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HYPERBOLIC DERIVATIVES
AND GENERALIZED SCHWARZ-PICK ESTIMATES

PRATIBHA GHATAGE AND DECHAO ZHENG

(Communicated by Joseph A. Ball)

Abstract. In this paper we use the beautiful formula of Faa di Bruno for
the nth derivative of composition of two functions to obtain the generalized
Schwarz-Pick estimates. By means of those estimates we show that the hy-
perbolic derivative of an analytic self-map of the unit disk is Lipschitz with
respect to the pseudohyperbolic metric.

1. Introduction

For each z ∈ D, let ϕz denote the Möbius transformation of D,

ϕz =
z − w
1− zw ,

for w ∈ D. The pseudo-hyperbolic distance on D is defined by

ρ(z, w) = |ϕz(w)|, z, w ∈ D.
The pseudohyperbolic distance is Möbius invariant, that is,

ρ(gz, gw) = ρ(z, w),

for all g ∈ Aut(D), the Möbius group of D, and all z, w ∈ D. It has the following
useful property:

(1.1) 1− ρ(z, w)2 =
(1− |z|2)(1 − |w|2)

|1− zw|2 .

The Bergman metric on D is the hyperbolic metric whose element of length is

ds =
|dz|

1− |z|2 .

In this metric every rectifiable arc γ has a length∫
γ

|dz|
1− |z|2 .

It is easy to show that the induced distance on D is given by

β(z, w) =
1
2

log
1 + ρ(z, w)
1− ρ(z, w)

,

for z, w ∈ D.
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Let ϕ be an analytic self-map of the unit disk. By the classical Schwarz-Pick
Lemma [2], [5], ϕ decreases the hyperbolic distance between two points and the
hyperbolic length of an arc. The explicit inequality is

| ϕ(z1)− ϕ(z2)
1− ϕ(z1)ϕ(z2)

| ≤ | z1 − z2

1− z1z2
|

for any z1, z2 in D. In particular,

(1.2)
|ϕ′(z)|

1− |ϕ(z)|2 ≤
1

1− |z|2

for z in D. Let

τϕ(z) =
(1 − |z|2)ϕ′(z)

1− |ϕ(z)|2 .

Then
|τϕ(z)| ≤ 1,

for all z ∈ D. Nontrivial equality |τϕ(z)| = 1 holds for some z ∈ D only when ϕ is a
fractional linear transformation eiθϕa(z). For each z ∈ D, the hyperbolic derivative
of ϕ at z is defined by

lim
β(z,w)→0

β(ϕ(z), ϕ(w))
β(z, w)

.

In Section 3 we will show that the hyperbolic derivative of ϕ equals |τϕ(z)| and
that τϕ(z) is Lipschitz with respect to the pseudohyperbolic metric. Hyperbolic
derivatives have been used in studying composition operators on the Bloch space
[7], [9] and [10].

Recently, MacCluer, Stroethoff, and Zhao [8] used the formula of Faa di Bruno
and the theory of the weighted composition operators [11] to obtain the generalized
Schwarz-Pick estimates:

(1.3) sup
z∈D

(1− |z|2)n|ϕ(n)(z)|
(1 − |ϕ(z)|2)

<∞

for each analytic self-map ϕ of the unit disk. We obtain the following generalized
Schwarz-Pick estimates: for each 0 < r < 1 and each positive integer n, there is a
positive constant Mn,r such that for each analytic self-map ϕ of the unit disk:

(1.4)
(1− |z|2)n|ϕ(n)(z)|

1− |ϕ(z)|2 ≤Mn,r max
ρ(w,z)<r

(1− |w|2)|ϕ′(w)|
1− |ϕ(w)|2 ,

for z in D. Clearly, Combining (1.2) with (1.4) gives (1.3). Moreover, (1.4) directly
leads to the result [8] that if ϕ is in the little Bloch class, then

lim
|z|→1

(1− |z|2)n|ϕ(n)(z)|
1− |ϕ(z)|2 = 0

for each n. The main tool is the beautiful formula of Faa di Bruno [13] for the nth
derivative of the composition of two functions.

