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ISOLATED POINTS AND ESSENTIAL COMPONENTS
OF COMPOSITION OPERATORS ON H∞

TAKUYA HOSOKAWA, KEIJI IZUCHI, AND DECHAO ZHENG

(Communicated by Joseph A. Ball)

Abstract. We consider the topological space of all composition operators on
the Banach algebra of bounded analytic functions on the unit disk. We obtain
a function theoretic characterization of isolated points and show that each
isolated composition operator is essentially isolated.

1. Introduction

Let H∞ be the set of all bounded analytic functions on the open unit disk D.
Then H∞ is a Banach algebra under the supremum norm,

‖f‖∞ = sup{|f(z)|; z ∈ D}.
Every analytic self map ϕ of D induces through composition a linear composition
operator Cϕ on H∞ defined by

Cϕ(f) = f ◦ ϕ
for f ∈ H∞(D).

We consider here the set C(H∞) of composition operators on H∞ as a subset of
the bounded linear operators on H∞, endowed with the operator norm. The basic
problem we are interested in is the topological structure of C(H∞).

In [8], MacCluer, Ohno, and Zhao studied connected components and isolated
points in C(H∞) and asked whether every isolated composition operator in C(H∞)
is essentially isolated, that is, isolated in the space of composition operators with
the topology induced by the essential semi-norm

‖Cϕ‖e = inf {‖Cϕ −K‖;K is compact on H∞}.
In this paper, we solve the above-mentioned problem affirmatively.

In [8, Corollary 9], it is proved that if∫ 2π

0

log(1− |ϕ|) dθ/2π > −∞,(1.1)

then Cϕ is not isolated in C(H∞). By [2], it is known that ϕ satisfies condition
(1.1) if and only if ϕ is not an extreme point of the closed unit ball of H∞; see
also [7, p. 138]. In Theorem 4.1, we prove that (1.1) holds if and only if Cϕ is
not isolated in C(H∞). In Lemma 4.2, we prove that if Cϕ and Cψ are not in the
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same connected component of C(H∞), then 1 ≤ ‖Cϕ − Cψ‖e ≤ 2 for ψ 6= ϕ. As a
consequence we have that Cϕ and Cψ are in the same connected component if and
only if Cϕ and Cψ are in the same essentially connected component. This answers
MacCluer, Ohno, and Zhao’s problem posed in [8].

To prove our results, we need some preparation. A sequence {zk}k in D is
called asymptotically interpolating if for every sequence of complex numbers {ak}k
such that |ak| ≤ 1 for every k, there exists h ∈ H∞ such that ‖h‖∞ ≤ 1 and
|h(zk)−ak| → 0. In Section 3, we prove that for a given sequence {wn}n in D with
|wn| → 1 there exists an asymptotically interpolating subsequence. This is a key
in this paper.

There are many studies of composition operators on the Hardy space H2; see
[1, 7, 9, 11]. There are some differences in properties between H∞ and H2. For
example, there exists ϕ such that Cϕ is not isolated in C(H2) but ϕ does not satisfy
(1.1); see [10]. This is contrary to our Theorem 4.1.

2. Preliminaries

First we introduce some notation. Let M(H∞) be the set of non-zero multi-
plicative linear functionals of H∞. Then M(H∞) is a compact Hausdorff space
with the weak*-topology. For a subset E of M(H∞), we denote by cl E the closure
of E in M(H∞). We identify a function f in H∞ with its Gelfand transform;
f̂(m) = m(f), m ∈M(H∞).

For z and w in D, we define the pseudohyperbolic distance ρ(z, w) by

ρ(z, w) =
∣∣ z − w
1− z̄w

∣∣.
For a sequence {zn}n in D with

∑∞
n=1(1 − |zn|) < ∞, there corresponds a

Blaschke product

b(z) =
∞∏
n=1

−zn
|zn|

z − zn
1− znz

, z ∈ D.

A sequence {zn}n and an associated Blaschke product are called sparse or thin if

lim
n→∞

∏
k 6=n

∣∣∣ zn − zk
1− zkzn

∣∣∣ = 1.

If b is a sparse Blaschke product with zeros {zn}n, then |b(wj)| → 1 for every
sequence {wj}j in D satisfying ρ(wj , {zn}n)→ 1 as j →∞; see [5].

