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ABSTRACT. m-Berezin transforms are introduced for bounded operators on
the Bergman space of the unit ball. The norm of them-Berezin transform as a
linear operator from the space of bounded operators toL∞ is found. We show
that them-Berezin transforms are commuting with each other and Lipschitz
with respect to the pseudo-hyperbolic distance on the unit ball. Using them-
Berezin transforms we show that a radial operator in the Toeplitz algebra is
compact iff its Berezin transform vanishes on the boundary of the unit ball.

1. INTRODUCTION

Let B denote the unit ball inn-dimensional complex spaceCn anddz be nor-
malized Lebesgue volume measure onB. The Bergman spaceL2

a = L2
a(B, dz) is

the space of analytic functionsh onB which are square-integrable with respect to
Lebesgue volume measure. Forz = (z1, . . . , zn) ∈ Cn, let 〈z, w〉 =

∑n
i=1 ziwi

and|z|2 = 〈z, z〉.
For z ∈ B, let Pz be the orthogonal projection ofCn onto the subspace[z]

generated byz and letQz = I − Pz. Then

φz(w) =
z − Pz(w)− (1− |z|2)1/2Qz(w)

1− 〈w, z〉
is the automorphism ofB that interchanges0 and z. The pseudo-hyperbolic
metric onB is defined asρ(z, w) = |φz(w)|.

The reproducing kernel inL2
a is given by

Kz(w) =
1

(1− 〈w, z〉)n+1
,

for z, w ∈ B and the normalized reproducing kernelkz is Kz(w)/‖Kz(·)‖2. If
〈·, ·〉 denotes the inner product inL2, then〈h,Kz〉 = h(z), for everyh ∈ L2

a

andz ∈ B. The fundamental property of the reproducing kernelKz(w) plays an
important role in this paper:

Kz(w) = kλ(z)Kφλ(z)(φλ(w))kλ(w). (1.1)
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Given f ∈ L∞, the Toeplitz operatorTf is defined onB by Tfh = P (fh)
whereP denotes the orthogonal projectionP of L2 ontoL2

a.
Let L(L2

a) be the algebra of bounded operators onL2
a. The Toeplitz algebra

T(L∞) is the closed subalgebra ofL(L2
a) generated by{Tf : f ∈ L∞}.

For z ∈ B, let Uz be the unitary operator given by

Uzf = (f ◦ φz) · Jφz

whereJφz = (−1)nkz. ForS ∈ L(L2
a), set

Sz = UzSUz.

SinceUz is a selfadjoint unitary operator onL2 andL2
a, UzTfUz = Tf◦φz for

everyf ∈ L∞.
Let T denote the class of trace operators onL2

a. For T ∈ T , we will denote
the trace ofT by tr[T ] and let‖T‖C1 denote theC1 norm ofT given by ([12])

‖T‖C1 = tr[
√

T ∗T ].

Supposef andg are inL2
a. Consider the operatorf ⊗ g onL2

a defined by

(f ⊗ g)h = 〈h, g〉f,

for h ∈ L2
a. It is easily proved thatf ⊗ g is in T and with norm equal to‖f ⊗

g‖C1 = ‖f‖2 ‖g‖2 and

tr[f ⊗ g] = 〈f, g〉.
For a nonnegative integerm, the m-Berezin transform of an operatorS ∈

L(L2
a) is defined by

BmS(z) = Cm+n
n tr

Sz

 m∑
|k|=0

Cm,k
n!k!

(n + |k|)!
uk

‖uk‖
⊗ uk

‖uk‖

 (1.2)

= Cm+n
n tr

Sz

 m∑
|k|=0

Cm,ku
k ⊗ uk


wherek = (k1, · · · , kn) ∈ Nn, N is the set of nonnegative integers,|k| =∑n

i=0 ki, uk = uk1
1 · · ·ukn

n , k! = k1! · · · kn!,

Cm+n
n =

(
m + n

n

)
and Cm,k = Cm

|k|(−1)|k|
|k|!

k1! · · · kn!
.

Clearly,Bm : L(L2
a) → L∞ is a bounded linear operator, the norm ofBm will be

given.
Givenf ∈ L∞, define

Bm(f)(z) = Bm(Tf )(z).
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Bm(f)(z) equals the nice formula in [1]:

Bm(f)(z) =

∫
B

f ◦ φz(u)dνm(u),

for z ∈ B wheredνm(u) = Cm+n
n (1− |u|2)mdu.

Berezin first introduced the Berezin transformB0(S) of bounded operators
S and them-Berezin transform of functions in [5]. Because the Berezin trans-
form encodes operator-theoretic information in function-theory in a striking but
somewhat impenetrable way, the Berezin transformB0(S) has found useful ap-
plications in studying operators of ”function-theoretic significance” on function
spaces ([2], [3], [4], [6], [7], [11], and [15]). Suarez [16] introducedm-Berezin
transforms of bounded operators on the Bergman space of the unit disk. We will
show that ourm-Berezin transform coincides with the one defined in [16] on the
unit diskD by means of an integral representation ofm-Berezin transform. The
integral representation shows that many useful properties of them-Berezin trans-
forms inherit from the identity (1.1) of the reproducing kernel. On the unit ball,
some useful properties of them-Berezin transforms of functions were obtained
by Ahern, Flores and Rudin [1]. Recently, Coburn [10] proved thatB0(S) is Lip-
schitz with respect to the pseudo-hyperbolic distanceρ(z, w). In this paper, we
will show thatBmS(z) is Lipschitz with respect to pseudo-hyperbolic distance
ρ(z, w). We will show that them-Berezin transformsBm are invariant under the
Mobious transform,

Bm(Sz) = (BmS) ◦ φz, (1.3)

and commuting with each other,

Bj(BmS)(z) = Bm(BjS)(z) (1.4)

for any nonnegative integersj andm. Properties (1.3) and (1.4) were obtained
for S = Tf in [1] and for operatorsS on the Bergman space of the unit disk [16].