Based on the generalized Schwarz-Pick estimates we will show in Section 3 that
τϕ,n(z) = (1−|z|2)n|ϕ(n)(z)|

(1−|ϕ(z)|2) is Lipschitz with respect to the pseudohyperbolic metric.
Thus τϕ,n(z) admits a continuous extension to the set of nontrivial Gleason parts
of the maximal ideal space of H∞.
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2. Generalized Schwarz-Pick estimates

In this section, we will present a proof of the generalized Schwarz-Pick estimates.
The generalized Schwarz-Pick estimates will be used in the proof of Theorem 6.
The main tool is the beautiful formula of Faa di Bruno, which deals with the nth
derivative of composition of an analytic function f on the unit disk with a self-map
ϕ of the the unit disk [13].

Theorem 1 (The Formula of Faa di Bruno). If ϕ is an analytic function from the
unit disk to the unit disk and if f is an analytic function on the unit disk, then

(f ◦ ϕ)(n)(z) =
∑ n!

k1!k2! · · · kn!
f (k)(ϕ(z))

n∏
j=1

(
ϕ(j)(z)
j!

)kj

where k = k1 + · · ·+kn and the sum is over all k1, . . . , kn for which k1 +2k2 + · · ·+
nkn = n.

The following result is well known [12]. We include a proof to motivate our
Theorem 2.

Proposition 1. If ϕ is a univalent analytic self-map of D, then

(1 − |z|2)|ϕ′′(z)| ≤ 10|ϕ′(z)|

for all z ∈ D.

Proof. For a fixed z in D, let h be the Koebe transform of ϕ,

h(w) =
ϕ( w+z

1+zw )− ϕ(z)
(1− |z|2)ϕ′(z)

.

Then h(0) = 0 and h′(0) = 1. It follows from Bieberbach’s theorem ([12], page 8)
that

|h′′(0)| ≤ 4.

On the other hand, an easy computation gives

h′′(0) =
1
2

(1− |z|2)
ϕ′′(z)
ϕ′(z)

− z.

Hence

|1
2

(1− |z|2)
ϕ′′(z)
ϕ′(z)

− z| ≤ 4.

Since |z| ≤ 1, we conclude that

|(1 − |z|2)|ϕ′′(z)| ≤ 10|ϕ′(z)|.

This completes the proof. �

As a consequence of the proposition, we have

(2.1)
(1− |z|2)2|ϕ′′(z)|

1− |ϕ(z)|2 ≤ 10(1− |z|2)|ϕ′(z)|
1− |ϕ(z)|2

for all z ∈ D if ϕ is a univalent self-map of the unit disk.
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Example. Let b be an interpolating Blaschke product with zeros {zn} in the
unit disk and ϕ = b2. Clearly, ϕ′(zn) = 0 and ϕ′′(zn) = 2[b′(zn)]2. Let δ =
infzn(1− |zn|2)|b′(zn)|. Thus

(1 − |zn|2)|ϕ′′(zn)|
1− |ϕ(zn)|2 = 2(1− |zn|2)[b′(zn)]2 ≥ 2δ|b′(zn)| ≥ 2δ2

1− |zn|2
.

So the inequality (2.1) does not hold for some analytic self-maps of the unit disk.
But by means of the formula of Faa di Bruno we still have the generalized Schwarz-
Pick estimates:

Theorem 2. For each positive integer n and each number 0 < r < 1, there is a
positive constant Mn,r such that for each analytic self-map ϕ of the unit disk,

(1− |z|2)n|ϕ(n)(z)|
1− |ϕ(z)|2 ≤Mn,r max

ρ(w,z)<r

(1 − |w|2)|ϕ′(w)|
1− |ϕ(w)|2

for z in D.

