
CALDERÓN-ZYGMUND CAPACITIES AND NON-LINEAR CAPACITIES

A. VOLBERG

Abstract. There are many interesting questions concerning capacities with positive ker-
nels. This is especially so if we are dealing with non-linear capacities introduced by Maz’ya.
Non-linear capacities were extensively investigated by Maz’ya, Khavin, Hedberg, they play
important part in Analysis and PDE. For example, they found important application in the
solution the problem of spectral synthesis for Sobolev spaces given by Hedberg and Wolff.
Recently the new type of capacities appear. For them the defining kernels are not positive.
They are typically odd kernels of Calderón-Zygmund type. We see some of them below as
well as their relations with non-linear capacities.

1. Introduction

Consider the following kernel in R
d: Ks(x) := x

|x|1+s . Here x := (x1, ..., xd), s ∈ (0, d].

Consider also its positive counterpart ks(x) := 1
|x|s

.

Fix a compact set K ⊂ R
d. Recall that usual (linear) capacity Cs(K) is defined as follows:

Cs(K) = sup{‖µ‖ : µ ∈ M+(K) : Us(µ)(x) :=

∫

ks(x − y) dµ(y) ≤ 1} .

Here M+(K) stands for all positive measures supported in K. We will also use symbols
Mr(K), Mc(K), D(K) for real measures, complex measures, and distributions with compact
supported in K correspondingly.

The Calderón-Zygmund capacity γs,+ is defined totally similarly:

γs,+(K) := sup µ(K),

and the supremum is taken over all positive measures µ supported by K such that µ∗
x

|x|s+1

is a function in L∞(Rd) with

∥

∥

∥

∥

µ ∗
x

|x|s+1

∥

∥

∥

∥

∞

≤ 1.

Let us also define “similar” quantities γs,r, γs,c, γs. The definition is the same but we
replace the assumption µ ∈ M+(K) by µ ∈ Mr(K), µ ∈ Mc(K), and µ ∈ D(K) correspond-
ingly. Also we natuarally replace the quantity µ(K) by |µ(K)| = |〈µ, 1〉|.

Obviously

γs,+ ≤ γs,r(K) ≤ γs,c(K) ≤ γs(K) . (1.1)

A natural question arise:

Question 1. Why not to introduce, say, Cs,r along with Cs?
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2 A. VOLBERG

The answer is simple, Cs = Cs,r. In fact, this can be derived easily from p. 136 of
Landkof’s book on potential theory. Let us give this simple reasoning. Introduce the class
of positive measures E+ as µ ∈ M+(K) such that the energy is finite

|||µ|||2 :=

∫

Us(µ) dµ < ∞ .

Then let E denote the class of real measures µ such that µ+, µ− ∈ E+. It is obvious that
∫

Us(µ+) dµ− ≤ |||µ+||||||µ−||| .

Therefore, ||| · ||| is well defined on E , and provide it with the Hilbert space structure. The
space E is a linear pre-Hilbert space.

Now suppose µ ∈ Mr is in E . Suppose also that

Us(µ) ≤ 1 (1.2)

on K. Let λ be the equilibrium measure (see [14]). Then Us(λ) ≤ 1 everywhere on K but
also Us(λ) ≥ 1 quasieverywhere on K meaning that the set K ′ where this inequality fails is
of zero Cs capacity. In particular, µ(K ′) = 0 if µ ∈ E . Finally, |||λ|||2 = Cs(K). Using all that
(and (1.2)) we get

|||µ − λ|||2 = |||µ|||2 − 2

∫

Us(λ) dµ + |||λ|||2 ≤ µ(K) − 2µ(K) + Cs(K) .

Therefore,
µ(K) ≤ Cs(K) − |||µ − λ|||2 ≤ Cs(K) .

2. Energy, pairs interactions, triplets interaction, and semiadditivity

Capacity Cs is trivially semiadditive. In fact, let K = K1 ∪ K2, and let µ be a positive
measure that saturates the assumptions for Cs(K). In particular, µ ∗ 1

|x|s
≤ 1 on K. Then,

for µ1 := µ|K1 we have µ1 ∗
1

|x|s
≤ 1 on K1. And the same for µ2 = µ − µ1 on K2. This is

trivial consequence of the positivity of the kernel. Then just by definition we get

Cs(K) = µ(K) = µ(K1) + µ(K2) ≤ Cs(K1) + Cs(K2) .

Vitushkin’s problem stated that analytic capacity γ = γ1 on R
2 is semiadditive as well.

