̄yk are linearly dependent, without loss of generality, we as-
sume

Tz̄yk = c1Tz̄y1 + · · ·+ ck−1Tz̄yk−1,

for some constants c1, · · · , ck−1. Then

Tz̄

n∑
i=1

HfiHgiTz =
n∑

i=1

HzfiHzgi

=
k∑

j=1

Tz̄xj ⊗ Tz̄yj

=
k−1∑
j=1

Tz̄xj ⊗ Tz̄yj + Tz̄xK ⊗ Tz̄yk

=
k−1∑
j=1

Tz̄xj ⊗ Tz̄yj +
k−1∑
j=1

c̄jTz̄xk ⊗ Tz̄yj

=
k−1∑
j=1

Tz̄(xj + c̄jxk)⊗ Tz̄yj .

Thus the rank of
∑n

i=1 Hzfi
Hzgi

is at most k−1. So by the induction hypothesis,
there are analytic polynomials ai(z), bi(z) with

max{max
i
{degai(z)},max

i
{degbi(z)}} ≤ k − 1
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and
n∑

i=1

|ai(z)| 6= 0, and
n∑

i=1

|bi(z)| 6= 0,

such that
n∑

i=1

ai(z)zfi(z) ∈ H∞

or
n∑

i=1

bi(z)zgi(z) ∈ H∞.

Let l = max{degai(z)} or l = max{degbi(z)}. Set Ai(z) = zk−lai(z), or
Bi(z) = zk−lbi(z). Then max{degAi(z)} = k, and max{degBi(z)} = k. We
have

n∑
i=1

Ai(z)fi(z) ∈ H∞

or
n∑

i=1

Bi(z)gi(z) ∈ H∞.

Thus the result is true in this case.
If Tz̄x1, · · · , Tz̄xk are linearly dependent, by the same argument as above,

we obtain that the result is true.
To finish the proof, we may assume that Tz̄y1, · · · , Tz̄yk are linearly inde-

pendent and Tz̄x1, · · ·, Tz̄xk also are linearly independent. By

n∑
i=1

Hfi
Hgi

=
k∑

j=1

xj ⊗ yj ,

we have

(2.3)
n∑

i=1

Hfi
1⊗Hg∗i

1 =
k∑

j=1

xj ⊗ yj −
k∑

j=1

Tz̄xj ⊗ Tz̄yj .

Noting

[
n∑

i=1

Hfi
1⊗Hg∗i

1](Tz̄yl) =
n∑

i=1

〈Tz̄yl,Hg∗i
1〉Hfi

1,

and

[
k∑

j=1

xj ⊗ yj −
k∑

j=1

Tz̄xj ⊗ Tz̄yj ](Tz̄yl) =
k∑

j=1

〈Tz̄yl, yj〉xj −
k∑

j=1

〈Tz̄yl, Tz̄yj〉Tz̄xj ,

we have
n∑

i=1

〈Tz̄yl,Hg∗i
1〉Hfi

1 =
k∑

j=1

〈Tz̄yl, yj〉xj −
k∑

j=1

〈Tz̄yl, Tz̄yj〉Tz̄xj ,
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for l = 1, 2, ..., k. Let
alj = 〈Tz̄yl, Tz̄yj〉,

blj = 〈Tz̄yl, yj〉 − alj z̄,

and
clj = 〈Tz̄yl,Hg∗j

1〉.

Since
Tz̄xj = z̄xj − z̄xj(0),

we have
c11 c12 · · · c1n

c21 c22 · · · c2n

· · · · · · · · · · · ·
ck1 ck2 · ckn




Hf11
Hf21

...
Hfn

1



=


b11 b12 · · · b1k

b21 b22 · · · b2k

· · · · · · · · · · · ·
bk1 bk2 · · · bkk




x1

x2

...
xk

 +


a11 a12 · · · a1k

a21 a22 · · · a2k

· · · · · · · · · · · ·
ak1 ak2 · · · akk




x1(0)
x2(0)
...
xk(0)

 z̄.

Let A = (aij), B = (blj), C = (clj) and

Hf1 = (Hf11, · · · ,Hfn1)T ,

and
X = (x1, · · · , xk)T .