For z ∈ D, and 0 < r, let

∆(z, r) = {w ∈ D; ρ(z, w) ≤ r}
which is called the pseudo-hyperbolic disk. The pseudo-hyperbolic disk ∆(z, r) is
also a euclidean disk.

Let S(D) denote the set of analytic self-mapping of the unit disk D. In [8,
Theorems 1 and 2], MacCluer, Ohno, and Zhao proved the following.

Fact 2.1. Let ϕ, ψ ∈ S(D). Then the following hold:
(i) Cϕ and Cψ are in the same connected component in C(H∞) if and only if

‖Cϕ − Cψ‖ < 1 if and only if

sup
z∈D

ρ(ϕ(z), ψ(z)) < 1.

(ii) Every connected component of C(H∞) is open and closed.
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(iii) Cϕ is isolated in C(H∞) if and only if the connected component containing
Cϕ consists of only Cϕ.

(iv) Cϕ is isolated if and only if for all ψ 6= ϕ one has ‖Cϕ − Cψ‖ = 2.

Theorem 3 in [8] is restated as follows.

Fact 2.2. Let ϕ, ψ ∈ S(D), ϕ 6= ψ, and ‖ϕ‖∞ = 1. Then Cϕ − Cψ is a compact
operator on H∞ if and only if lim sup

|ϕ(z)|→1

ρ(ϕ(z), ψ(z)) = lim sup
|ψ(z)|→1

ρ(ϕ(z), ψ(z)) = 0.

Proof. By Theorem 3 in [8], Cϕ − Cψ is compact if and only if

∂ϕ(D) ∩ ∂D = ∂ψ(D) ∩ ∂D 6= ∅(2.1)

and

lim sup
|ϕ(z)|→1

ρ(ϕ(z), ψ(z)) = lim sup
|ψ(z)|→1

ρ(ϕ(z), ψ(z)) = 0.(2.2)

We need to show that (2.1) follows from (2.2). Suppose that max{|ϕ(zn)|, |ψ(zn)|}
→ 1. By (2.2), ρ(ϕ(zn), ψ(zn)) → 0. Hence |ϕ(zn) − ψ(zn)| → 0. Therefore (2.1)
holds.

3. Asymptotically interpolating sequences

Let A be the disk algebra, that is, A is the space of continuous functions on the
closed unit disk D and analytic in D.

Theorem 3.1. For every sequence {wn}n in D with |wn| → 1, there exists an
asymptotically interpolating subsequence of {wn}n.

Proof. We may assume that |wn − 1| → 0. Put f(z) = (z + 1)/2, z ∈ D. Then
f ∈ A,

f(1) = 1 and |f | < 1 on D \ {1}.(3.1)

Put g(z) = (z − 1)/2, z ∈ D, and gn = g1/n for every positive integer n. Then
gn ∈ A, ‖gn‖∞ = 1, gn(1) = 0, and

|gn(z)| → 1 for each z ∈ D.(3.2)

By induction, we shall find two sequences of increasing positive integers {mk}k,
{nk}k, a sequence of complex numbers {ck}k with |ck| < 1, and a subsequence
{zk}k in {wn}n satisfying that

sup
z∈D

N∑
k=1

|(ckfmkgnk)(z)| < 1 for every N ,(3.3)

N−1∑
k=1

|(ckfmkgnk)(zN )| < (1/2)N for every N ≥ 2,(3.4)

cN (fmN gnN )(zN ) > 1− (1/2)N for every N ,(3.5)

and

|fmN (zj)| < (1/2)N for 1 ≤ j < N .(3.6)



1768 TAKUYA HOSOKAWA, KEIJI IZUCHI, AND DECHAO ZHENG

First, take m1 = 1. By (3.1), there exists z1 ∈ {wn}n such that |f(z1)| > 1/2.
By (3.2), there exists n1 such that |(fm1gn1)(z1)| > 1/2. Take a complex number
c1 such as

c1(fm1gn1)(z1) = |(fm1gn1)(z1)|.
Then (3.3) and (3.5) hold for N = 1.

Next, suppose that {mk}Nk=1, {nk}Nk=1, {ck}Nk=1, and {zk}Nk=1 are chosen satisfy-
ing our conditions. Put

FN =
N∑
k=1

|ckfmkgnk | on D.

