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Abstract. In this paper we completely characterize when the commutator of
two Toeplitz operators or two Hankel operators on the Hardy space has finite
rank.

1 Introduction

Let D be the open unit disk in the complex plane and 9D the unit circle.
Let L? denote the Lebesgue square integrable functions on the unit circle. The
Hardy space H? is the Hilbert space consisting of the analytic functions on the
unit disk D whose boundary functions are also in L2. Let H> denote the set
of bounded analytic functions on the unit disk.

Let P be the orthogonal projection of L? onto H?. For f € L, the space
of essentially bounded measurable functions on the unit circle, D, the Toeplitz
operator Ty and the Hankel operator Hy with symbol f are defined by

Tyh = P(fh),
and
Hih = P(Ufh),
for h in H?. Here U is the unitary operator on L? defined by
Uh(w) = @h(w)
where f(w) denotes the function f(w@). Clearly,
H} = Hy-

where f*(w) = f(w). In fact, U is a unitary operator which maps H? onto
(H?)* and has the following useful property : UP = (1 — P)U, and U* = U.

An operator on the Hardy space H? is said to have finite rank if the range
of the operator has finite dimension. In this paper, we will study the following
problem:

Problem 1.1 When does the commutator [Ty, T, =TT, —T,T of two Toeplitz
operators Ty and T, have finite rank?

Brown and Halmos [2] have shown that the commutator 7T, — T, T} is zero
if and only if one of the following conditions holds:



1. f€e H*® and g € H*;
2. fe H® and § € H™;
3. There exist constants a, b, not both zero, such that af + bg is constant.

Gorkin and the second author [5] have shown that the commutator of two
Toeplitz operators is compact on H? if and only if for each support set S, one
of the following holds:

1. fls and g|s are in H*®|g;
2. f|5 and g|g are in H*®|g;
3. There exist constants a, b, not both zero, such that af + bg|s is constant.

The Toeplitz operators and Hankel operators are connected by the following
relations: for f and g in L*°,

(1.2) Trg —TyT, = HJ;Hg
and
(1.3) Hy, ZHng—FTJ;Hg.

(1.3) gives that if f is in H* then

(1.4) TiH, = Hyy = H,Ty.

One of the well-known results about Hankel matrices was Kronecker’s the-
orem that describes the Hankel matrices of finite rank. Kronecker’s theorem
states that for f € L*, Hy is of finite rank if and only if f is the sum of an
analytic function i and a rational function r(z). Thus for a rational function
r(z) € L>, H,(;) and Hy(;) both are finite rank operators. In fact, the following
theorem is another form [7] of Kronecker’s theorem, which we will use often in
this paper.

Theorem 1.5 (Kronecker’s theorem) Suppose that f isin L°°. Hy has finite
rank if and only if there exists a nonzero analytic polynomial p(z) such that
pf e H®.

(1.2) gives immediately that the semicommutator (T, T,](:= Ty —TT,) =
Hj;Hg and the commutator

[Ty, Ty] = HgHy — HpH,.

So Problem 1.1 is equivalent to the problem of when HsH; — H g has finite
rank. If the commutator [T, Ty] is replaced by the semicommutator

(Ty, Ty) = HpH,



in Problem 1.1, the complete solution of the problem was obtained by S. Axler,
A. Chang and D. Sarason in [1] and is stated in the following theorem.

Theorem 1.6 (The Axler-Chang-Sarason Theorem ) Suppose that f and
g are in L*™. The semicommutator (T, T,] has finite rank if and only if one of
the operators Hf or H, does.

Some purely algebraic proofs of the theorem were obtained in [8], [9]. But
the analysis of the commutator turned out to be more difficult than that of the
semicommutator. The reason is that the semicommutator equals the product of
two Hankel operators while the commutator is the sum of two products of Hankel
operators. So one needs to find out precisely how the two summands cancel
each other to make the product have finite rank. The commutator is the sum of
two products of Hankel operators. Clearly, a much more involved cancellation
may happen. The Kronecker theorem, the Axler-Chang-Sarason theorem, the
Brown-Halmos theorem [2] and the result in [5] on compact commutators of
two Toeplitz operators suggest the following theorem, which completely solves
Problem 1.1.