A common intuition is that for operators on the Bergman spaceL2
a “closely

associated with function theory”, compactness is equivalent to having vanishing
Berezin transform on the boundary of the unit ballB. On the unit disk, Axler and
Zheng [2] showed that if the operatorS equals the finite sum of finite products
of Toeplitz operators with bounded symbols thenS is compact if and only if
B0(S)(z) → 0 as z → ∂D. Englis extended this result to the unit ball even
the bounded symmetric domains [11]. But the problem remains open whether
the result is true ifS is in the Toeplitz algebra. Recently, Suarez [17] solved
the problem for radial operatorS on the unit disk via them-Berezin transform.
Using them-Berezin transform, we will show that for a radial operatorS in the
Toeplitz algebra on the unit ball,S is compact iffB0S(z) → 0 as|z| → 1.

Throughout the paperC(m, n) will denote constant depending only onm and
n, which may change at each occurrence.

The authors thank the referees for their suggestions.
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2. m-BEREZIN TRANSFORM

In this section we will show some useful properties of them-Berezin trans-
form. First we give an integral representation of them-Berezin transformBm(S).
For z ∈ B and a nonnegative integerm, let

Km
z (u) =

1

(1− 〈u, z〉)m+n+1
, u ∈ B.

Foru, λ ∈ B, we can easily see that

m∑
|k|=0

Cm,ku
kλk = (1− 〈u, λ〉)m. (2.1)

Proposition 2.1. LetS ∈ L(L2
a), m ≥ 0 andz ∈ B. Then

BmS(z) = Cm+n
n (1− |z|2)m+n+1×∫

B

∫
B

(1− 〈u, λ〉)mKm
z (u)Km

z (λ)S∗Kλ(u)dudλ.

Proof. Forλ ∈ B, the definition ofBm implies

BmS(z) = Cm+n
n

m∑
|k|=0

Cm,k

〈
Szλ

k, λk
〉

= Cm+n
n

m∑
|k|=0

Cm,k

∫
B

S(φk
zkz)(λ)φk

z(λ)kz(λ)dλ

= Cm+n
n

m∑
|k|=0

Cm,k

∫
B

∫
B

φk
z(u)kz(u)φk

z(λ)kz(λ)S∗Kλ(u)dudλ (2.2)

where the last equality holds byS(φk
zkz)(λ) =

〈
S(φk

zkz), Kλ

〉
=
〈
φk

zkz, S
∗Kλ

〉
.

Using (2.1) and (1.1), (2.2) equals

Cm+n
n

∫
B

∫
B

(1− 〈φz(u), φz(λ)〉)mkz(u)kz(λ)S∗Kλ(u)dudλ

= Cm+n
n

∫
B

∫
B

(
kz(u)kz(λ)

Kλ(u)

)m/(n+1)

kz(u)kz(λ)S∗Kλ(u)dudλ

= Cm+n
n (1− |z|2)m+n+1

∫
B

∫
B

(1− 〈u, λ〉)mKm
z (u)Km

z (λ)S∗Kλ(u)dudλ

as desired. �

Proposition 2.2 gives another form ofBm.
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Proposition 2.2. LetS ∈ L(L2
a), m ≥ 0 andz ∈ B. Then

BmS(z) = Cm+n
n (1− |z|2)m+n+1

m∑
|k|=0

Cm,k

〈
S(ukKm

z ), ukKm
z

〉
. (2.3)

Proof. Since∫
B

∫
B

(1− 〈u, λ〉)mKm
z (u)Km

z (λ)S∗Kλ(u)dudλ

=
m∑

|k|=0

Cm,k

∫
B

∫
B

ukλkKm
z (u)Km

z (λ)S∗Kλ(u)dudλ

=
m∑

|k|=0

Cm,k

∫
B

S(ukKm
z )(λ)λkKm

z (λ)dλ,

Proposition 2.1 implies (2.3). �

Forn = 1, the right hand side of (2.3) was used by Suarez in [16] to define the
m-Berezin transforms on the unit disk.

Recall that givenf ∈ L∞, define

Bm(f)(z) = Bm(Tf )(z).

The following proposition gives a nice formula ofBm(f)(z). Let dνm(u) =
Cm+n

n (1− |u|2)mdu.

Proposition 2.3. Let z ∈ B andf ∈ L∞. Then

Bm(f)(z) =

∫
B

f ◦ φz(u)dνm(u).

Proof. By the change of variables, Theorem 2.2.2 in [14] and (2.3), we have∫
B

f ◦ φz(u)dνm(u)

= Cm+n
n

∫
B

f(u)

(
(1− |z|2)(1− |u|2)

|1− 〈u, z〉|2

)m(
(1− |z|2)
|1− 〈u, z〉|2

)n+1

du

= Cm+n
n (1− |z|2)m+n+1

m∑
|k|=0

Cm,k

∫
B

f(u)|uk|2|Km
z (u)|2du

= Cm+n
n (1− |z|2)m+n+1

m∑
|k|=0

Cm,k

〈
Tf (u

kKm
z ), ukKm

z

〉
= Bm(Tf )(z).

The proof is complete. �

The formula in the above proposition was used in [1] to define them-Berezin
transform of functionsf .
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Clearly, (1.2) gives‖BmS‖∞ ≤ C(m,n)‖Sz‖ = C(m, n)‖S‖ for S ∈ L(L2
a).

Thus,Bm : L(L2
a) → L∞ is a bounded linear operator. The following theorem

gives the norm ofBm.

Theorem 2.4.Letm ≥ 0. Then‖Bm‖ = Cm+n
n

∑m
|k|=0 |Cm,k| n!k!

(n+|k|)! .

Proof. From [8], we have the duality resultL(L2
a) = T ∗. So, the definition of

Bm gives the norm ofBm. In fact,

‖Bm‖ =

∥∥∥∥∥∥Cm+n
n

m∑
|k|=0

Cm,k
n!k!

(n + |k|)!
uk

‖uk‖
⊗ uk

‖uk‖

∥∥∥∥∥∥
C1

= Cm+n
n

m∑
|k|=0

|Cm,k|
n!k!

(n + |k|)!

as desired. �

The Mobius mapφz(w) has the following property ([14]):

φ′z(0) = −(1− |z|2)Pz − (1− |z|2)1/2Qz. (2.4)

To show thatm-Berezin transforms are Lipschitz with respect to the pseudo-
hyperbolic distance we need the following lemmas.

For z, w ∈ Cn, z⊗̂w onCn is defined by(z⊗̂w)λ = 〈λ, w〉z.