Since gn(1) = 0, FN (1) = 0. Take an open subset UN of D such that 1 ∈ UN ,

{z1, z2, . . . , zN} ∩ UN = ∅,(3.7)

and

FN < (1/2)N+2 on UN .(3.8)

By (3.1) and (3.3), there exists mN+1 such that mN < mN+1,

|fmN+1| < (1/2)N+1 on D \ UN ,(3.9)

and

FN + |fmN+1| < 1 on D \ UN .(3.10)

By (3.1) again, there is a point zN+1 in {wn}n ∩ UN such that

|fmN+1(zN+1)| > 1− (1/2)N+1

1− (1/2)N+2
.

By (3.2), there exists nN+1 such that nN < nN+1 and

|(fmN+1gnN+1)(zN+1)| > 1− (1/2)N+1

1− (1/2)N+2
.(3.11)

By (3.10),

FN + |fmN+1gnN+1 | < 1 on D \ UN .(3.12)

Since ‖fmN+1gnN+1‖∞ < 1, by (3.8) and (3.12)

sup
z∈D

[
FN (z) + (1 − (1/2)N+2)|(fmN+1gnN+1)(z)|

]
< 1.(3.13)

Take a complex number bN+1 such that

bN+1(1− (1/2)N+2)(fmN+1gnN+1)(zN+1) = (1− (1/2)N+2)|(fmN+1gnN+1)(zN+1)|.
Put cN+1 = bN+1(1 − (1/2)N+2). Then |cN+1| = 1 − (1/2)N+2, and by (3.13) we
get (3.3) for N + 1. Also, by (3.11)

cN+1(fmN+1gnN+1)(zN+1) = (1− (1/2)N+2)|(fmN+1gnN+1)(zN+1)|
> 1− (1/2)N+1.

Thus we get (3.5) for N + 1. Since zN+1 ∈ UN , by (3.8) we have (3.4) for N + 1.
By (3.7) and (3.9), (3.6) holds. This completes the induction.

By (3.6),
∞∑

k=N+1

|(ckfmkgnk)(zN )| <
∞∑

k=N+1

(1/2)k = 1/2N .(3.14)
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Let {ak}k be a sequence of complex numbers such that |ak| ≤ 1 for every k. Put

h(z) =
∞∑
k=1

ak(ckfmkgnk)(z), z ∈ D.

By (3.3), h ∈ B(H∞), and

|h(zN )− aN | ≤
(
|1− (cNfmN gnN )(zN )|

)
+
N−1∑
k=1

|(ckfmkgnk)(zN )|

+
∞∑

k=N+1

|(ckfmkgnk)(zN )|

< 3(1/2)N by (3.4), (3.5), and (3.14)
→ 0 as N →∞.

This completes the proof.

4. Main results

By Fact 2.1(iii), a composition operator Cϕ is an isolated point if and only if the
connected component containing Cϕ in C(H∞) consists of only Cϕ. Our first main
result is the following theorem which gives a function theoretic characterization of
isolated points in C(H∞).

Theorem 4.1. Let ϕ ∈ S(D). Then Cϕ is isolated in C(H∞) if and only if∫ 2π

0 log(1− |ϕ|) dθ/2π = −∞.

Proof. Suppose that
∫ 2π

0 log(1− |ϕ|) dθ/2π = −∞. To prove that Cϕ is isolated in
C(H∞), suppose not. Then by Fact 2.1, there exists ψ ∈ S(D), ϕ 6= ψ, such that
supz∈D ρ(ϕ(z), ψ(z)) < 1. Put

σ = sup
z∈D

ρ(ϕ(z), ψ(z)).(4.1)

Then 0 < σ < 1. Put

f = (ϕ+ ψ)/2.(4.2)

Then f is not an extreme point of the closed unit ball of H∞. By de Leeuw and
Rudin’s theorem [2], ∫ 2π

0

log(1− |f |) dθ/2π > −∞.(4.3)

By (4.1) and (4.2), the convexity of ∆(ϕ(z), σ) gives that f(z) ∈ ∆(ϕ(z), σ). By
[3, p. 3], for z ∈ D we have

|ϕ(z)| − σ
1− σ|ϕ(z)| ≤ |f(z)|.

Hence

1− |f | ≤ (1 + σ)(1 − |ϕ|)
1− σ|ϕ| ≤ 1 + σ

1− σ (1 − |ϕ|) on D.

Therefore∫ 2π

0

log(1− |f |) dθ/2π ≤ log
(1 + σ

1− σ
)

+
∫ 2π

0

log(1− |ϕ|) dθ/2π.
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By our assumption, we get
∫ 2π

0
log(1− |f |) dθ/2π = −∞. This contradicts (4.3).