As we mentioned in the introduction, by the Schwarz-Pick estimates (1.2), we
have

(1− |w|2)|ϕ′(w)|
1− |ϕ(w)|2 ≤ 1.

Thus Theorem 2 implies the following generalized Schwarz-Pick Estimates [8].

Theorem 3. For each n, there is a positive constant Mn such that for each analytic
self-map ϕ of the unit disk,

(1− |z|2)n|ϕ(n)(z)|
1− |ϕ(z)|2 ≤Mn,

for z in D.

If ϕ is in the little Bloch class, i.e.,

(1− |z|2)|ϕ′(z)|
1− |ϕ(z)|2 → 0

as |z| → 1, then noting that for the given 0 < s < 1, for every w ∈ D with
ρ(w, z) < s, |w| → 1 as |z| → 1, Theorem 2 gives the following result in [8].

Theorem 4. Let ϕ be an analytic self-map of the unit disk. If

lim
|z|→1−

(1 − |z|2)|ϕ′(z)|
1− |ϕ(z)|2 = 0,

then for each n,

lim
|z|→1−

(1− |z|2)n|ϕ(n)(z)|
1− |ϕ(z)|2 = 0.

Proof of Theorem 2. For a fixed z in D, let g = ϕ ◦ ϕz . Clearly, g(0) = ϕ(z). By
the formula of Faa di Bruno, we have

g(n)(w) =
∑ n!

k1!k2! · · ·kn!
ϕ(k)(ϕz(w))

n∏
j=1

(
ϕ

(j)
z (w)
j!

)kj

where k = k1 + · · ·+kn and the sum is over all k1, . . . , kn for which k1 + 2k2 + · · ·+
nkn = n.
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Evaluating the value of g(n) at 0 gives

g(n)(0) =
∑ n!

k1!k2! · · · kn!
ϕ(k)(ϕz(0))

n∏
j=1

(
ϕ

(j)
z (0)
j!

)kj .

Noting that ϕz(0) = z and ϕ
(j)
z (w) = −(1− |z|2)z̄j−1j!(1− z̄w)−j−1, we have

g(n)(0) =
∑ n!

k1!k2! · · ·kn!
ϕ(k)(z)

n∏
j=1

(−(1− |z|2)z̄j−1)kj

=
∑

(−1)k
n!

k1!k2! · · · kn!
ϕ(k)(z)(1 − |z|2)kz̄n−k.

The last equality follows from k1 + · · ·+ kn = k and k1 + 2k2 + · · ·+ nkn = n.
Thus

(−1)n(1− |z|2)nϕ(n)(z) = g(n)(0)−
∑
k<n

(−1)k
n!

k1!k2! · · ·kn!
ϕ(k)(z)(1− |z|2)kz̄n−k.

So

(1− |z|2)n|ϕ(n)(z)|
1− |ϕ(z)|2 ≤ |g(n)(0)|

1− |ϕ(z)|2

+
∑
k<n

n!
k1!k2! · · ·kn!

|ϕ(k)(z)|(1− |z|2)k|z|n−k
1− |ϕ(z)|2 .

Let Mk(z) = |ϕ(k)(z)|(1−|z|2)k

1−|ϕ(z)|2 . The above inequality gives

Mn(z) ≤ |g(n)(0)|
1− |ϕ(z)|2 +

∑
k<n

n!
k1!k2! · · ·kn!

Mk(z).

We need to estimate |g(n)(0)|
1−|ϕ(z)|2 .

Let λ = g(0), h = ϕλ ◦ g. Then h is still an analytic self-map of the unit disk,
h(0) = 0, and ‖h‖∞ ≤ 1. Since ϕλ ◦ ϕλ(z) = z, we obtain g = ϕλ ◦ h. The formula
of Faa di Bruno again gives

g(n)(w) =
∑ n!

k1!k2! · · · kn!
ϕ

(k)
λ (h(w))

n∏
j=1

(
h(j)(w)
j!