This is unknown and unlikely. What has been proved in Tolsa’s celebrated paper [29] is that
there exists an absolute constant A such that

γ(K1 ∪ K2) ≤ A(γ(K1) + γ(K2)) . (2.1)

The self-contained exposition of this fact can be found in [31]. Also this book contains
the proof in R

d, d > 2 of (here A = A(d))

γd−1(K1 ∪ K2) ≤ A(γd−1(K1) + γd−1(K2)) . (2.2)

This is a generalization of (2.1) from s = 1, d = 2 case to s = d− 1, d > 2 case. What are
other indecies s ∈ (0, d] for which this semiadditivity with constant holds? In other words,
what are s such that

γs(K1 ∪ K2) ≤ A(γs(K1) + γs(K2)) ? (2.3)

We already said that s = d− 1 works. There is a trivial case s = d, for which (2.3) works
because γd(E) ≍ |E|, whre |E| stands for Lebesgue measure of E. There are two non-trivial
cases when this is true and known:
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• We already said that s = d − 1 works.
• It works for 0 < s < 1, see [27].

Strangely enough for all other s it seems to be an open problem.

How the proof of (2.1) can be organized? Suppose (see the next section about that) we
already know that

γ ≍ γ+ .

Then the proof of (2.1) can be deduced immediately from the fact

γ+(K1 ∪ K2) ≤ A(γ+(K1) + γ+(K2)) . (2.4)

If we try to repeat the proof that we have for Cs above, we will come immediately to the

difficulty: if

∣

∣

∣

∣

µ ∗ 1
z

∣

∣

∣

∣

≤ 1 on K1 ∪ K2 then this does not mean anymore that

∣

∣

∣

∣

µ1 ∗
1
z

∣

∣

∣

∣

≤ 1 on

K1, where µ1 := µ|K1.
In fact, the proof of (2.4) is a challenging task in its own right, and it is not known whether

(2.4) holds with A = 1.

But there is a capacity for which we can claim the analog of (2.4), and moreover with
A = 1!

We need to introduce the notion of energy into our considerations. In the case of Cs

(positive kernel), the energy was |||µ|||2 =
∫ dµ(x) dµ(y)

|x−y|s
which stands for the energy of interaction

between all pairs of points.
In the case of γs there is no completely understood notion of energy, but the best known

replacement for it is
E(µ) := ‖Rs

µ : L2(µ) → L2(µ)‖ .

Here R
s
µ stand for the operator acting by the formula

(Rs
µf, g)L2(µ) :=

1

2

∫ ∫

Ks(x − y)[f(x)g(y) − f(y)g(x)] dµ(x) dµ(y)

for all smooth functions f, g. We are interested in µ for which this energy (norm) is finite,
that is R

s
µ can be extended from the lineal of smooth functions to L2(µ) as a bounded

operator into L2(µ).

Here is the notion of capacity related to this energy:

γs,op(E) := sup{‖µ‖ : µ ∈ Σs, supp µ ⊂ E, E(µ) ≤ 1} . (2.5)

Here µ ∈ Σs means that µ(B(x, r)) ≤ rs ∀x ∈ R
d and all r > 0.

Now we can split the proof of (2.4) to two parts (see [22],[23]):

γs,op(E) ≍ γs,+ . (2.6)

γs,op(K1 ∪ K2) ≤ γs,op(K1) + γs,op(K2) . (2.7)

The first relationship is very non-trivial, and it is essentially non-homogeneous T1 theorem,
see [22],[23], [28].

However, the second relationship is obvious! In fact, let µ staurate the left hand side. In
particular, ‖Rs

µ : L2(µ) → L2(µ)‖ ≤ 1. But then obviously ‖Rs
µ1

: L2(µ1) → L2(µ1)‖ ≤ 1
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and ‖Rs
µ2

: L2(µ2) → L2(µ2)‖ ≤ 1, where µ1 := µ|K1, µ2 := µ − µ1! We just compress the
operator. So its norm can only drop. Now we have a trivial chain of inequalities:

γs,op(K1 ∪ K2) = µ(K1 ∪ K2) = µ1(K1) + µ2(K2) ≤ γs,op(K1) + γs,op(K2) .

For the special case s = 1, d = 2 one has another, more conspicous capacity and energy.
It was introduced by M. Melnikov. Let R(x, y, z) stands for the radius of the disc passing
through points x, y, z ∈ C. Here is the “energy of interaction of all triples”, called Menger’s
curvature

c2(µ) :=

∫ ∫ ∫

dµ(x)dµ(y)dµ(z)

R2(x, y, z)
.