The converse is proved in [8, Corollary 9].

In [8], MacCluer, Ohno, and Zhao showed that Cϕ and Cψ are in the same con-
nected component if Cϕ −Cψ is compact. They also gave an example of ϕ ∈ S(D)
that Cϕ is not isolated but Cϕ − Cψ is not compact for some Cψ in the same
component of Cϕ. Here we show that this occurs for every non-isolated connected
component in C(H∞), except the component consists of compact composition op-
erators.

Examples. Let ϕ ∈ S(D). Suppose that Cϕ is not isolated and ‖ϕ‖∞ = 1. Then
there exist ψ1, ψ2 ∈ S(D) satisfying the following conditions:

(i) ϕ 6= ψ1 and ϕ 6= ψ2.
(ii) Cϕ, Cψ1 and Cψ2 are in the same component of C(H∞).
(iii) Cϕ − Cψ1 is compact.
(iv) Cϕ − Cψ2 is not compact.

Proof. By Theorem 4.1,
∫ 2π

0 log(1− |ϕ|) dθ/2π > −∞. There exists an outer func-
tion ω ∈ H∞ such that |ω| = 1− |ϕ| a.e. on ∂D; see [6]. For each z ∈ D, let Pz(θ)
be the Possion kernel at z. The values of ω and ϕ at z are given by

ω(z) =
∫
Pz(θ)ω(θ)dθ

and

ϕ(z) =
∫
Pz(θ)ϕ(θ)dθ,

respectively. Thus

|ω(z)|+ |ϕ(z)| ≤
∫
Pz(θ)[|ω(θ)| + |ϕ(θ)|]dθ ≤ 1 on D.(4.4)

Let 0 < t < 1. Put ψ1 = ϕ+ tω2. Then

ρ(ϕ(z), ψ1(z)) ≤ |tω2(z)|
1− |ϕ(z)|2 − |tω2(z)ϕ(z)|

≤ |tω(z)|
1 + |ϕ(z)| − |tω(z)ϕ(z)|

, z ∈ D.

(4.5)

The last inequality is obtained by dividing the denominator and nominator by |ω(z)|
and using (4.4). Suppose that |ϕ(zn)| → 1. Then by (4.4), ω(zn) → 0. Hence by
(4.5), ρ(ϕ(zn), ψ1(zn))→ 0. Next suppose that |ψ1(zn)| → 1. Since

|ψ1(zn)| ≤ |ϕ(zn)|+ t|ω(zn)| ≤ |ϕ(zn)|+ |ω(zn)| ≤ 1,

we have
(1 − t)|ω(zn)| ≤ 1− |ψ1(zn)|.

Thus (1 − t)|ω(zn)| → 0 and ω(zn) → 0. So ρ(ϕ(zn), ψ1(zn)) → 0. By Fact 2.2,
Cϕ − Cψ1 is compact.

Since 1−|ϕ(eiθ)| = |ω(eiθ)| and ω(eiθ) 6= 0 for almost everywhere, 1−|ϕ(eiθ)| <
|ω(eiθ)|

t for almost everywhere. Also by our assumption, the Lebesgue measure of
the set {eiθ; r < |ϕ(eiθ)| < 1} is positive for every r, 0 < r < 1. Therefore there
exists a sequence {zn}n in D such that

1 ≤ 1− |ϕ(zn)|
|ω(zn)| <

1
t

and |ϕ(zn)| → 1.
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Moreover we may assume that
1− |ϕ(zn)|
ω(zn)

→ Reiθ1 , 1 ≤ R ≤ 1/t, and ϕ(zn)→ eiθ2 .(4.6)

Put θ3 = θ1 + θ2 and ψ2 = ϕ+ teiθ3ω. Then in the same way as above,

ρ(ϕ(z), ψ2(z)) ≤ t

1 + |ϕ(z)| − |tϕ(z)|
≤ t < 1, z ∈ D,

so that Cϕ and Cψ2 are in the same component. To prove that Cϕ − Cψ2 is not
compact, by Fact 2.2 it is sufficient to prove lim sup

|ϕ(z)|→1

ρ(ϕ(z), ψ2(z)) > 0. We have

ρ(ϕ(zn), ψ2(zn)) =
∣∣∣ teiθ3ω(zn)
1− |ϕ(zn)|2 − teiθ3ω(zn)ϕ(zn)

∣∣∣
≥

∣∣∣ t
1−|ϕ(zn)|2
ω(zn) − teiθ3ϕ(zn)

∣∣∣
→ t

|2Reiθ1 − tei(θ3−θ2)| by (4.6)

=
t

2R− t

≥ t2

2− t2 by (4.6).