Lemma 2.5. Let z, w ∈ B andλ = φz(w). Then

φ′z(w) = (1− 〈λ, z〉)(I − λ⊗̂z)[φ′z(0)]
−1.

Proof. Suppose thatPz andQz have the matrix representations as((Pz)ij) and
((Qz)ij) under the standard base ofCn, respectively. In fact,

(Pz)ij =
ziz̄j

|z|2
if z 6= 0.

Let (aij(w)) = φ′z(w). Write φz(w) = (f1(w), · · · , fn(w)). Then

aij(w) =
∂fi

∂wj

(w).

Noting that

fi(w) =
zi − (Pzw)i − (1− |z|2)1/2(Qzw)i

1− 〈w, z〉
,

we have

aij(w) =
(zi − (Pzw)i − (1− |z|2)1/2(Qzw)i)z̄j

(1− 〈w, z〉)2
− (Pz)ij + (1− |z|2)1/2(Qz)ij

1− 〈w, z〉

=
fi(w)z̄j

1− 〈w, z〉
− (Pz)ij + (1− |z|2)1/2(Qz)ij

1− 〈w, z〉
.
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Let λ = φz(w). The above equality becomes

aij(w) =
λiz̄j − ((Pz)ij + (1− |z|2)1/2(Qz)ij)

1− 〈w, z〉
Thus

φ′z(w) =
λ⊗̂z − (Pz + (1− |z|2)1/2Qz)

1− 〈w, z〉
.

From Theorem 2.2.5 in [14], we have

1

1− 〈w, z〉
=

1− 〈λ, z〉
1− |z|2

.

Thus (2.4) implies

φ′z(w)φ′z(0) =
−(1− |z|2)λ⊗̂z + (1− |z|2)Pz + (1− |z|2)Qz

1− 〈w, z〉

=
(1− |z|2)(−λ⊗̂z + I)

1− 〈w, z〉
= (1− 〈λ, z〉)(I − λ⊗̂z)

where the first equality follows fromPzQz = QzPz = 0, Pzz = z, andQzz = 0.
The proof is complete. �

Lemma 2.6. Suppose|z| > 1/2 and|w| > 1/2. If |φz(w)| ≤ ε < 1/2, then

‖Pz − Pw‖ ≤ 50ε(1− |z|2)1/2.

Proof. First we will get the estimate of the distance betweenz andw. Since
|φz(w)| ≤ ε < 1/2, w is in the ellipsoid:

φz(εB) = {w ∈ B :
|Pzw − c|2

ε2ρ2
+
|Qzw|2

ε2ρ
< 1}

with centerc = (1−ε2)z
(1−ε2|z|2)

andρ = 1−|z|2
1−ε2|z|2 . Noting that|z| > 1/2 andε < 1/2, we

haveρ ≤ 2(1− |z|2). Thus

|Qzw|2 ≤ ε2ρ ≤ 2ε2(1− |z|2), |Pzw − c| ≤ ερ ≤ 2ε(1− |z|2)

and

|z − c| ≤ ε2(1− |z|2)
(1− ε2|z|2)

≤ 2ε2(1− |z|2).

So, we have

|Pzw − z| ≤ |Pzw − c|+ |z − c| ≤ 3ε(1− |z|2).

BecauseI = Pz + Qz andPzQz = 0, writing

(z − w) = Pz(z − w) + Qz(z − w),
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we have

|z − w|2 = |Pz(z − w)|2 + |Qz(z − w)|2

= |Pzw − z|2 + |Qzw|2

≤ 11ε2(1− |z|2). (2.5)

Noting that

z

|z|
⊗̂ z

|z|
=

(z − w)

|z|
⊗̂ z

|z|
+

w

|z|
⊗̂(z − w)

|z|
+[(

1

|z|2
− 1

|w|2

)
w

]
⊗̂w +

w

|w|
⊗̂ w

|w|
,

we have

Pz − Pw =
(z − w)

|z|
⊗̂ z

|z|
+

w

|z|
⊗̂(z − w)

|z|
+

[(
1

|z|2
− 1

|w|2

)
w

]
⊗̂w,

to obtain

‖Pz − Pw‖ ≤
|z − w|
|z|

+
2|z − w|
|z|

+
||z|2 − |w|2|

|z|2
≤ 2|z − w|+ 4|z − w|+ 8|z − w|

≤ 14
√

11ε(1− |z|2)1/2

≤ 50ε(1− |z|2)1/2

where the last inequality holds by (2.5). �

For givenz, w ∈ B, setA(z, w) = −(1− |z|2)Pw − (1− |z|2)1/2Qw.

Lemma 2.7. Suppose|z| > 1/2 and|w| > 1/2. If |φz(w)| ≤ ε < 1/2, then

‖φ′z(0)− A(z, w)‖ ≤ 150ε(1− |z|2).

Proof. Using (2.4), we have

‖φ′z(0)− A(z, w)‖ = ‖(1− |z|2)(Pw − Pz) + (1− |z|2)1/2(Pz − Pw)‖
≤ 3(1− |z|2)1/2‖Pz − Pw‖
≤ 150ε(1− |z|2)

as desired. The last inequality follows from Lemma 2.6. �

Let U(n) be the group ofn× n complex unitary matrices.

Lemma 2.8. Let z, w ∈ B. ThenUzUw = VUUφw(z) where

(VUf)(u) = f(Uu)detU
for f ∈ L2

a andU = φφw(z) ◦ φw ◦ φz satisfying

‖I + U‖ ≤ C(n)ρ(z, w).
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Proof. The mapφφw(z) ◦ φw ◦ φz is an automorphism ofB that fixes0, hence it
is unitary by the Cartan theorem in [14]. Thusφw ◦ φz = φφw(z) ◦ U for some
U ∈ U(n). Sinceφw is an involution, we have

UzUwf(u) = (f ◦ φw ◦ φz)(u)Jφw(φz(u))Jφz(u)

= (f ◦ φφw(z))(Uu)Jφw(φw ◦ φφw(z)(Uu))Jφw(φφw(z)(Uu))Jφφw(z)(Uu)detU
= (f ◦ φφw(z))(Uu)Jφφw(z)(Uu)detU
= VUUφw(z)f(u)

as desired.
Now we will show that

‖I + U‖ ≤ C(n)ρ(z, w).