The above system is equivalent to

(2.4) CHf1 = BX + z̄AX(0).

The determinant of matrix B = (blj)k×k is

B(z) = det(blj) = (−1)kaz̄k + a1z̄
k−1 + · · ·+ ak,

where a = det(alj) 6= 0, and ai are constants since Tz̄y1 · · · , Tz̄yk are linearly
independent . Hence degB(z) = k. The adjugate of the matrix B is

adjB =


B11 B21 · · · Bk1

B12 B22 · · · Bk2

· · · · · · · · · · · ·
B1k B2k · · · Bkk


where Blj denotes the cofactor of blj and is a co-analytic polynomial in z with
degree at most k − 1. Equation (2.4) gives

(2.5) (adjB)CHf1 = B(z)X + (adjB)AX(0)z̄.

8



Let
(Clj(z)) = (adjB)C,

where {Clj(z)} are co-analytic polynomials in z with degree at most k − 1.
Applying the projection P to both sides of the above equation gives

P [(Clj(z))Hf1] = PB(z)X.

Thus  HPn
i=1 C̃1i(z)fi

1
...
HPn

i=1 C̃ki(z)fi
1

 =

 TB(z)x1

...
TB(z)xk

 .

Similarly, we also have HPn
i=1 ũ1i(z)g∗i

1
...
HPn

i=1 ũki(z)g∗i
1

 =

 TE(z)y1

...
TE(z)yk


where ulj(z) are co-analytic polynomial in z with degree at most k−1 and E(z)
is a co-analytic polynomial in z with degree k.

If Hg∗1
1, Hg∗2

1, · · · ,Hg∗n1, y1, y2, · · · , yk are linearly dependent, without loss
of generality, assume

Hg∗n1 = c1Hg∗1
1 + · · ·+ cn−1Hg∗n−1

1 + b1y1 + · · ·+ bkyk,

then

TEHg∗n1 = Hg∗nẼ1

=
n−1∑
i=1

Hg∗i ciẼ
1 +

k∑
j=1

bjTEyj

=
n−1∑
i=1

Hg∗i ciẼ
1 +

k∑
j=1

bj

n∑
l=1

Hũjlg∗l
1

=
n−1∑
i=1

Hg∗i ciẼ
1 +

n∑
l=1

HPk
j=1 bj ũjlg∗l

1.

This gives
H∗

gn[Ẽ−
Pk

j=1 bj ũjn]∗+
Pn−1

l=1 gl[clẼ−
Pk

j=1 bj ũjl]∗
1 = 0.

Thus
n∑

i=1

Bi(z)gi(z) ∈ H∞

where

Bl = [clẼ −
k∑

j=1

bj ũjl]∗ ∈ H∞
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and deg Bl ≤ k, 1 ≤ l ≤ n− 1, and

Bn = [Ẽ −
k∑

j=1

bj ũjn]∗

is an analytic polynomial with degree k. So this is the result as desired.
By the same argument, if Hf11, · · · , Hfn

1, x1, · · · , xk are linearly de-
pendent, we also have that there are analytic polynomials Ai(z) with

max{degAi(z)} = k,

such that
n∑

i=1

Ai(z)fi(z) ∈ H∞.

Next we assume Hf11, · ··, Hfn
1, x1, · ··, xk are linearly independent and

Hg∗1
1, · ··,Hg∗n1, y1, · · ·, yk are linearly independent also. We will derive a

contradiction. First we claim that

dimspan{x1, · · ·xk, Tz̄x1, · · · , Tz̄xk} ≥ k + n.

In fact, since Hg∗1
1, · · · , Hg∗n1 are linearly independent, there is a vector

ξ ∈ H2, such that
〈ξ, Hg∗i

1〉 = 1,

and
〈ξ, Hg∗j

1〉 = 0,

for j 6= i. Hence, by (2.3),

Hfi
1 =

k∑
j=1

〈ξ, yj〉xj −
k∑

j=1

〈ξ, Tz̄yj〉Tz̄xj

Thus
Hfi1 ∈ span{x1 · · · xk, Tz̄x1 · · · Tz̄xk}

for all i = 1, · · ·n. This gives

span{Hf11, · · · ,Hfn
1, x1 · · ·xk} ⊆ span{x1, · · · , xk, Tz̄x1, · · · , Tz̄xk}.