Theorem 1.7 For f, g in L*°, the commutator TyT, — T,T'y has finite rank if
and only if one of the following conditions holds:

1. there is a nonzero analytic polynomial p such that pf € H*> and pg € H*;
2. there is a nonzero analytic polynomial q such that qf € H*® and qq € H*;

3. there are analytic polynomials Ay, As, By and By with |Aq|+]|A2] # 0 and
|B1| + |Bz| # 0, such that

Ay (2)By(z) = Az(2)Ba(2),
A1G+ Asf € H® and Bif+ Bag € H™.

Another natural question is about the commutator of two Hankel opera-
tors.

Problem 1.8 When does the commutator HyHy—H Hy of two Hankel operators
Hy and Hy have finite rank?

The solution of Problem 1.8 is given in the following theorem.

Theorem 1.9 For f and g in L*°, the commutator HyH, — HyH; has finite
rank if and only if one the following conditions holds:

1. there is a nonzero analytic polynomial p such that pf € H*;

2. there is a nonzero analytic polynomial q such that qg € H*®;

3. there are nonzero analytic polynomials A(z) and B(z) such that
A(2)B(z) = B(2)A(2)

and
Af+ Bge H™.

Recently, the following problem was studied in [3]:



Problem 1.10 When is the product HyH, of two Hankel operators equal to a
compact perturbation of a Hankel operator?

Problem was solved 1.10 if both f and g are complex conjugates of inner
functions [3]. The authors showed that there are products of two Hankel op-
erators which are compact perturbations of noncompact Hankel operators. So
Problem 1.10 turns out to be quite subtle. In this paper, we will show that if we
replace ”a compact perturbation” by ”a perturbation of finite rank operators”
in Problem 1.10, the problem has a trivial solution, i.e., HyH, — Hj, has finite
rank if and only if both HyH, and H}, have finite rank.

In this paper we use

A=B mod (F)

to denote that the operator A — B has finite rank.

2 Some lemmas
We begin with a (possibly known) lemma.

Lemma 2.1 Let A be a bounded linear operator on H?. Suppose that p(z) and
q(z) are nonzero analytic polynomials. If T AT, has finite rank, then A has
finite rank.

ProOF: Factorize ¢(z) as the product ¢(z) = B(z)F(z) of a finite Blaschke
product B(z) and an outer function F(z). Let M = TxAT,H?. Since Ty AT,
has finite rank, M is a finite dimension subspace of H?. Since F(z) is an outer

function ,
closure{TpH*} = H>.

Thus

TyATgH? = closure{T; ATpTrH?}
M.

This gives that T,y ATp has finite rank and then
T, A =T, ATgTp = T, ATpT5s mod (F).
So T}; A has finite rank. By the same argument, we have that A* has finite rank.

Hence A has finite rank also. This completes the proof.

Gu and the second author [6] obtained a necessary and sufficient for the
sum > ., Hy Hy, to be zero. It remains open to characterize when the sum
has finite rank. The next result gives a necessary condition for the sum to have
finite rank.

For z and y in H?, the operator x ® y of rank one is defined by

(z®y)(h) = (h,y)z,



for h € H2.