)kj

where k = k1 + · · ·+kn and the sum is over all k1, . . . , kn for which k1 + 2k2 + · · ·+
nkn = n.

Evaluating g(n) at 0 gives

g(n)(0) =
∑ n!

k1!k2! · · ·kn!
ϕ

(k)
λ (0)

n∏
j=1

(
h(j)(0)
j!

)kj

since h(0) = 0. Noting ϕ(k)
λ (w) = −(1−|λ|2)λ̄k−1k!(1−λ̄w)−k−1, the above equality

leads to

g(n)(0) =
∑ n!

k1!k2! · · · kn!
[−(1− |λ|2)λ̄k−1k!]

n∏
j=1

(
h(j)(0)
j!

)kj .
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Hence
|g(n)(0)|

1− |g(0)|2 ≤
∑ n!

k1!k2! · · ·kn!
|λ|k−1k!

n∏
j=1

(
|h(j)(0)|

j!
)kj .

Let an =
∑
k<n

n!
k1!k2!···kn! . So far we have shown

Mn(z) ≤ an max
k<n

Mk(z) +
∑ n!

k1!k2! · · · kn!
|λ|k−1k!

n∏
j=1

(
|h(j)(0)|

j!
)kj .

Note that h = ϕλ ◦ g, g = ϕ ◦ ϕz, and λ = g(0) = ϕ(z). Then

h′(w) =
(1 − |λ|2)g′(w)
(1− λg(w))2

and

h′(w) =
∞∑
j=1

h(j)(0)
(j − 1)!

wj−1.

Let 0 < r < 1. Thus

h(j)(0) = r−(j−1)(j − 1)!
1

2π

∫ 2π

0

h′(reiθ)e−i(j−1)θdθ.

So

|h(j)(0)| ≤ r−(j−1)(j − 1)!
1

2π

∫ 2π

0

|h′(reiθ)|dθ

≤ r−(j−1)(j − 1)!
1

2π

∫ 2π

0

(1− |λ|2)|g′(reiθ)|
|1− λg(reiθ)|2

dθ

≤ r−(j−1)(j − 1)!
1

2π

∫ 2π

0

(1− |ϕλ(g(reiθ)|2)|g′(reiθ)|
1− |g(reiθ)|2 dθ

≤ r−(j−1)(1 − r2)−1(j − 1)! max
|w|≤r

(1− |w|2)|g′(w)|
1− |g(w)|2

≤ Cr
1

r(j−1)
(j − 1)! max

ρ(z,u)≤r

(1− |u|2)|ϕ′(u)|
1− |ϕ(u)|2

for some constant Cr > 0. The third inequality follows from

(1− |λ|2)(1 − |g(reiθ)|2)
|1− λ̄g(reiθ)|2

= 1− |ϕλ(g(reiθ))|2.

The last inequality follows from making the change of variable u = ϕz(w) and the
fact that

(1 − |w|2)|g′(w)| = (1− |w|2)|ϕ′(ϕz(w))ϕ′z(w)|

=
(1− |w|2)(1 − |z|2)

|1− z̄w|2 |ϕ′(ϕz(w))| = (1− |ϕz(w)|2)|ϕ′(ϕz(w))|.

Hence
|h(j)(0)|

j!
≤ [jr(j−1)(1− r2)]−1 max

ρ(z,u)≤r

(1− |u|2)|ϕ′(u)|
1− |ϕ(u)|2 .

The Schwarz-Pick estimate gives

(1− |u|2)|ϕ′(u)|
1− |ϕ(u)|2 ≤ 1
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for each u ∈ D. Thus∑ n!
k1!k2! · · ·kn!

|λ|k−1k!
n∏
j=1

(
|h(j)(0)|

j!
)kj

≤
∑ n!

k1!k2! · · ·kn!
|λ|k−1k!rk−n(1− r2)−k max

ρ(z,u)≤r

(1 − |u|2)|ϕ′(u)|
1− |ϕ(u)|2 .