So
dimspan{x1 · · · , xk, TĒx1, · · · , TĒxk} ≥ k + n.

This shows that our claim is true.
Since

dimspan{Tz̄x1, · ··, Tz̄xk} ≤ k < k + n

≤ dimspan{x1, · · · , xk, Tz̄x1, · · · , Tz̄xk},
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there is a nonzero vector ξ in span{x1, · · · , xk, Tz̄x1, · · · , Tz̄xk} such that

ξ ⊥ {Tz̄x1, · ··, Tz̄xk}.

By (2.3), we have
n∑

i=1

〈ξ, Hfi
1〉Hg∗i

1 =
k∑

i=1

〈ξ, xi〉yi.

We claim that not all of {〈ξ, xi〉}k
1 are zero. Otherwise ξ is orthogonal to

{x1, ..., xk, Tz̄x1, · ··, Tz̄xk}. This would imply that ξ = 0. Note that not all of
{〈ξ, Hfi

1〉}k
1 are zero since y1, y2, · · · , yk are linearly independent. This gives

that Hg∗1
1, · · · , Hg∗n1, y1, · · · , yk are linearly dependent. We have obtained

a contradiction to complete the proof.

As an application of the above two lemmas, we present a proof of the Axler-
Chang-Sarason theorem, which is the motivation for the proofs of our main
results in next section.

Proof of Theorem 1.6. We only have to prove the ”only if” part. Sup-
pose Hf̃Hg has finite rank. By Lemma 2.2, then there are nonzero analytic
polynomials A(z), B(z) such that

A(z)f(z) ∈ H∞

or
B(z)g(z) ∈ H∞.

If A(z)f(z) is in H∞, then

HAf = HfTA = 0.

By Lemma 2.1, Hf has finite rank.
If B(z)g(z) is in H∞, then

HBf = HgTB = 0.

By Lemma 2.1 again, Hg has finite rank. This completes the proof.

3 Proofs of main results

First we prove the following theorem which encompasses the difficulty in the
proofs of our main results.
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Theorem 3.1 Suppose that f1, f2, g1, g2 are in L∞. If none of Hf1 , Hf2 , Hg1

and Hg2 has finite rank, then

Hf1Hg1 = Hf2Hg2 mod (F )

if and only if there are nonzero analytic polynomials A1(z), A2(z), B1(z) and
B2(z) such that

A1(z)f1(z) + A2(z)f2(z) ∈ H∞,

B1(z)g1(z) + B2(z)g2(z) ∈ H∞

and
A1(z)B̃1(z) = A2(z)B̃2(z).

Proof: First we prove the ”only if ” part. Suppose

Hf1Hg1 = Hf2Hg2 mod (F ).

By Lemma 2.2, there are analytic polynomials A1(z), A2(z), B1(z) and B2(z)
such that

A1f1 + A2f2 ∈ H∞,

or
B1g1 + B2g2 ∈ H∞.

Here A1(z) and A2(z) are not both zero and B1(z) and B2(z) are not both zero.
Assume that

A1f1 + A2f2 ∈ H∞,

and A1(z), and A2(z) are not both zero. Thus

HA1f1 = −HA2f2 .

Since neither Hf1 nor Hf2 has finite rank, none of A1(z) and A2(z) is zero. Let
max{degAi(z)} = n. Write A1(z) and A2(z) as

A1(z) = anzn + an−1z
n−1 + · · ·+ a0

and
A2(z) = bnzn + bn−1z

n−1 + · · ·+ b0

where |an|+ |bn| > 0.