Noting thatU is continuous for|z| ≤ 1/2 and|w| ≤ 1/2, we need only to prove

‖I + U‖ ≤ 20000ρ(z, w),

for |z| > 1/2, |w| > 1/2 and|φw(z)| < 1/2. Let λ = φw(z). Then|λ| = ρ(z, w)
andz = φw(λ). Since

φw ◦ φz(u) = φλ(Uu),

taking derivatives both sides of the above equations and using the chain rule give

φ′w (φz(u)) φ′z(u) = φ′λ(Uu)U .

Lettingu = 0, the above equality gives

U = [φ′λ(0)]
−1φ′w(z)φ′z(0).

By Lemma 2.5, write

U + I = [φ′λ(0)]−1(1− 〈λ, w〉)(I − λ⊗̂w)[φ′w(0)]−1φ′z(0) + I

= [φ′λ(0)]−1(1− 〈λ, w〉)(I − λ⊗̂w)[φ′w(0)]−1[φ′z(0)− A(z, w)]

+
(
[φ′λ(0)]−1(1− 〈λ, w〉)(I − λ⊗̂w)[φ′w(0)]−1A(z, w) + I

)
:= I1 + I2.

By Lemma 2.7, we have

‖I1‖ ≤ ‖[φ′λ(0)]−1‖|1− 〈λ, w〉|‖I − λ⊗̂w‖‖[φ′w(0)]−1‖‖φ′z(0)− A(z, w)‖

≤ 4× 2× 2× 3

(1− |w|2)
[
150|λ|(1− |z|2)

]
.

Theorem 2.2.2 in [14] leads to

1− |z|2

1− |w|2
=

1− |λ|2

|1− 〈λ, w〉|2
.

Thus
‖I1‖ ≤ 4× 2× 2× 3× 2× 150|λ| = 14400|λ|.
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Also, we have ∣∣∣∣1− (1− |z|2)1/2

(1− |w|2)1/2

∣∣∣∣ ≤ ∣∣∣∣1− 1− |z|2

1− |w|2

∣∣∣∣ ≤ 32|λ|.

Hence, we get∥∥∥∥I − 1− |z|2

1− |w|2
Pw −

(1− |z|2)1/2

(1− |w|2)1/2
Qw

∥∥∥∥ ≤ 32|λ|.

On the other hand, clearly,

‖[φ′λ(0)]−1 + I‖ ≤ 4|λ|, |(1− 〈λ, w〉)− 1| ≤ |λ|

and

‖(I − λ⊗̂w)− I‖ ≤ |λ|.

These give

‖I + [φ′λ(0)]−1(1− 〈λ, w〉)(I − λ⊗̂w)‖ ≤ 16|λ|.

Hence, we have

‖I2‖ ≤ ‖[φ′λ(0)]−1(1− 〈λ, w〉)(I − λ⊗̂w)[φ′w(0)]−1A(z, w)

− [φ′λ(0)]−1(1− 〈λ, w〉)(I − λ⊗̂w)‖
+ ‖[φ′λ(0)]−1(1− 〈λ, w〉)(I − λ⊗̂w) + I‖

≤
∥∥[φ′λ(0)]−1(1− 〈λ, w〉)(I − λ⊗̂w)

∥∥∥∥∥∥I − 1− |z|2

1− |w|2
Pw −

(1− |z|2)1/2

(1− |w|2)1/2
Qw

∥∥∥∥
+ 16|λ|

≤ 4× 2× 2× 32|λ|+ 16|λ| < 600|λ|.

Combining the above estimates we conclude that

‖U + I‖ ≤ 14400|λ|+ 600|λ| < 20000|λ|.

�

Theorem 2.9.LetS ∈ L(L2
a), m ≥ 0 andz ∈ B. ThenBmSz = (BmS) ◦ φz.

Proof. Proposition 2.2 and (1.2) give

BmSz(0) = Cm+n
n

m∑
|k|=0

Cm,k

〈
Szu

k, uk
〉

= BmS(z) = (BmS) ◦ φz(0).
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For anyw ∈ B, Proposition 2.1 and Lemma 2.8 imply

(BmSz) ◦ φw(0) = Bm((Sz)w)(0)

= Cm+n
n

∫
B

∫
B

(1− 〈u, λ〉)mUwUzS∗UzUwKλ(u)dudλ

= Cm+n
n

∫
B

∫
B

(1− 〈u, λ〉)mVUUφz(w)S∗Uφz(w)V
∗
UKλ(u)dudλ

= BmSφz(w)(0)

whereVU is in Lemma 2.8. Thus,BmSz(w) = (BmS) ◦ φz(w). �

Lemma 2.10.LetS ∈ L(L2
a), m ≥ 1 andz ∈ B. Then

BmS(z) =
m + n

m
Bm−1

(
S −

n∑
i=1

T(φz)i
ST(φz)i

)
(z)

where(φz)i is i-th variable ofφz.

Proof. By Theorem 2.9, we just need to show that

BmS(0) =
m + n

m
Bm−1

(
S −

n∑
i=1

Tui
STui

)
(0).

Using Proposition 2.1 and (2.1), we get

BmS(0) = Cm+n
n

∫
B

∫
B

(1− 〈u, λ〉)mS∗Kλ(u)dudλ

=
m + n

m
Bm−1S(0)− Cm+n

n

n∑
i=1

m−1∑
|k|=0

Cm−1,k

∫
B

∫
B

uiλiu
kλkS∗Kλ(u)dudλ

=
m + n

m
Bm−1S(0)− Cm+n

n

n∑
i=1

m−1∑
|k|=0

Cm−1,k

∫
B

S(ukui)(λ)λkλidλ

=
m + n

m
Bm−1S(0)− Cm+n

n

n∑
i=1

m−1∑
|k|=0

Cm−1,k

〈
STui

(uk), Tui
(uk)

〉
as desired. �

Form = 0, the following result was obtained in [10].

Theorem 2.11. Let S ∈ L(L2
a) and m ≥ 0. Then there exists a constant

C(m, n) > 0 such that

|BmS(z)−BmS(w)| < C(m, n)‖S‖ρ(z, w).