Let bn,r =
∑

n!
k1!k2!···kn!k!rk−n(1− r2)−k. The above inequality gives

Mn(z) ≤ an max
k<n

Mk(z) + bn,r max
ρ(z,u)≤r

(1− |u|2)|ϕ′(u)|
1− |ϕ(u)|2 .

By the induction, we conclude that

Mn(z) ≤Mn,r max
ρ(z,u)≤r

(1 − |u|2)|ϕ′(u)|
1− |ϕ(u)|2

to complete the proof. �

3. Hyperbolic derivatives

In this section we will first show that the hyperbolic derivative of an analytic
self-map ϕ of the unit disk equals |τϕ(z)|. Then we will show that τϕ(z) is Lipschitz
with respect to the pseudo-hyperbolic metric.

Theorem 5. Let ϕ : D → D be an analytic self-map. Then, for each point z ∈ D,
the hyperbolic derivative of ϕ is equal to

lim
β(z,w)→0

β(ϕ(z), ϕ(w))
β(z, w)

= |τϕ(z)|.

Proof. Assume that ϕ is not constant. For each fixed z ∈ D, ρ(ϕ(z), ϕ(w)) con-
verges to zero as β(w, z) converges to zero because ϕ is continuous in D and
|ϕ(z)| < 1. Thus

lim
β(z,w)→0

β(ϕ(z), ϕ(w))
β(z, w)

= lim
β(z,w)→0

β(ϕ(z), ϕ(w))
ρ(ϕ(z), ϕ(w))

ρ(ϕ(z), ϕ(w))
ρ(z, w)

ρ(z, w)
β(z, w)

.

Both the first and third factors of the product on the right converge to one. Now
the second factor is

ρ(ϕ(z), ϕ(w))
ρ(z, w)

=
|ϕ(z)− ϕ(w)|
|z − w|

|1− zw|
|1− ϕ(z)ϕ(w)|

.

Thus

lim
β(z,w)→0

ρ(ϕ(z), ϕ(w))
ρ(z, w)

=
|ϕ′(z)|(1− |z|2)

1− |ϕ(z)|2 .

So

lim
β(z,w)→0

β(ϕ(z), ϕ(w))
β(z, w)

=
|ϕ′(z)|(1− |z|2)

1− |ϕ(z)|2 .

This completes the proof. �

For each n, define

τϕ,n(z) =
(1 − |z|2)nϕ(n)(z)

1− |ϕ(z)|2 .
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Theorem 6. Let ϕ be an analytic self-map of the unit disk D. Then for each n,
τϕ,n(z) is Lipschitz with respect to the pseudohyperbolic metric. More precisely,

|τϕ,n(z)− τϕ,n(w)| ≤ Cnρ(z, w)

for any z, w ∈ D. Here Cn is a positive constant only depending on n.

Proof. Suppose that f is a differentiable function on the unit disk. Let ∂zf = ∂f
∂z

and ∂zf = ∂f
∂z . Note that τϕ,n(z) is differentiable on the unit disk. Easy calculations

give

∂zτϕ,n(z) =
−zn(1− |z|2)n−1ϕ(n)(z)(1− |ϕ(z)|2) + (1− |z|2)(n)ϕ(n)(z)ϕ′(z)ϕ(z)

(1− |ϕ(z)|2)2

and

∂zτϕ,n(z) =
1

(1− |ϕ(z)|2)2
{[(1− |z|2)nϕ(n+1)(z)− z̄n(1− |z|2)n−1ϕ(n)(z)]

× (1− |ϕ(z)|2) + (1 − |z|2)nϕ(n)(z)ϕ′(z)ϕ(z)}.