TfA1(z)
[Hf1Hg1 −Hf2Hg2 ]

= HA1f1Hg1 −HA1f2Hg2

= −HA2f2Hg1 −HA1f2Hg2

= −{Hf2Tzn
Pn

j=0 bj z̄n−j Hg1 + Hf2Tzn
Pn

j=0 aj z̄n−j Hg2}
= −{Hf2TznTPn

j=0 bj z̄n−j Hg1 + Hf2TznTPn
j=0 aj z̄n−j Hg2} mod (F )

= −{Hznf2Hg1
Pn

j=0 bjzn−j + Hznf2Hg2
Pn

j=0 ajzn−j}
= −Hznf2H[g1

Pn
j=0 bjzn−j+g2

Pn
j=0 ajzn−j ].
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This gives that Hznf2H[g1
Pn

j=0 bjzn−j+g2
Pn

j=0 ajzn−j ] has finite rank. Since Hf2

is not of finite rank, by Lemma 2.1, Hznf2 = Hf2Tzn is not of finite rank. Thus
by Lemma 2.2, there is a nonzero analytic polynomial q(z) such that

q(z)[g1

n∑
j=0

bjz
n−j + g2

n∑
j=0

ajz
n−j ] ∈ H∞.

Let

B1(z) = q(z)
n∑

j=0

bjz
n−j , B2(z) = q(z)

n∑
j=0

ajz
n−j .

So B1(z) and B2(z) are both nonzero analytic polynomials such that

B1g1 + B2g2 ∈ H∞.

Also we have

B̃1(z) = q̃(z)
n∑

j=0

bj z̄
n−j

= q̃(z)z̄n
n∑

j=0

bjz
j

= q̃(z)z̄nA2(z),

B̃2(z) = q̃(z)
n∑

j=0

aj z̄
n−j

= q̃(z)z̄n
n∑

j=0

ajz
j

= q̃(z)z̄nA1(z).

Thus
A1(z)B̃1(z) = A1(z)A2(z)q̃(z)z̄n = A2(z)B̃2(z).

Next we prove the ”if” part. Assume there are nonzero analytic polynomials
A1(z), A2(z), B1(z), B2(z) such that

A1f1 + A2f2 ∈ H∞,

B1g1 + B2g2 ∈ H∞

and
A1(z)B̃1(z) = A2(z)B̃2(z).

Thus

TfA1
[Hf1Hg1 −Hf2Hg2 ]TB1 = HA1f1Hg1B1 −HA1f2Hg2B1

= HA2f2Hg2B2 −HA1f2Hg2B1

= Hf2 [TA2TfB2
− TA1TfB1

]Hg2

= Hf2 [TfB2
TA2 − TfB1

TA1 ]Hg2 mod (F )
= Hf2T[A2 fB2−fB1A1]

Hg2 = 0.
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This gives that TfA1
[Hf1Hg1 −Hf2Hg2 ]TB1 has finite rank. Thus by Lemma 2.1,

Hf1Hg1 −Hf2Hg2 has finite rank to complete the proof.

We are ready to prove our main theorems.
Proof of Theorem 1.7. Suppose that one of Conditions (1)-(3) holds. We

are going to show that the commutator TfTg −TgTf has finite rank. Noting

TfTg − TgTf = Hg̃Hf −Hf̃Hg,

for two analytic polynomials p and q, we have

Tq[TfTg − TgTf ]Tp = TqHg̃HfTp − TqHf̃HgTp

= Hqg̃Hfp −Hqf̃Hgp.(3.2)

If one of Conditions (1)-(2) holds, by Kronecker’s Theorem, Equation (3.2)
gives Tq[TfTg − TgTf ]Tp has finite rank. By Lemma 2.1, we have that the
commutator TfTg − TgTf has finite rank.

If Condition (3) holds, then

TA1TB̃1
− TA2TB̃2

= TA1TB̃1
− TA1B̃1

+ TA1B̃1−A2B̃2
+ TA2B̃2

− TA2TB̃2

= −HÃ1
HB̃1

+ HÃ2
HB̃2

has finite rank. Equation (3.2) gives

TÃ2
[TfTg − TgTf ]TB1 = HA2g̃HfB1 −HA2f̃HgB1

= HA2g̃H−gB2 −H−g̃A1HgB1

= Hg̃[TA1TB̃1
− TA2TB̃2

]Hg

= 0 mod (F ).