12 KYESOOK NAM, DECHAO ZHENG, AND CHANGYONG ZHONG

Proof. We will prove this theorem by induction onm. If m = 0, (1.2) gives

|B0S(z)−B0S(w)| = |tr[Sz(1⊗ 1)]− tr[Sw(1⊗ 1)]|
= |tr[Sz(1⊗ 1)− SUw(1⊗ 1)Uw]|
= |tr[Sz(1⊗ 1)− SUz(UzUw1⊗ UzUw1)Uz]|

From Lemma 2.8, the last term equals

|tr[Sz(1⊗ 1− Uφw(z)1⊗ Uφw(z)1)]| ≤ ‖Sz‖‖1⊗ 1− Uφw(z)1⊗ Uφw(z)1‖C1

≤
√

2‖Sz‖(2− 2|〈1, kφw(z)〉|2)1/2

= 2‖S‖[1− (1− |φw(z)|2)n+1]1/2

≤ C(n)‖S‖|φw(z)|

where the second equality holds by‖T‖C1 ≤
√

l(tr[T ∗T ])1/2 wherel is the rank
of T .

Suppose|Bm−1S(z) − Bm−1S(w)| < C(m, n)‖S‖ρ(z, w). By Lemma 2.10,
we have

|BmS(z)−BmS(w)|

≤ m + n

m
|Bm−1S(z)−Bm−1S(w)|

+
m + n

m

n∑
i=1

∣∣∣Bm−1

(
T(φz)i

ST(φz)i

)
(z)−Bm−1

(
T(φw)i

ST(φw)i

)
(w)
∣∣∣ .

Since the term in the summation is less than or equals

∣∣∣Bm−1

(
T(φz)i

ST(φz)i

)
(z)−Bm−1

(
T(φw)i

ST(φz)i

)
(z)
∣∣∣

+
∣∣∣Bm−1

(
T(φw)i

ST(φz)i

)
(z)−Bm−1

(
T(φw)i

ST(φw)i

)
(z)
∣∣∣

+
∣∣∣Bm−1

(
T(φw)i

ST(φw)i

)
(z)−Bm−1

(
T(φw)i

ST(φw)i

)
(w)
∣∣∣ ,

it is sufficient to show that

∣∣∣Bm−1

(
T(φz)i

ST(φz)i

)
(z)−Bm−1

(
T(φw)i

ST(φz)i

)
(z)
∣∣∣ < C(m, n)‖S‖ρ(z, w).
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Lemma 2.8 gives∣∣∣Bm−1

(
T(φz)i−(φw)i

ST(φz)i

)
(z)
∣∣∣

= Cm+n−1
n

∣∣∣∣∣∣tr
(T(φz)i−(φw)i

ST(φz)i

)
z

m−1∑
|k|=0

Cm−1,k
n!k!

(n + |k|)!
uk

‖uk‖
⊗ uk

‖uk‖

∣∣∣∣∣∣
≤ Cm+n−1

n

m−1∑
|k|=0

|Cm−1,k|
n!k!

(n + |k|)!

∣∣∣∣〈SzT(φz)i◦φz

uk

‖uk‖
, T((φz)i−(φw)i)◦φz

uk

‖uk‖

〉∣∣∣∣
≤ C(m,n)‖Sz‖

∥∥∥∥T((φz)i−(φw)i)◦φz

uk

‖uk‖

∥∥∥∥
2

. (2.6)

Let λ = φw(z). Then∥∥∥∥T((φz)i−(φw)i)◦φz

uk

‖uk‖

∥∥∥∥2

2

≤
∫

B

|(φz ◦ φz)i(u)− (φw ◦ φz)i(u)|2du

=

∫
B

|(Uu)i − (φλ(u))i|2du

≤ 2

∫
B

|(Uu)i + ui|2 + |ui + (φλ(u))i|2du

whereφw ◦ φz = φλ ◦ U for someU ∈ U(n).
Noting that

φλ(u) + u =
λ− 〈u, λ〉u + [1− (1− |λ|2)1/2]Qλ(u)

1− 〈u, λ〉
,

we have that for|λ| ≤ 1/2,

|φλ(u) + u| ≤ 2(|λ|+ |λ|+ |λ|2) ≤ 6|λ|.

By Lemma 2.8 we also have∫
B

|(Uu)i + ui|2du =

∫
B

|((U + I)u)i|2du ≤ C‖U + I‖2 ≤ C|λ|2.

Thus (2.6) is less than or equal to

C(m, n)‖Sz‖[36|λ|2 + C|λ|2]1/2 ≤ C(m,n)‖S‖|λ|.

The proof is complete. �

Lemma 2.12. Let S ∈ L(L2
a) andm, j ≥ 0. If |S∗Kλ(z)| ≤ C for anyz ∈ B

then(BmBj)(S) = (BjBm)(S).
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Proof. By Theorem 2.9, it is enough to show that(BmBj)S(0) = (BjBm)S(0).
From Proposition 2.3, Proposition 2.1 and Fubini’s Theorem, we have

Bm(BjS)(0) = Bm(TBjS)(0)

= Cm+n
n

∫
B

BjS(z)(1− |z|2)mdz

= Cm+n
n Cj+n

n

∫
B

∫
B

∫
B

(1− |z|2)m+j+n+1(1− 〈u, λ〉)j×

Kj
z(u)Kj

z(λ)S∗Kλ(u)dudλdz

= Cm+n
n Cj+n

n

∫
B

∫
B

(1− 〈u, λ〉)j

∫
B

(1− |z|2)m+j+n+1×

Kj
z(u)Kj

z(λ)dzS∗Kλ(u)dudλ.

Let

Fm,j(u, λ) = (1− 〈u, λ〉)j

∫
B

(1− |z|2)m+j+n+1Kj
z(u)Kj

z(λ)dz.

ThenFm,j(u, λ) =
∑l

i=1 Hi(u)Gi(λ) whereHi andGi are holomorphic func-
tions and for somel ≥ 0. Thus, from Lemma 9 in [9], we just need to show
Fm,j(λ, λ) = Fj,m(λ, λ) for λ ∈ B. The change of variables implies

Fm,j(λ, λ) = (1− |λ|2)j

∫
B

(1− |z|2)m+j+n+1|Kj
λ(z)|2dz

= (1− |λ|2)j

∫
B

(1− |φλ(z)|2)m+j+n+1|Kj
λ(φλ(z))|2|kλ(z)|2dz

= (1− |λ|2)m

∫
B

(1− |z|2)m+j+n+1|Km
λ (z)|2dz

= Fj,m(λ, λ)

as desired. �

Lemma 2.13.For anyS ∈ L(L2
a), there exists sequences{Sα} satisfying

|S∗
αKλ(u)| ≤ C(α)

such thatBm(Sα) converges toBm(S) pointwise.