Lemma 2.2 For f;,g; in L*®,i = 1,2,...,n, if Y. | H,H,, has rank k, then
there are analytic polynomials A;(z), B;(z) with

max{degA;(z): 1 <i<n} =k, and max{degB;(z):1<i<n}=k,
such that . .
ZAifiEHOO or ZBq',giGHoo.

i=1 i=1

PrROOF: Let K be the rank of Y. | Hy, Hy,. We prove the result by induction
on the rank K.
Assume that the rank K = 0. Then

zn: Hy Hy, =0.
=1

If one of Hy,,--- ,Hy, and Hy,,--- ,Hy, is zero, obviously there are constants
a; or b; with "1 | |a;| > 0, and Y7, |b;| > 0 such that

zn:aifi € H*® or zn:b,‘gi e H™.
=1 =1

If none of Hy,, -+ ,Hy, and Hy,, -, Hg, is zero, let K)(z) be the repro-
ducing kernel 1/(1 — Az) at A € D. Noting

inzl@Hgfl = ini(l_TZTZ)Hgi
i=1

=1

= ZHfngi - TE(Z Hy Hy,)T.
i=1 =1

= O7
we have
> Hy 1A\ Hy, 1 > (Kx, Hy:1)Hj 1
i=1 i=1
= [)_Hp1® Hg 1K)
i=1
= 0.
Because none of Hy,,--- , Hy, is zero, there is a Ay € D such that



for all 7. Thus we have .

Z \ai| > O,
i=1
and N
> aiHp1=0,
i=1
and so

Z aifi € H™.
i=1
Assume that the result is true if the rank K < k. We need to show that the

result is true for K = k.
Write

n k
Y HpHy =) a0y
i=1 j=1

g2
where z;,y; are in H* and

dimspcm{xl, T ,(Ek} = dimspa’n{yla T yk} = k.
If Tzy1, - ,Tsyy are linearly dependent, without loss of generality, we as-
sume
Toye = c1Tzy1 + - + -1 Teyk—1,
for some constants ¢y, - ,cg_1. Then
n n
1z Z HyH,T. = Z H. 5 H.,,
i=1 i=1
k
j=1
k—1
= Y Tex; ® Toy; + Tevg @ Toys
j=1
k—1 k—1
j=1 j=1
k—1
= ZTE(Ij+ijk)®T2yj-
j=1

Thus the rank of Y. | H.y,H.,, is at most k—1. So by the induction hypothesis,
there are analytic polynomials a;(z), b;(z) with

max{mfmx{degai(z)}, mlax{degbi(z)}} <k-1



and
n

> lai(2)] #0, and Z|b )| #0,

i=1
such that

Z 2)zfi(z) € H*

or

3

bi(2)zg:(z) € H*™.
i=1

Let | = max{dega;(z)} or | = max{degb;i(2)}. Set A;(z) = 2 "la;(2), o
Bi(z) = 2F7'b;(2). Then max{degA;(z)} = k, and maz{degB;(z)} = k. We
have

ZAi(Z)fi(Z) € H>

ZB ye H™.

Thus the result is true in thls case.

If Tzxq,--- ,Tsxp are linearly dependent, by the same argument as above,
we obtain that the result is true.

To finish the proof, we may assume that Tsyq,--- ,Tsy; are linearly inde-
pendent and Tsxq, - - -, Tsxy also are linearly independent. By

n k
ZHfngi = ij @ Yjs
i=1 j=1

we have
n k k
(2.3) S H@Hp1=Y z;0y;— > Tz, @ Tey;.
5 . =
Noting
) Hp 1@ Hy \)(Teyn) = Y (Tey, Hyr 1) Hy 1,
i=1 i=1
and
k k k k
[ij QY; — ZTEJCJ' & szg zyl Z zylvy] Z zYl, zyj T zLj,
j=1 j=1 j=1 j=1
we have
n k k
Z(szz,Hg; 1>Hfi1 = Z zylayj Z zYl, zyj )T zLj,
i=1 j=1 j=1



forl=1,2,...,k. Let
alj - <T5yl7T2yj>a

bij = (Tzy,y5) — ai;Z,

and
Clj = <T5yl, ng* 1>
Since
Tixj = Zxj — 22;(0),
we have
C11 Ci2 - Cip Zfl}
Co1 C2 - Cop f2
Ck1  Ck2 : Ckn Hf 1
bir bz --- bik T a1l aia - G xl(g)
bar b2 - by T2 L] e am e an 72(0)
bkl ka e bk‘k Ik a’k:l ak2 “ e akk xk(o)