Hence by Fact 2.2, Cϕ − Cψt is not compact.

Lemma 4.2. Let ϕ, ψ ∈ S(D) and ϕ 6= ψ. If Cϕ and Cψ are not contained in the
same connected component in C(H∞), then ‖Cϕ − Cψ‖e ≥ 1.

Proof. By Fact 2.1(i), supz∈D ρ(ϕ(z), ψ(z)) = 1. Then we may assume that there
exists a sequence {zn}n in D such that |ϕ(zn)| < |ϕ(zn+1)| → 1 and

ρ(ϕ(zn), ψ(zn))→ 1.(4.7)

Then |zn| → 1. By Theorem 3.1, we may assume that {ϕ(zn)}n is asymptotically
interpolating.

To prove our assertion, suppose that ‖Cϕ − Cψ‖e < 1. Take a positive number
σ such that ‖Cϕ−Cψ‖e < σ < 1 and take a compact operator K on H∞ such that

‖Cϕ − Cψ +K‖ < σ < 1.(4.8)

We claim that there are a Blaschke product b0 and a subsequence {wn}n of {zn}
such that

b0(ψ(wn))→ 0(4.9)

and

|b0(ϕ(wn))| → 1.(4.10)

Assume the claim first. Put E = {wn}n and take a sequence of subsets {Ek}k
of E such that

Ek+1 ⊂ Ek and Ek \ Ek+1 is an infinite set for every k.(4.11)

Fix a positive integer k. Since {ϕ(wn)}n is asymptotically interpolating, there
exists hk ∈ H∞ such that ‖hk‖∞ ≤ 1 and

|hk(ϕ(wn))− b0(ϕ(wn))| → 0 as |wn| → 1 and wn ∈ Ek(4.12)
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and

|hk(ϕ(wn)) + b0(ϕ(wn))| → 0 as |wn| → 1 and wn /∈ Ek.(4.13)

Since hkb0 ∈ H∞ and ‖hkb0‖∞ ≤ 1, by (4.8)

|hk(ϕ(wn))b0(ϕ(wn))− hk(ψ(wn))b0(ψ(wn)) +K(hkb0)(wn)| < σ < 1.

Hence by (4.9), (4.10), (4.12), and (4.13),

|1 +K(hkb0)| ≤ σ < 1 on cl Ek \ Ek(4.14)

and

| − 1 +K(hkb0)| ≤ σ < 1 on cl (E \ Ek) \ (E \ Ek).(4.15)

By (4.11), we have cl (Ek \ Ek+1) \ (Ek \ Ek+1) 6= ∅ for every k. Take a point ζk
in cl (Ek \ Ek+1) \ (Ek \ Ek+1). By (4.11), ζn ∈ cl Ek \ Ek for every n ≥ k. Hence
by (4.14), |1 +K(hkb0)(ζn)| ≤ σ < 1 for n ≥ k. Let ζ0 be a cluster point of {ζk}k.
Then

|1 +K(hkb0)(ζ0)| ≤ σ < 1.(4.16)

Since K is a compact operator on H∞, considering a subsequence of {hk}k we may
assume that ‖K(hkb0)− F‖∞ → 0 for some F ∈ H∞. By (4.16),

|1 + F (ζ0)| ≤ σ < 1.(4.17)

By (4.11) again, ζn ∈ cl (E \ Ek) \ (E \ Ek) for k > n. Hence by (4.15),

| − 1 +K(hkb0)(ζn)| ≤ σ < 1 for k > n.

Thus | − 1 + F (ζn)| ≤ σ < 1 for every n, so that | − 1 + F (ζ0)| ≤ σ < 1. This
contradicts (4.17).

In order to prove our claim we divide the proof into two cases.

Case 1. lim inf
n→∞

|ψ(zn)| < 1.

In this case, considering a subsequence of {zn}n we may further assume that
ψ(zn)→ a and |a| < 1. Let b0(z) = (z − a)/(1− az), z ∈ D. Then

b0(ψ(zn))→ 0.