Corresponding capacity is

γcurv(E) := sup{‖µ‖ : µ ∈ Σ1(E) , c2(µ) ≤ µ(E)} .

It is also equivalent to the capacity γ+, see [20], [21], [28], [22], and the book [31].

Unfortunately, we do not know such geometrically meaningful energy for d > 2 or for
d = 2, s > 1. The curvature tool is “cruelly missing” as Guy David puts it. At least this is
so today.

3. Two thirds/three halves

Above we saw an almost obvious relationship Cs = Cs,r. We cannot use the argument as
simple as above to prove

γs,+(E) = γs,r(E) .

Moreover, this is most probably false. The only thing that may and actually is true is the
following equivalence

γs,r(E) ≤ Aγs,+(E) .

The weak form of it was proved independently by Guy David and Pertti Mattila [6], and
by Nazarov-Treil-Volberg, see [25], [24] (see also the exposition in [31]). Namely, the weak
form means γs,+(E) = 0 ⇒ γs,r(E) = 0. Actually, the equivalence is also true, but it is the
essence of Tolsa’s theorem. More precisely Tolsa [29] famous result states

γs,c(E) ≤ Aγs,+(E) .

The weak form γs,+(E) = 0 ⇒ γs,c(E) = 0 was proved by Guy David [7] and by Nazarov-
Treil-Volberg, see [25], [24] (also is in [31]).

Interestingly γs,+(E) is related to the Riesz capacity Cα,p in non-linear potential theory.
One of a number of equivalent definitions is the following equality (see [1], p. 34, Theo-
rem 2.5.1):

Cα,p(E) = sup
µ∈M+(E)

(

µ(E)

‖Iα ∗ µ‖p′

)p

, Iα(x) =
Ad,α

|x|d−α
,

1

p′
+

1

p
= 1,

where 1 < p < ∞, 0 < αp ≤ d, ‖ · ‖p′ is the Lp′-norm with respect to the Lebesque measure
in R

d, and Ad,α is the certain constant depending on d and α. It was proved in [15] that

γs,+(E) ≍ γs(E) ≍ C 2

3
(d−s), 3

2

(E), 0 < s < 1 . (3.1)

In [10] we proved that the inequality γs,+(E) ≥ C · C 2

3
(d−s), 3

2

(E) holds for 0 < s < d.
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Main results of this section relate to connections between Hausdorff content Mh and the
capacity γs,+, as well as between γs,+ and Cα,p.

When talking about Mh we will use the following assumption on the gauge function h:
∫

0

(

h(t)

ts

)2
dt

t
< ∞ , (3.2)

We need also the following important characterization of γs,+ obtained essentially in [22],
[23] but explicitly formulated in [31], Chapter 5:

γs,+(E) ≍ γop(E) := sup{‖µ‖ : µ ∈ Σs, supp µ ⊂ E, |||Rs
µ||| ≤ 1}, 0 < s < d. (3.3)

Theorem 3.1. Under assumption (3.2), for each compact set E ⊂ R
d,

γs,+(E) ≥ CMh(E)

[
∫ t2

0

(

h(t)

ts

)2
dt

t

]−1/2

, 0 < s < d, (3.4)

where C depends only on d, s, and t2 is defined by the equality h(t2) = Mh(E).

Proof. By Frostman’s theorem (see [3], p. 7) there is a positive measure µ such that
supp µ ⊂ E,
µ(B(x, r)) ≤ h(r) for each ball B(x, r) ⊂ R

d,
µ(E) ≥ CMh(E) with C depending only on d.

Without loss of generality we can assume that ‖µ‖ ≤ Mh(E) (otherwise we divide µ by
the constant ‖µ‖/Mh(E) > 1). We define ah and η as in Section 7 of [10] with t1 = 0 and
t2 = Mh(E), namely,

ah := C3

[
∫ t2

0

(

h(t)

ts

)2
dt

t

]1/2

, η := a−1
h µ.

Then η ∈ Σs. Theorem 4.6 of [10] and (3.3) yield

γs,+(E) ≥ Cη(E) ≥ C ′a−1
h Mh(E)

with C, C ′ depending only on d and s. �

For h(t) = tβ easy calculations give the following result.

Corollary 3.2. For each compact set E ⊂ R
d,

γs,+(E) ≥ C(β − s)1/2[Mh(E)]s/β, where 0 < s < d, h(t) = tβ, β > s,

and C depends only on d and s.