Let A = (as5), B = (bij), C = (¢1;) and
Hfl = (Hfll,"' ,anl)Ta

and
X = (xla"' 7xk)T'

The above system is equivalent to
(2.4) CH;1=BX + zAX(0).
The determinant of matrix B = (by;)kxk is
B(2) = det(b;) = (—1)*azF + a1 2"+ oy,

where a = det(a;;) # 0, and a; are constants since Tzy; - - - , Tzy are linearly
independent . Hence degB(z) = k. The adjugate of the matrix B is

Bll B21 tee Bkl
aip = | D2 e e
Bixy Bax -+ B

where Bj; denotes the cofactor of b;; and is a co-analytic polynomial in z with
degree at most k — 1. Equation (2.4) gives

(2.5) (adj B)CH1 = B(2)X + (adjB)AX(0)z.



Let
(Cij(2)) = (adjB)C,

where {Cj;(z)} are co-analytic polynomials in z with degree at most k — 1.
Applying the projection P to both sides of the above equation gives

P[(Cij(2))Hfl] = PB(2)X.

Thus
HZ:L=1 élz(z)fz]' TB(z)xl
Hyn | 64051 Tp(z)er
Similarly, we also have
Hyp ani()gr] Tr)»n
Hy o ai(=)gr Te )Yk

where u;;(z) are co-analytic polynomial in z with degree at most k—1 and E(z)
is a co-analytic polynomial in z with degree k.

If Hp=1, Hys 1, - Hgs 1, y1, yo, -+, yg are linearly dependent, without loss
of generality, assume

Hg;]- = Cngi‘]- +-+ Cn—ng:711 + blyl + e+ bkyka

then
TE'Hg;*L ]. = Hg* E].
n—1 k
= > Heepl ) 0Try
i=1 j=1
n—1 k n
= D Hpo gl 4D b Y Haygl
i=1 j=1 1=1
n—1 n
= Z Hgfcz'El + Z HE?:1 bjﬂjlgz*l'
i=1 =1
This gives
Hgn [E=3F_) bjtgn]*+3X15 gila B-3F_, bias) =0
Thus n
> Bi(2)gi(z) € H®
i=1
where

k
B, = [ClE — ijﬂjl]* € H™®
j=1



and deg B; <k,1<1<n-—1,and

k
= [E =) bjizn]*
j=1

is an analytic polynomial with degree k. So this is the result as desired.
By the same argument, if Hy 1, ---, Hy 1, x1, ---, x) are linearly de-
pendent, we also have that there are analytic polynomials A4;(z) with

maz{degA;(z)} =k,

such that
Z Aq( ye H™.
Next we assume Hy 1, -+, Hy 1, x1, -, 73 are linearly independent and
Hg:1, - Hg1, y1,- -, yx are linearly independent also. We will derive a

contradiction. First we claim that

dimspan{xy, - -z, Tsx1, -+, Tzxr} >k +n.
In fact, since Hy-1, ---, Hg.1 are linearly independent, there is a vector
€ € H?, such that
<£v HQZ* 1> =1
and
(6, Hy;1) =0,

for j # 4. Hence, by (2.3),

k k
Hfil Z & y] Z &, sz] T zLj
j=1 =1

Thus
Hy 1 € span{zy - - - op, Tsxy - - - Trap}

for all i = 1,---n. This gives

span{Hg1,---  Hy 1,21 ---ap} C spanf{xy, ---, xg, Tzxr, -, Tsag}.
So
dimspan{xy---, x, Tgx1, -, Tgrr} > k+n.
This shows that our claim is true.
Since
dimspan{Tsxy, -, Tzxr} < k<k+n
< dimspan{z1, -+ ,xk, Tsxy, -+, Tsxi},