The second equality follows because both A1g̃ + A2f̃ and B1f + B2g are in
H∞ and the last equality follows because TA1TB̃1

− TA2TB̃2
has finite rank. By

Lemma 2.1, TfTg − TgTf has finite rank.
Conversely, suppose that TfTg − TgTf has finite rank.
If Hf has finite rank, by the Kronecker theorem (Theorem 1.5), there is

a nonzero analytic polynomial p1 such that p1f ∈ H∞. Equation (3.2) gives
that

Hf̃Hgp1 = 0 mod (F ).

By the Axler-Chang-Sarason Theorem (Theorem 1.6), there is a nonzero poly-
nomial q1 such that either q1f̃ ∈ H∞ or q1p1g ∈ H∞. Let p = p1q1, B1 = p1,
B2 = 0, A1 = 0 A2 = q1. Either Condition (1) or (3) holds.

If Hg has finite rank, by the Kronecker theorem, there is a nonzero analytic
polynomial q1 such that q1g ∈ H∞. Equation (3.2) gives that

Hg̃Hfq1 = 0 mod (F ).

Using the same method as above, we have that either Condition (2) or (3)
holds.
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Similarly, if either Hf̃ or Hg̃ has finite rank, we will obtain that one of
Conditions (1), (2), and (3) holds.

If none of Hf , Hg, Hf̃ and Hg̃ has finite rank, by Theorem 3.1, there are
nonzero polynomials A1, A2, B1 and B2 such that

A1g̃ + A2f̃ ∈ H∞

and
B1f + B2g ∈ H∞.

To finish the proof, we need only to show that

A1(z)B̃1(z) = A2(z)B̃2(z).

Let n denote the maximal degree of B1 and B2. Equation (3.2) gives

TÃ2
[TfTg − TgTf ]TB1 = HA2g̃HfB1 −Hf̃A2

HgB1

= HA2g̃H−gB2 −H−g̃A1HgB1

= −Hg̃TA2HgTB2 + Hg̃TA1HgTB1

= Hg̃TznT
z̃nÃ1

HgTB1 −Hg̃TznT
z̃nÃ2

HgTB2 mod (F )

= Hg̃TznHg[TznÃ1
TB1 − TznÃ2

TB2 ]
= Tz̃nHg̃Hg[TznÃ1

TB1 − TznÃ2
TB2 ]

= Tz̃nHg̃HgT[znÃ1B1−znÃ2B2]

has finite rank. The fourth equality follows because the Toeplitz operators
whose symbols are analytic polynomials commute with each other modulo finite
rank operators and the last equality follows because the semicommuator of two
Toeplitz operators whose symbols are polynomials in z and z̄ has finite rank.
By the Axler-Chang-Sarason Theorem and Lemma 2.1, we have

znÃ1B1 − znÃ2B2 = 0.

This completes the proof.

Proof of Theorem 1.9. First we prove necessity. Suppose HfHg −HgHf

has finite rank.
If Hf has finite rank, then by the Kronecker theorem, there is a polynomial

p(z) such that pf ∈ H∞. This gives Condition (1).
If Hg has finite rank, similarly, there is a polynomial q(z) such that qg ∈ H∞.

This gives Condition (2).
If neither of Hf nor Hg has finite rank, by Theorem 3.1, there are nonzero

analytic polynomials A(z) and B(z) with degrees at most n such that

Af + Bg ∈ H∞.

Hence

T eA[HfHg −HgHf ]TB = HAfHgB −HAgHfB

= H−BgH−fA −HAgHfB

= Hg[TBHfA − TAHfB ]
= Hzng[HfznA eB −HfBzn eA] mod (F ).
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Let

A(z) =
n∑

i=0

aiz
i, B(z) =

n∑
i=0

biz
i.

Then

Ã(z) =
n∑

i=0

aiz̄
i = z̄n

n∑
i=0

aiz
n−i,

B̃(z) =
n∑

i=0

biz̄
i = z̄n

n∑
i=0

aiz
n−i.

Thus

T eA[HfHg −HgHf ]TB = HzngHfT[A
Pn

i=0 bizn−i−B
Pn

i=0 aizn−i] mod (F ).

But neither Hzng nor Hf has finite rank. So by the Axler-Chang-Sarason The-
orem and Lemma 2.1,

A(z)
n∑

i=0

biz
n−i −B(z)

n∑
i=0

aiz
n−i = 0.