Proof. SinceH∞ is dense inL2
a and the set of finite rank operators is dense in the

idealK of compact operators onL2, the set{
∑l

i=1 fi⊗gi : fi, gi ∈ H∞} is dense
in the idealK in the norm topology. SinceK is dense in the space of bounded
operators onL2

a in strong operator topology, (2.3) gives that for anyS ∈ L(L2
a),

there exists a finite rank operator sequencesSα =
∑l

i=1 fi⊗ gi such thatBm(Sα)
converges toBm(S) pointwise for somefi, gi in H∞. Also, for l ≥ 0, for such
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Sα =
∑l

i=1 fi ⊗ gi, we have

|S∗
αKλ(u)| =

∣∣∣∣∣
l∑

i=1

(gi ⊗ fi)Kλ(u)

∣∣∣∣∣
=

∣∣∣∣∣
l∑

i=1

〈Kλ(u), fi(u)〉 gi(u)

∣∣∣∣∣
≤

l∑
i=1

|fi(λ)||gi(u)|

≤
l∑

i=1

‖fi‖∞‖gi‖∞ < C.

The proof is complete. �

Proposition 2.14.LetS ∈ L(L2
a) andm, j ≥ 0. Then

(BmBj)(S) = (BjBm)(S).

Proof. Let S ∈ L(L2
a). Then Lemma 2.13 implies that there exists a sequence

{Sα} satisfying|S∗
αKλ(u)| ≤ C(α), henceBm(BjSα)(z) = Bj(BmSα)(z) by

Lemma 2.12. From Proposition 2.3, we know

Bm(BjSα)(z) =

∫
B

(BjSα) ◦ φz(u)dνm(u)

and‖(BjSα) ◦ φz‖∞ ≤ C(j, n)‖S‖. Also, (BjSα) ◦ φz(u) converges to(BjS) ◦
φz(u). ThereforeBm(BjSα)(z) converges toBm(BjS)(z). By the uniqueness of
the limit, we have(BmBj)(S) = (BjBm)(S). �

Proposition 2.15. Let S ∈ L(L2
a) andm ≥ 0. If B0S(z) → 0 asz → ∂B then

BmS(z) → 0 asz → ∂B.

Proof. SupposeB0S(z) → 0 asz → ∂B. Then we will prove thatSz → 0 in the
T ∗-norm asz → ∂B. Suppose it is not true. Then for some net{wα} ∈ B and
an operatorV 6= 0 in L(L2

a), there exists a sequence{Swα} such thatSwα → V
in theT ∗-norm aswα → ∂B, hencetr[SwαT ] → tr[V T ] for anyT ∈ T . Let
T = kλ ⊗ kλ for fixedλ ∈ B. Then Theorem 2.9 implies

tr[SwαT ] = tr[Swα(kλ ⊗ kλ)]

= 〈Swαkλ, kλ〉
= B0Swα(λ)

= (B0S) ◦ φwα(λ) → 0

aswα → ∂B. Sincetr[V T ] = B0V (λ) andB0 is one-to-one mapping,V = 0.
This is the contradiction. ThusSz → 0 asz → ∂B in theT ∗-norm. (1.2) finishes
the proof of this proposition. �
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3. OPERATORSS APPROXIMATED BY TOEPLITZ OPERATORSTBm(S)

In this section we will give a criterion for operators approximated by Toeplitz
operators with symbol equal to theirm-Berezin transforms. The main result in
this section is Theorem 3.7. It extends and improves Theorem 2.4 in [17]. Even
on the unit disk, we will show an example that the result in the theorem is sharp
on the unit disk.

From Proposition 1.4.10 in [14], we have the following lemma

Lemma 3.1. Supposea < 1 anda + b < n + 1. Then

sup
z∈B

∫
B

dλ

(1− |λ|2)a|1− 〈λ, z〉|b
< ∞.

This lemma gives the following lemma which extends Lemma 4.2 in [13].
Let 1 < q < ∞ andp be the conjugate exponent ofq. If we takep > n + 2,

thenq < (n + 2)/(n + 1).

Lemma 3.2. LetS ∈ L(L2
a) andp > n + 2. Then there existsC(n, p) > 0 such

thath(z) = (1− |z|2)−a wherea = (n + 1)/(n + 2) satisfies∫
B

|(SKz)(w)|h(w)dw ≤ C(n, p)‖Sz1‖ph(z) (3.1)

for all z ∈ B and∫
B

|(SKz)(w)|h(z)dz ≤ C(n, p)‖S∗
w1‖ph(w) (3.2)

for all w ∈ B.

Proof. Fix z ∈ B. Since

Uz1 = (−1)n(1− |z|2)(n+1)/2Kz,

we have

SKz = (−1)n(1− |z|2)−(n+1)/2SUz1

= (−1)n(1− |z|2)−(n+1)/2UzSz1

= (1− |z|2)−(n+1)/2(Sz1 ◦ φz)kz.

Thus, lettingλ = φz(w), the change of variables implies∫
B

|(SKz)(w)|
(1− |w|2)a

dw =
1

(1− |z|2)(n+1)/2

∫
B

|(Sz1 ◦ φz)(w)||kz(w)|
(1− |w|2)a

dw

=
1

(1− |z|2)a

∫
B

|Sz1(λ)|
(1− |λ|2)a|1− 〈λ, z〉|n+1−2a

dλ

≤ ‖Sz1‖p

(1− |z|2)a

(∫
B

1

(1− |λ|2)aq|1− 〈λ, z〉|(n+1−2a)q
dλ

) 1
q

.
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The last inequality comes from Holder’s inequality. Sinceaq < 1 andaq + (n +
1− 2a)q < n + 1, Lemma 3.1 implies (3.1).