10



there is a nonzero vector ¢ in span{xy, ---, x, Tsxq1, -+, Tsxp} such that

EJ_ {Tgfﬂl, c ey Tg.’rk}
By (2.3), we have
n k
D G HR )y 1 =) (& w3y
i=1 i=1
We claim that not all of {(¢,x;)}} are zero. Otherwise ¢ is orthogonal to
{z1, .., Tk, Tzx1, -+, Tszxr}. This would imply that £ = 0. Note that not all of
{(&, Hy, 1)}k are zero since y1, y2, -+, yr are linearly independent. This gives
that Hg:1, -+, Hg«1, y1, -+, yg are linearly dependent. We have obtained

a contradiction to complete the proof.

As an application of the above two lemmas, we present a proof of the Axler-
Chang-Sarason theorem, which is the motivation for the proofs of our main
results in next section.

Proof of Theorem 1.6. We only have to prove the ”only if” part. Sup-
pose H:H, has finite rank. By Lemma 2.2, then there are nonzero analytic
polynomials A(z), B(z) such that

A(2)f(z) € H*

or
B(z)g(z) € H*™.

If A(z)f(z) is in H*, then
HAf = HfTA =0.

By Lemma 2.1, H; has finite rank.
If B(z)g(z) is in H*, then

Hps = H,Tp = 0.

By Lemma 2.1 again, H, has finite rank. This completes the proof.

3 Proofs of main results

First we prove the following theorem which encompasses the difficulty in the
proofs of our main results.

11



Theorem 3.1 Suppose that fi, f2,91,92 are in L*°. If none of Hy , Hy,, Hg,
and H,, has finite rank, then

Hyp Hgy = Hyp,Hg, mod (F)

if and only if there are nonzero analytic polynomials Ay(z), As(z), Bi(z) and
By (z) such that
A1(2)f1(2) + A2(2) f2(2) € H,

B1(2)g1(2) + Ba(2)g2(2) € H*
and ~ ~
Al(Z)Bl(Z) = AQ(Z)BQ(Z)
PrOOF: First we prove the ”only if ” part. Suppose
Hy Hg = Hy,Hg, mod (F)

By Lemma 2.2, there are analytic polynomials A;(z), Aa(z), B1(z) and Ba(2)
such that
A1f1 + Agfg € H*™,

or
Bigy + Bago € H™.

Here A;(z) and As(z) are not both zero and By (z) and Bz(z) are not both zero.
Assume that
Arfi +Asfo € H,

and A;(z), and As(z) are not both zero. Thus

HAlfl = _HA2f2'

Since neither Hy, nor Hy, has finite rank, none of A;(z) and As(z) is zero. Let
max{degA;(z)} = n. Write A;(z) and Ay(z) as

A1(2) = a2 +ap_ 12" 4 Fag
and
As(z) = bp2" + bp_12" L4+ by
where |a,| + |by| > 0.
TAvl(z)[Hlegl — Hy,Hy,|
= HapHy —Ha g, Hg,
= —HaypHy — Ha,p, Hy,
= AHpTowsn vyen-iHg + Hp,Tonson aon-5Hg, }
= AHpToTss o Hoy + HpToiTsn oonsHy} mod (F)
= AHonpHy 5o vy + Honpy Hyy 5ongion=i}

= —HaonpHigyson byzn—igge Y0y aj2n=i]-

=0
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This gives that H.nyp, Hy, S byenidga S g ayzn ] has finite rank. Since Hy,
is not of finite rank, by Lemma 2.1, H,ny, = Hy,T,» is not of finite rank. Thus
by Lemma 2.2, there is a nonzero analytic polynomial ¢(z) such that

q(2)[91 Z b; 2" + g Z a; 2" € H™.
Jj=0 Jj=0
Let B .
Bi(2) = q(2) Y b;2" 77, Ba(2) =ql2) Y a;z".
j=0 j=0

So Bi(z) and Bz(z) are both nonzero analytic polynomials such that
Bigi + Bag2 € H™.