Thus

|∂zτϕ,n(z)| ≤ 1
1− |z|2 [

n(1− |z|2)n|ϕ(n)(z)|
1− |ϕ(z)|2

+ |ϕ(z)|[ (1− |z|
2)|ϕ′(z)|

1− |ϕ(z)|2 ][
(1− |z|2)n|ϕ(n)(z)|

1− |ϕ(z)|2 ] ≤ (n+ 1)Mn

1− |z|2 ,

where the last inequality follows from Theorem 3, and

|∂zτϕ,n(z)| ≤ 1
1− |z|2 {

(1− |z|2)n+1|ϕ(n+1)(z)|
1− |ϕ(z)|2 + n

(1− |z|2)n|ϕn(z)|
1− |ϕ(z)|2

+|ϕ(z)|[ (1− |z|
2)n|ϕ(n)(z)|

1− |ϕ(z)|2 ][
(1− |z|2)|ϕ′(z)|

1− |ϕ(z)|2 ]} ≤ Mn+1 + (n+ 1)Mn

1− |z|2 ,

where the last inequality follows from Theorem 3. Given z and w in D, let γ(t) :
[0, 1]→ D be a smooth curve to connect z and w, i.e.,

|τϕ,n(z)− τϕ,n(w)| = |
∫ 1

0

dτϕ,n(γ(t))
dt

dt|

≤
∫ 1

0

| d
dt
τϕ,n(γ(t))|dt

≤
∫ 1

0

[|∂zτϕ,n(γ(t))||dγ(t)
dt
|+ |∂zτϕ,n(γ(t))||dγ(t)

dt
|]dt,

where the last inequality follows from the first chain rule:

d

dt
τϕ,n(γ(t)) = ∂zτϕ(γ(t))

dγ(t)
dt

+ ∂zτϕ,n(γ(t))
dγ(t)
dt

.

Combining the above estimates gives

|τϕ,n(z)− τϕ,n(w)| ≤
∫
γ

Mn+1 + 2(n+ 1)Mn

1− |γ(t)|2 d|γ(t)|.



HYPERBOLIC DERIVATIVES AND SCHWARZ-PICK ESTIMATES 3317

If we choose γ to be a geodesic to connect z and w, then the above inequality gives

|τϕ,n(z)− τϕ,n(w)| ≤ (Mn+1 + 2(n+ 1)Mn)β(z, w)

≤ (Mn+1 + 2(n+ 1)Mn)ρ(z, w)
1− ρ(z, w)2

.

The last inequality comes from the fact that for all 0 < x < 1,
1
2

ln
1 + x

1− x ≤
x

1− x2
.

If |ρ(z, w)| < 1/8, the above inequality gives

|τϕ,n(z)− τϕ,n(w)| ≤ 2(Mn+1 + 2(n+ 1)Mn)ρ(z, w).

If |ρ(z, w)| ≥ 1/8, we have 8|ρ(z, w)| ≥ 1, and

|τϕ,n(z)− τϕ,n(w)| ≤ max{|τϕ,n(z)|, |τϕ,n(w)|} ≤Mn ≤ 8Mnρ(z, w).

Choosing Cn = max{2(Mn+1 + 2(n+ 1)Mn), 8Mn}, we have

|τϕ,n(z)− τϕ,n(w)| ≤ Cnρ(z, w)

to complete the proof. �
Theorem 6 has an application to closed-range composition operators on the Bloch

space.
Hoffman [6] showed that (1− |z|2)nϕ(n)(z) continuously extends to the maximal

ideal space of H∞. Let G be the subset of the maximal ideal space of H∞ consisting
of nontrivial Gleason parts. As a corollary of a result in [1] and Theorem 1.2 [4],
we have the following result.

Corollary 1. Suppose that ϕ is an analytic self-mapping of the unit disk. Then
τϕ,n(z) admits a continuous extension to G.

Addendum

After we finished this paper, we obtained K. Stroethoff’s paper [14], which
showed that

ρ(|τϕ(z)|, |τϕ(w)|) ≤ 2ρ(z, w),
for z, w ∈ D. This generalizes Beardon’s result [3]: If ϕ(0) = 0, then

ρ(τϕ(0), τϕ(w)) < 2ρ(0, w)

for w ∈ D. We thank K. Stroethoff.
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