To prove (3.2), replaceS by S∗ in (3.1), interchangew andz in (3.1) and then
use the equation

(S∗Kw)(z) = 〈S∗Kw, Kz〉 = 〈Kw, SKz〉 = SKz(w) (3.3)

to obtain the desired result. �

Lemma 3.3. LetS ∈ L(L2
a) andp > n + 2. Then

‖S‖ ≤ C(n, p)

(
sup
z∈B

‖Sz1‖p

)1/2(
sup
z∈B

‖S∗
z1‖p

)1/2

whereC(n, p) is the constant of Lemma 3.2.

Proof. (3.3) implies

(Sf)(w) = 〈Sf, Kw〉

=

∫
B

f(z)(S∗Kw)(z)dz

=

∫
B

f(z)(SKz)(w)dz

for f ∈ L2
a andw ∈ B. Thus, Lemma 3.2 and the classical Schur’s theorem

finish the proof. �

Lemma 3.4. Let Sm be a bounded sequence inL(L2
a) such that‖B0Sm‖∞ → 0

asm →∞. Then

sup
z∈B

|〈(Sm)z1, f〉| → 0 (3.4)

asm →∞ for anyf ∈ L2
a and

sup
z∈B

|(Sm)z1| → 0 (3.5)

uniformly on compact subsets ofB asm →∞.

Proof. To prove (3.4), we only need to have

sup
z∈B

∣∣〈(Sm)z1, w
k
〉∣∣→ 0 (3.6)

asm →∞ for any multi-indexk.
Since

Kz(w) =
∞∑

|α|=0

(n + |α|)!
n!α!

zαwα, (3.7)
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we have

B0Sm(φz(λ)) = B0(Sm)z(λ)

= (1− |λ|2)n+1

∞∑
|α|=0

∞∑
|β|=0

(n + |α|)!
n!α!

(n + |β|)!
n!β!

〈
(Sm)zw

α, wβ
〉
λ

α
λβ

whereα, β are multi-indices.
Then for any fixedk and0 < r < 1,∫

rB

B0Sm(φz(λ))λ
k

(1− |λ|2)n+1
dλ

=
∞∑

|α|=0

∞∑
|β|=0

(n + |α|)!
n!α!

(n + |β|)!
n!β!

〈
(Sm)zw

α, wβ
〉 ∫

rB

λ
α+k

λβdλ

= r2n+2|k|

〈(Sm)z1, w
k
〉

+
∞∑

|α|=1

(n + |α|)!
n!α!

〈
(Sm)zw

α, wα+k
〉
r2|α|

 .

SinceSm is bounded sequence, we have∣∣〈(Sm)z1, w
k
〉∣∣

≤ r−2n−2|k|

∣∣∣∣∣
∫

rB

B0Sm(φz(λ))λ
k

(1− |λ|2)n+1
dλ

∣∣∣∣∣+
∞∑

|α|=1

(n + |α|)!
n!α!

‖(Sm)z‖‖wα‖‖wα+k‖r2|α|

≤ r−2n−2|k|‖B0Sm‖∞
∫

rB

|λk|
(1− |λ|2)n+1

dλ + C
∞∑

|α|=1

r2|α|,

hence, by assumption

lim sup
m→∞

sup
z∈B

|
〈
(Sm)z1, w

k
〉
| ≤ C

∞∑
|α|=1

r2|α|.

Letting r → 0, we have (3.6).
Now we prove (3.5). From (3.7), we get

|(Sm)z1(λ)| = | 〈(Sm)z1, Kλ〉 |

≤
∞∑

|α|=0

(n + |α|)!
n!α!

|〈(Sm)z1, w
α〉| |λα|

≤
l−1∑
|α|=0

(n + |α|)!
n!α!

|〈(Sm)z1, w
α〉|+

∞∑
|α|=l

(n + |α|)!
n!α!

‖Sm‖‖wα‖|λα|
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for z ∈ B, λ ∈ rB andl ≥ 1. Since the second summation is less than or equals
to

∞∑
j=l

(
(n + j)!

n!j!

)1/2 ∑
|α|=j

(
j!

α!

)1/2

|λα| ≤
∞∑
j=l

(n + j)!

n!j!

∑
|α|=j

j!

α!
|λα|2

1/2

≤
∞∑
j=l

(n + j)!

n!j!
rj,

for any ε > 0, we can find sufficiently largel such that the second summation
is less thanε. Thus, (3.6) implysupz∈B |(Sm)z1| → 0 uniformly on compact
subsets ofB asm →∞. �

Lemma 3.5. Let {Sm} be a sequence inL(L2
a) such that for somep > n + 2,

‖B0Sm‖∞ → 0 asm →∞,

sup
z∈B

‖(Sm)z1‖p ≤ C and sup
z∈B

‖(S∗
m)z1‖p ≤ C

whereC > 0 is independent ofm, thenSm → 0 asm →∞ in L(L2
a)-norm.

Proof. Lemma 3.3 implies

‖Sm‖ ≤ C(n, p)

(
sup
z∈B

‖(Sm)z1‖p

)1/2(
sup
z∈B

‖(S∗
m)z1‖p

)1/2

≤ C(n, p),

hence, Lemma 3.4 gives

sup
z∈B

|(Sm)z1| → 0 (3.8)

uniformly on compact subsets ofB asm →∞.
Here, forn + 2 < s < p, Holder’s inequality gives

sup
z∈B

‖(Sm)z1‖s
s ≤ sup

z∈B

∫
B\rB

|(Sm)z1(w)|sdw + sup
z∈B

∫
rB

|(Sm)z1(w)|sdw

≤ C sup
z∈B

‖(Sm)z1‖s
p(1− r)1−s/p + sup

z∈B

∫
rB

|(Sm)z1(w)|sdw

and (3.8) implies the second term tends to0 asm → ∞. Also, the first term is
less than or equals toCs(1 − r)1−s/p which can be small by takingr close to1.
Consequently, Lemma 3.3 gives

‖Sm‖ ≤ C(n, s)

(
sup
z∈B

‖(Sm)z1‖s

)1/2(
sup
z∈B

‖(S∗
m)z1‖s

)1/2

.

≤ C(n, s)

(
sup
z∈B

‖(Sm)z1‖s

)1/2

→ 0

�
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Corollary 3.6. LetS ∈ L(L2
a) such that for somep > n + 2,

sup
z∈B

‖Sz1− (TBmS)z1‖p ≤ C and sup
z∈B

‖S∗
z1− (TBm(S∗))z1‖p ≤ C,

(3.9)

whereC > 0 is independent ofm. ThenTBmS → S asm →∞ in L(L2
a)-norm.