This gives

A(z)
n∑

i=0

biz
n−i = B(z)

n∑
i=0

aiz
n−i.

Thus

z̄nA(z)
n∑

i=0

biz
n−i = z̄nB(z)

n∑
i=0

aiz
n−i,

and so

A(z)
n∑

i=0

biz̄
i = B(z)

n∑
i=0

aiz̄
i.

This means
A(z)B̃(z) = B(z)Ã(z).

Hence we obtain Condition (3).

Now we prove sufficiency. If either Condition (1) or Condition (2) holds,
then by Kronecker’s theorem, HfHg −HfHg has finite rank.

If Condition (3) holds, then we have

Af + Bg ∈ H∞

and
A(z)B̃(z) = B(z)Ã(z).
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Thus

T eA[HfHg −HgHf ]TB = HAfHgB −HAgHfB

= HBgHfA −HAgHfB

= Hg[TBT eA − TAT eB ]Hf

= Hg[T eATB − T eBTA]Hf mod (F )
= 0.

So by Lemma 2.1, HfHg −HgHf has finite rank. This completes the proof.

The following theorem gives a complete solution to the version of Problem
1.10 when ”a compact perturbation” is replaced by ”a perturbation of finite
rank”.

Theorem 3.3 Suppose that f , g, and h are in L∞. The following are equivalent:

1. HfHg is a perturbation of Hh of a finite rank;

2. HfHg and Hh both are finite rank operators;

3. there are nonzero analytic polynomials A(z), B(z) and C(z) such that

Ch ∈ H∞ and Af ∈ H∞

or
Ch ∈ H∞ and Bg ∈ H∞.

Proof: Clearly, we need only to prove that (1) implies (2). Suppose

HfHg = Hh mod (F ).

Since

Hf1⊗Hg∗1 = Hf [1⊗ 1]Hg

= Hf (1− TzTz̄)Hg

= HfHg − Tz̄HfHgTz

= Hh − Tz̄HhTz mod (F )
= Hh(1−z2) = HhT1−z2 ,

HhT1−z2 has finite rank. Thus by Lemma 2.1, Hh has finite rank also, and so
HfHg has finite rank. This completes the proof.
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Theorem 3.4 Suppose that fi, gi and h are in L∞ for i = 1, 2. The following
are equivalent:

1. Hf1Hg1 −Hf2Hg2 = Hh mod (F );

2. Hh and Hf1Hg1 −Hf2Hg2 have finite rank;

3. Hh, Hf1Hg1 and Hf2Hg2 have finite rank or there are nonzero analytic
polynomials Ai(z), Bi(z), C(z) such that

A1(z)B̃1(z) = A2(z)B̃2(z)

and

Ch ∈ H∞, A1f1 + A2f2 ∈ H∞ and B1g1 + B2g2 ∈ H∞.

Proof: First we show that (2) implies (3). Suppose that Hf1Hg1 − Hf2Hg2

has finite rank. If Hf1Hg1 has finite rank, then Hf2Hg2 does. If neither of
Hf1Hg1 nor Hf2Hg2 has finite rank, by Theorem 3.1 there are nonzero analytic
polynomials Ai(z), Bi(z) such that

A1(z)B̃1(z) = A2(z)B̃2(z),

A1f1 + A2f2 ∈ H∞ and B1g1 + B2g2 ∈ H∞

This is the desired result.
Next we prove that (1) implies (2). Suppose

Hf1Hg1 −Hf2Hg2 = Hh.

An easy calculation gives

Hf11⊗Hg∗1
1−Hf21⊗Hg∗2

1 = Hf1(1− TzTz̄)Hg1 −Hf2(1− TzTz̄)Hg2

= Hf1Hg1 −Hf2Hg2 − Tz̃(Hf1Hg1 −Hf2Hg2)Tz

= Hh − Tz̃HhTz mod (F )
= HhT1−z2 .

Thus HhT1−z2 has finite rank. By Lemma 2.1, Hh has finite rank and so
Hf1Hg1 −Hf2Hg2 has finite rank.

As in the proof of Theorem 3.1, it is easy to see that (3) implies (1). We
leave details for the reader. This completes the proof.
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