Since |ϕ(zn)| → 1,
|b0(ϕ(zn))| → 1.

This proves the claim desired.

Case 2. |ψ(zn)| → 1.

Considering a subsequence of {zn}n, we may assume that {ψ(zn)}n is a sparse
sequence; see page 42 in [4]. Since |ϕ(zn)| → 1 and (4.7), we may further assume
that

ρ(ϕ(zn), ψ(zj)) > 1− 1/n and ρ(ϕ(zj), ψ(zn)) > 1− 1/n for 1 ≤ j ≤ n.
Then ρ(ϕ(zk), {ψ(zn)}n) → 1 as k → ∞. Let b0 be the sparse Blaschke product
with zeros {ψ(zn)}n. Hence |b0(ϕ(zk))| → 1; see [5]. Then the claim is true, too.

As pointed out in Section 1, we may introduce the essential norm topology
on C(H∞). With this topology, we consider essentially connected components of
C(H∞).



ISOLATED POINTS AND ESSENTIAL COMPONENTS 1773

Theorem 4.3. Let ϕ, ψ ∈ S(D). Then we have the following :
(i) Every connected component of C(H∞) is open and closed in the essential

norm topology.
(ii) Cϕ and Cψ are in the same connected component if and only if Cϕ and Cψ

are in the same essentially connected component.

Proof. By Lemma 4.2, each connected component of C(H∞) is open and hence
closed in the essential norm topology. Since the essential norm topology is weaker
than the norm topology, we get our assertion.

In [8], MacCluer, Ohno, and Zhao posed the problem of whether every isolated
composition operator in C(H∞) is essentially isolated. The following theorem an-
swers this problem affirmatively.

Theorem 4.4. Cϕ is isolated in C(H∞) if and only if Cϕ is essentially isolated.

Proof. This follows from Theorem 4.3(i).

We thank the referee for his (or her) useful suggestions.

References

1. C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC
Press, Boca Raton, 1995. MR 97i:47056

2. K. deLeeuw and W. Rudin, Extreme points and extremum problems in H1, Pacific J. Math.
8(1958), 467-485. MR 20:5426

3. J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. MR 83g:30037
4. P. Gorkin, Decompositions of the maximal ideal space of L∞, Trans. Amer. Math. Soc. 282

(1984), no. 1, 33–44. MR 85a:46028
5. P. Gorkin, H.-M. Lingenberg, and R. Mortini, Homeomorphic disks in the spectrum of H∞,

Indiana Univ. Math. J. 39(1990), 961-983. MR 92b:46082
6. K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N.J.,

1962. MR 24:A2844
7. B. MacCluer, Components in the space of composition operators, Integral Equation Operator

Theory 12(1989), 725-738. MR 91b:47070
8. B. MacCluer, S. Ohno, R. Zhao, Topological structure of the space of composition operators

on H∞, Integral Equation Operator Theory 40 (2000), 481–494.
9. J. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New

York, 1993. MR 94k:47049
10. J. Shapiro and C. Sundberg, Isolation amongst the composition operators, Pacific J. Math.

145(1990), 117-152. MR 92g:47041
11. K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York, 1990. MR 92c:47031

Department of Mathematics, Niigata University, Niigata, 950-2181, Japan

Department of Mathematics, Niigata University, Niigata, 950-2181, Japan

E-mail address: izuchi@math.sc.niigata-u.ac.jp

Mathematics Department, Vanderbilt University, Nashville, Tennessee 37240

E-mail address: zheng@math.vanderbilt.edu

http://www.ams.org/mathscinet-getitem?mr=97i:47056
http://www.ams.org/mathscinet-getitem?mr=20:5426
http://www.ams.org/mathscinet-getitem?mr=83g:30037
http://www.ams.org/mathscinet-getitem?mr=85a:46028
http://www.ams.org/mathscinet-getitem?mr=92b:46082
http://www.ams.org/mathscinet-getitem?mr=24:A2844
http://www.ams.org/mathscinet-getitem?mr=91b:47070
http://www.ams.org/mathscinet-getitem?mr=94k:47049
http://www.ams.org/mathscinet-getitem?mr=92g:47041
http://www.ams.org/mathscinet-getitem?mr=92c:47031

	1. Introduction
	2. Preliminaries
	3. Asymptotically interpolating sequences
	4. Main results
	References