Also we have

Bi(z) = q(z)) bz
j=0

= G(2)7" > b2’
j=0
= G(2)z"As(2),

Balz) = d2)Y a2

n
= q(z)z" Z ajzj
3=0

= {(2)z"A1(2).
Thus

A1(2)Bi(2) = A1(2) Aa(2)(2)2" = Az(2)Ba(2).
Next we prove the ”if” part. Assume there are nonzero analytic polynomials
Aq(2), Aa(z), Bi(z), Ba(z) such that
Arfi +Asfo € H®,
Bigi + Baga € H™

and . .
Al(Z)Bl(Z) = AQ(Z)BQ(Z)
Thus
TAVl [Hlegl - Hf2H!]2]TB1 = HAllengl - HA1f2quBl

Hayp,HgoB, — Ha,y 5, Hy, B,

Hy, [TA2T§2 — TAlTBVl]Hm

= Hf2 [TEQTA2 - TETA1]HQ2 mod (F)
Hf2T[ Hy, =0.

AsBy— B Aq]
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This gives that T4 [Hy, Hy, — Hy, Hy,|Tp, has finite rank. Thus by Lemma 2.1,
Hy H, — Hjy, H,, has finite rank to complete the proof.

We are ready to prove our main theorems.
Proof of Theorem 1.7. Suppose that one of Conditions (1)-(3) holds. We
are going to show that the commutator TyTy; — T, Ty has finite rank. Noting

TyTy — 14Ty = HgHy — HyHg,
for two analytic polynomials p and ¢, we have

Tq[Tng - Tng}Tp = T HgHsT), — TquHng
(32) = HygHpp— qung-

If one of Conditions (1)-(2) holds, by Kronecker’s Theorem, Equation (3.2)
gives T,[TyTy — T,T¢|T, has finite rank. By Lemma 2.1, we have that the
commutator 17T, — T,Ts has finite rank.

If Condition (3) holds, then

Ta Ty, —Ta T, = TaTs — Ty p +Tu5,-a,8, T Tay, —TaTh,
= —HzyHp +Hz Hp,

has finite rank. Equation (3.2) gives

TAQ[Tng _Tng]TBl = I{AzglifB1 _HAngQB1
= Ha,gH ¢, — H_ja, Hyp,
= Hy[Ta, Ty, —Ta,Tp,1H,
=0 mod  (F).

The second equality follows because both A1§ + As f and Bif + Bog are in
H*®® and the last equality follows because T4, T3 — T, T, has finite rank. By
Lemma 2.1, TyT, — T,Ty has finite rank.

Conversely, suppose that TyT, — T,T; has finite rank.

If H; has finite rank, by the Kronecker theorem (Theorem 1.5), there is
a nonzero analytic polynomial p; such that p; f € H*. Equation (3.2) gives
that

HiHg, =0 mod (F).

By the Axler-Chang-Sarason Theorem (Theorem 1.6), there is a nonzero poly-
nomial ¢; such that either qlf € H*® or ¢1p1g € H*®. Let p = p1q1, B1 = p1,
By =0, A; =0 Ay = ¢;. Either Condition (1) or (3) holds.

If H, has finite rank, by the Kronecker theorem, there is a nonzero analytic
polynomial ¢; such that ¢g;g € H*. Equation (3.2) gives that

H;Hpq, =0  mod (F).

Using the same method as above, we have that either Condition (2) or (3)
holds.
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Similarly, if either H: or Hjy has finite rank, we will obtain that one of
Conditions (1), (2), and (‘3) holds.