The next statement can be viewed as a counterpart of the classical Frostman’s theorem on
connections between capacities generated by potentials with positive kernels and Hausdorff
measure Λh(E) (see, for example, [3], Section IV, Theorem 1).

Corollary 3.3. For each compact set E ⊂ R
d, the condition γs,+(E) > 0 implies Λh(E) > 0

for h(t) = ts. On the other hand, if Λh(E) > 0 for a measuring function h satisfying (3.2)
then γs,+(E) > 0.

Remark. Notice that Carleson’s book has a a very similar condition
∫

0

h(t)

ts
dt

t
< ∞ , (3.5)
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which guaranteed the positivity of Cs(E) if Λh(E) is already positive. The cancellation
inherent in Calderón-Zygmund capacities reveals itself in this difference between these two
conditions (3.2) and (3.5). The Calderón-Zygmund capacity behaves in much more “sto-
chastic” fashion.

Proof. The first part of Corollary 3.3 is a direct consequence of the following result by Prat
[27], p. 946: for 0 < s < d

Cε[Mts+ε(E)]s/(s+ε) ≤ γs(E) ≤ CMts(E)

(we need the second inequality). Indeed, by definition γs,+(E) ≤ γs(E), and Mh(E), Λh(E)
vanish simultaneously. (We remark that for 0 < s < 1, Prat [27] has obtained the following
essentially stronger result: if γs(E) > 0 then Λh(E) = ∞.)

The second part is an immediate consequence of (3.4). �

Obviously, there is a gap between the assumptions about h in the first and the second parts
of Corollary 3.3. We claim that this gap cannot be reduced, that is, both parts are sharp.
Concerning the first part it means that if lim inft→0 h(t)t−s = 0, then there is a compact set
E for which γs,+(E) > 0 but Λh(E) = 0. This assertion follows from the more general and
strong result [3], p. 34, Theorem 4: for any positive kernel K(r) and any measuring function
h(r) such that

lim inf
r→0

h(r)K(r) = 0,

there is a Cantor type set E with CK(E) > 0 and Λh(E) = 0. Here

K(r) =
1

rd

∫ r

0

K(t)td−1 dt,

CK(E) := sup

{

‖µ‖ : µ ∈ M+(E),

∫

Rd

K(|x − y|) dµ(y) ≤ 1 on E

}

.

For K(r) = r−s we have K(r) = 1
d−s

r−s. Trivial estimate γs,+(E) ≥ C · CK(E) gets us the
needed assertion.

The second part of Corollary 3.3 is also precise: if the integral in (3.2) is divergent, then
there exists a compact set E for which Λh(E) > 0 but γs,+(E) = 0. One can derive this
statement from the estimate for the capacity γs of Cantor sets given at the end of [16]. A
simpler (but probabilistic) computation is in Section 8 of [10].

The results of this section mentioned above generalize the corresponding results in [9],
Section 12.

In conclusion we prove Proposition 3.4 from [10] and so complement the relations (3.1)
between the capacities γs,+ and C 2

3
(d−s), 3

2

.

Proposition 3.4. For 0 < s < d, one has

γs,+(E) ≥ c · C 2

3
(d−s), 3

2

(E). (3.6)

Proof. We may assume that C 2

3
(d−s), 3

2

(E) > 0. As in [15], our proof is based on the following

Wolff’s equality [1], p. 110, Theorem 4.5.4: for any µ ∈ M+(Rd) and 1 < p < ∞, 0 < αp ≤ d,
∫

Rd

W µ
α,p(x) dµ(x) ≍ ‖Iα ∗ µ‖p′

p′ , W µ
α,p(x) :=

∫ ∞

0

[

µ(B(x, r))

rd−αp

]p′−1
dr

r
. (3.7)
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Take α = 2
3
(d − s), p = 3

2
. Then p′ = 3, d − αp = s, and

W µ
α,p(x) =

∫ ∞

0

[µ(B(x, r))]2

r2s+1
dr =: W µ(x).

Choose µ ∈ M+(E) for which

Cα,p(E) < 2‖µ‖p‖Iα ∗ µ‖−p
p′ . (3.8)

Set

G :=

{

x ∈ R
d : W µ(x) >

2

‖µ‖

∫

Rd

W µ(x) dµ(x)

}

.

It is easy to see that G is open and

µ(G) ≤
1

2
‖µ‖.

Let

µ∗ = µ|(Rd \ G), S = sup
x∈supp µ∗

W µ∗

(x).

We claim that

W µ∗

(x) ≤ 22s+1S for all x ∈ R
d. (3.9)

It is enough to consider x with δ := dist(x, supp µ∗) > 0. Let x′ be such that x′ ∈ supp µ∗

and |x − x′| = δ. Then

W µ∗

(x) =

∫ ∞

δ

[µ∗(B(x, r))]2

r2s+1
dr ≤

∫ ∞

δ

[µ∗(B(x′, r + δ))]2

r2s+1
dr

=

∫ ∞

2δ

[µ∗(B(x′, t))]2

(t − δ)2s+1
dt < 22s+1

∫ ∞

2δ

[µ∗(B(x′, t))]2

t2s+1
dt ≤ 22s+1S,

and we get (3.9).
Let η = (22s+2sS)−1/2µ∗. Since for each ball B(x, r)

22s+1S ≥

∫ ∞

0

[µ∗(B(x, t))]2

t2s+1
dt ≥

∫ ∞

r

[µ∗(B(x, t))]2

t2s+1
dt ≥

[µ∗(B(x, r))]2

2sr2s
,

we see that η ∈ Σs. Then we have

|||Rs
η|||

2 ≤ C(22s+2sS)−1S = C ′.

Relations (3.3) and ‖µ∗‖ ≥ 1
2
‖µ‖ yield

γs,+(E) ≥ Cη(E) ≥ C ′‖µ‖S−1/2.

Since

S ≤ sup
x∈supp µ∗

W µ(x) ≤
2

‖µ‖

∫

Rd

W µ(x) dµ(x),

we have

γs,+(E) ≥ C‖µ‖3/2

[
∫

Rd

W µ(x) dµ(x)

]−1/2
(3.7)
≍ ‖µ‖3/2‖Iα ∗ µ‖

−p′/2
p′

(3.8)
>

1

2
C 2

3
(d−s), 3

2

(E),

and we get (3.6). �
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For integer s ∈ (0, d) the opposite inequality γs,+(E) ≤ C · C 2

3
(d−s), 3

2

(E) is false. In fact,

for a smooth s-dimensional manifold E in R
d we have γs,+(E) > 0 by the obvious reason that

natural Lebesgue measure on it gives bounded Riesz transform operator (this is from the
classical Calderón-Zygmund theory). On the other hand, it has been noticed (for example in
[15]) that any measure µ with finite Wolff’s energy should have µ(B(x, r)) = o(rs) for µ a.
e. x. On a smooth s-dimensional manifold it can be only zero measure, so C 2

3
(d−s), 3

2

(E) = 0.

Question 2. The question about validity of the inequality γs,+(E) ≤ C · C 2

3
(d−s), 3

2

(E) for

all non-integer s ∈ (0, d) remains open. We believe that this is the case.

4. Strange Sobolev embedding.

Previous result has a very strange interpretation. Recall that

Iα(x) =
Ad,α

|x|d−α
,

and that Iα ∗ Iβ = Iα+β.
Also recall the Sobolev embedding

Iα ∗ Lp
0 ⊂ Lq

loc ,
1

q
=

1

p
−

α

d
.

Notice now that C2/3(d−s),3/2(E) > 0 means that there exists µ ∈ M+(E) such that

I2/3(d−s) ∗ µ ∈ L3(Rd) .

Then Sobolev embeding gives

Id−s ∗ µ = I1/3(d−s) ∗ I2/3(d−s)µ ∈ Lq
loc ,

where
1

q
=

1

3
−

d − s

3d
=

s

3d
.

We get that
∫

dµ(x)

|x − y|s
∈ L

3d

s

loc .

Then classical Calderón-Zygmund theory implies
∫

xi − yi

|x − y|1+s
dµ(x) ∈ L

3d

s

loc , i = 1, ..., d .

There is nothing strange in this. What is strange is that Proposition 3.4 then claims the
following corollary

Theorem 4.1. For any δ > 0 there exists a function h, 0 ≤ h ≤ 1,
∫

E
hdµ ≥ (1 − δ)µ(E)

such that measure µ′ := h dµ has the following property:
∫

xi − yi

|x − y|1+s
dµ(x) ∈ L∞ , i = 1, ..., d .

Kernels in the last three display relationships are of the same singularity s. But positive
kernel gives us potentil of µ only in L6 if s = 1, d = 2, the singular kernel gives us “almost
the same” potential of “almost the same” measure in L∞! But we required to “correct”
measure µ a little bit. Still the jump from L6 to L∞ seeems to be very huge, and the price
is just discarding a small (δ) piece of the measure.
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The proof of the last theorem is scattered through [22], [23], [24], [25], [28], [29], and can
be found in a self-contained form in the book [31].
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