If none of Hy, Hy, Hf and Hj has finite rank, by Theorem 3.1, there are
nonzero polynomials Ay, As, By and Bs such that

A1+ Azf € H™
and

Blf + Bag € H*.
To finish the proof, we need only to show that

Al(Z)Bl(Z) = AQ(Z)BQ(Z)
Let n denote the maximal degree of B; and Bs. Equation (3.2) gives
T, [T4Ty — T,T¢|]Tp, = Ha,gHyp, — Hjy,Hyp,
Ha,gH g8, — H_ga, Hyp,
—HiTh,H,Tp, + HzTy, H,Tg,
= HﬁTz"T7HqTBl - H(}TZ"T/—E/HQTBz mod (F)
z"A : z" Ay T

= HgTang[T -,LA”lTBl _TTLA~2TBZ]

z z

= TeHyH,[T,.; Tp, — T, 3, 5,

= TganHgT[znAlBlfznAng]
has finite rank. The fourth equality follows because the Toeplitz operators
whose symbols are analytic polynomials commute with each other modulo finite
rank operators and the last equality follows because the semicommuator of two
Toeplitz operators whose symbols are polynomials in z and z has finite rank.
By the Axler-Chang-Sarason Theorem and Lemma 2.1, we have
ZnA131 - ZnAQBQ =0.

This completes the proof.

Proof of Theorem 1.9. First we prove necessity. Suppose HyH, — H Hy
has finite rank.

If Hy has finite rank, then by the Kronecker theorem, there is a polynomial
p(z) such that pf € H*>. This gives Condition (1).

If H, has finite rank, similarly, there is a polynomial ¢(z) such that gg € H>.
This gives Condition (2).

If neither of Hf nor Hy has finite rank, by Theorem 3.1, there are nonzero
analytic polynomials A(z) and B(z) with degrees at most n such that

Af+ Bge H™.
Hence
T;lHiHy — HyHf|Tp = HapHgp — HagHyp

H-pgH_ya— HagHsp
= HZ"Q[Hfz"AE_HfBz”K] mod (F)
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Let . .
A(z) = Zaizi,B(z) = Z biz'.
i=0

i=0
Then
Az) = Zaiéi =z" Zaiz”_i,
i=0 i=0
B(z) = Zbiii =z" Zaiz”*i.
i=0 i=0
Thus

Tg[Hng — Hng]TB = HznngT[A S bizn—i—B Y agzn—i] mod (F).

But neither H,», nor Hy has finite rank. So by the Axler-Chang-Sarason The-
orem and Lemma 2.1,

1=0
This gives
A(z) Z biz" " = B(z) Z a;z" ™"

1=0 i=0

Thus . .
zZ"A(z) Z biz" " = 2" B(2) Z a;z" ",

i=0 i=0

and so

This means

Hence we obtain Condition (3).
Now we prove sufficiency. If either Condition (1) or Condition (2) holds,
then by Kronecker’s theorem, HyH, — H;H, has finite rank.
If Condition (3) holds, then we have
Af+Bge H®

and
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Thus

Ti[HpHy — HyHy|Tp

HapHyp — HagHyp

HpgHya — HagHyp

Hy[TpT5; — TaTg|Hy

Hg [TgTB — TéTA]Hf mod (F)
0.

So by Lemma 2.1, HyH; — HyH¢ has finite rank. This completes the proof.

The following theorem gives a complete solution to the version of Problem
1.10 when ”a compact perturbation” is replaced by ”a perturbation of finite

rank”.

Theorem 3.3 Suppose that f, g, and h are in L*°. The following are equivalent:

1. HyH, is a perturbation of Hj, of a finite rank;

2. HyH, and H}, both are finite rank operators;

3. there are nonzero analytic polynomials A(z), B(z) and C(z) such that

Che H® and Af € H*

or

Che H* and Bg e H™.

Proor: Clearly, we need only to prove that (1) implies (2). Suppose

HngZHh mod (F)

Since

Hfl@Hg*l =

He1® 1)H,
Hy(1-T.T:)H,

HyHy —TzHyHy T

H, —~T:H,T.  mod (F)
Hp1—22y = Hp'Ty -,

HpTi_ .2 has finite rank. Thus by Lemma 2.1, Hj;, has finite rank also, and so
H¢H, has finite rank. This completes the proof.
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Theorem 3.4 Suppose that f;, g; and h are in L>° for i = 1,2. The following
are equivalent:

1. Hf H, — Hf2H92 = Hh mod (F),

17791

2. Hy and Hy H, — Hy,H,, have finite rank;
3. Hy, Hy H,, and Hy,H,, have finite rank or there are nonzero analytic
polynomials A;(z), B;(z), C(z) such that
A1(2)Bi1(z) = As(2)Bay(2)

and

ChEHOO, A1f1—|—A2f2€HOC and Blgl"’BQngHoo.

PrOOF: First we show that (2) implies (3). Suppose that Hy, Hy, — Hy, Hy,
has finite rank. If Hy H, has finite rank, then Hy, Hy, does. If neither of
Hy H, nor Hy,H,, has finite rank, by Theorem 3.1 there are nonzero analytic
polynomials A;(z), B;(z) such that

Ay (2)By(2) = Aa(2)Ba(2),

Aify + Asfo € H® and Bygy + Bags € H™

This is the desired result.
Next we prove that (1) implies (2). Suppose

Hy Hy — Hyp,Hg, = Hp,.
An easy calculation gives

Hfll & Hgifl — Hf21 & Hggl = Hfl(l — TZTE)H'Q1 — Hf2(1 — TZTE)H%
= HypHy —HpHg, — TE(Hlegl - Hf2Hg2)TZ
= Hh — TthTZ mod (F)
= HhT1,Z2.

Thus HpTi_,» has finite rank. By Lemma 2.1, Hj has finite rank and so
Hy H, — Hjy, H,, has finite rank.

As in the proof of Theorem 3.1, it is easy to see that (3) implies (1). We
leave details for the reader. This completes the proof.

Acknowledgments. The authors thank the referee for useful suggestions.
The first author thanks D. Xia, G. Yu and C. Zhong for their warm hospitality
while the part of the paper was in progress during his visiting Vanderbilt Uni-
versity. The first author is supported in part by the National Natural Science
Foundation of China(10361003). The second author was supported in part by
the National Science Foundation.

18



References

[1]

2]

S.Axler, S.-Y. A. Chang and D. Sarason, Products of Toeplitz operators,
Integral Equations Operator Theory, 1(1978), 285-309.

A. Brown and P. Halmos, Algebraic properties of Toeplitz operators, J.
Reine Angew. Math., 213 (1963/1964), 89-102

X. Chen, K. Guo , K. Izuchi and D. Zheng, Compact perturbations of
Hankel operators, J. reine angew. Math., 578(2005), 1-48.

J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

P. Gorkin and D. Zheng, Essentially commuting Toeplitz operators,
Pacific J.Math., 190(1999), 87-109.

C. Gu and D. Zheng, Products of block Toeplitz operators, Pacific
J.Math., 185(1998), 115-148.

V. Peller, Hankel operators and their applications, Springer Monographs
in Mathematics Springer-Verlag, New York, 2003.

D. Richman, A new proof of a result about Hankel operators, Integral
Equations Operator Theory, 5(1982), 892-900

A. Volberg and O. Ivanov, Membership of the product of two Hankel oper-
ators in the Schatten-von Neumann class, Dokl. Akad. Nauk. Ukrain,
SSR Ser. A 4 (1987), 3-6

XUANHAO DING DECHAO ZHENG
DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS
GUILIN UNIVERSITY OF ELECTRONIC TECH. VANDERBILT UNIVERSITY
GUILIN, 541004 PRC NAsHVILLE, TN 37240 USA

dxhQ@guet.edu.cn dechao.zheng@vanderbilt.edu

19