Proof. Let Sm = S − TBmS. Then Proposition 2.14 and Theorem 2.11 imply

B0(Sm) = B0S −B0(TBmS)

= B0S −B0(BmS)

= B0S −Bm(B0S)

which tends uniformly to0 asm → ∞, hence‖B0(Sm)‖∞ → 0. Consequently,
by Lemma 3.5 we complete the proof. �

Theorem 3.7.LetS ∈ L(L2
a). If there isp > n + 2 such that

sup
z∈B

‖T(BmS)◦φz1‖p < C and sup
z∈B

‖T ∗
(BmS)◦φz

1‖p < C (3.10)

whereC > 0 is independent ofm, thenTBmS → S asm →∞ in L(L2
a)-norm.

Proof. By Corollary 3.6, we only need to show that (3.10) implies (3.9). Since
T(BmS)◦φz = (TBmS)z and

T ∗
(BmS)◦φz

= TBmSz
= TBm(S∗

z ) = T(Bm(S∗))◦φz ,

it is sufficient to show that
sup
z∈B

‖Sz1‖p < ∞.

By Lemma 3.3, we get

‖TBmS‖ ≤ C(n, p)

(
sup
z∈B

‖TBmS◦φz1‖p

)1/2(
sup
z∈B

‖T ∗
BmS◦φz

1‖p

)1/2

< C

whereC is independent ofm, hence writingSm = S−TBmS, we have‖Sm‖ ≤ C
whereC is independent ofm. Also, the proof of Corollary 3.6 implies

‖B0Sm‖∞ → 0

asm →∞.
Let f be a polynomial with‖f‖q = 1. Then Lemma 3.4 implies

sup
z∈B

|〈(Sm)z1, f〉| → 0

asm →∞. Thus, for anyε > 0 andz0 ∈ B, we have

| 〈Sz01, f〉 | ≤ sup
z∈B

| 〈(Sm)z1, f〉 |+ | 〈(TBmS)z01, f〉 | ≤ ε + C
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for sufficiently largem, whereC is independent ofm. Sinceε is arbitrary, we get

sup
z∈B

‖Sz1‖p < ∞

as desired. �

4. COMPACT RADIAL OPERATOR

GivenU ∈ U(n), defineVUf(w) = f(Uw)detU for f ∈ L2
a. ThenVU is a

unitary operator onL2
a. We say thatS ∈ L(L2

a) is a radial operator ifSVU = VUS
for anyU ∈ U(n).

If S ∈ L(L2
a), the radialization ofS is defined by

S] =

∫
U

VU
∗SVUdU

wheredU is the Haar measure on the compact groupU(n) and the integral is
taken in the weak sense. ThenS] = S if S is radial andU-invariance ofdU
shows thatS] is indeed a radial operator.

If f ∈ L∞ andg, h ∈ L2
a then

〈VU∗TfVUg, h〉 =

∫
B

f(w)VUg(w)VUh(w)dw

=

∫
B

f(U∗w)g(w)h(w)dw.

ThusVU
∗TfVU = Tf◦U∗ and

VU
∗Tf1 · · ·Tfl

VU = Tf1◦U∗ · · ·Tfl◦U∗

for f1, . . . , fl ∈ L∞, l ≥ 0.

Lemma 4.1. LetS ∈ L(L2
a) be a radial operator. ThenTBm(S) =

∫
B

Swdνm(w).

Proof. Let z ∈ B. By (2.3) and Lemma 2.8, we obtain

B0

(∫
B

Swdνm(w)

)
(z) =

〈(∫
B

Swdνm(w)

)
z

1, 1

〉
=

∫
B

〈UzUwSUwUz1, 1〉 dνm(w)

=

∫
B

〈
Uφz(w)V

∗
USVUUφz(w)1, 1

〉
dνm(w)
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whereVU is in Lemma 2.8. SinceS is a radial operator, Theorem 2.9, Proposition
2.3 and Proposition 2.14 imply that the last integral equals∫

B

〈
Uφz(w)SUφz(w)1, 1

〉
dνm(w) =

∫
B

B0S ◦ φz(w)dνm(w)

= BmB0S(z)

= B0BmS(z)

= B0(TBm(S))(z).

SinceB0 is one-to-one mapping, the proof is complete. �

Theorem 4.2. Let S ∈ T(L∞) be a radial operator. ThenS is compact if and
only if B0S ≡ 0 on∂B.

Proof. SupposeB0S ≡ 0 on ∂B. ThenBmS ≡ 0 on ∂B by Proposition 2.15,
henceTBmS is compact for allm ≥ 0.

Let

Q =

∫
U

Tf1◦U∗ · · ·Tfl◦U∗dU

with f1, . . . , fl ∈ L∞ for somel ≥ 0. ThenQ ∈ L(L2
a). By Lemma 4.1, for any

z ∈ B, we have

T(Bm(Q))◦φz =

∫
B

((Q)z)wdνm(w)

=

∫
B

∫
U

Tf1◦U∗◦φz◦φw · · ·Tfl◦U∗◦φz◦φwdUdνm(w).

Consequently,

‖T(Bm(Q))◦φz‖ ≤ C(l)‖f1 ◦ U∗ ◦ φz ◦ φw‖∞ · · · ‖fl ◦ U∗ ◦ φz ◦ φw‖∞
= C(l)‖f1‖∞ · · · ‖fl‖∞.

Similarly, we have

‖T ∗
(Bm(Q))◦φz

‖ ≤ C(l)‖f1‖∞ · · · ‖fl‖∞.

Thus, Theorem 3.7 gives that

TBm(Q) → Q (4.1)

in L(L2
a)-norm.

SinceS ∈ T(L∞), there exists a sequence{Sk} such thatSk → S in L(L2
a)-

norm where eachSk is a finite sum of finite products of Toeplitz operators. Since
the radialization is continuous andS is radial,S]

k → S] = S. From Lemma 4.1,
we have

‖TBmS‖ =

∥∥∥∥∫
B

Swdνm(w)

∥∥∥∥ ≤ ∫
B

‖Sw‖dνm(w) = ‖S‖.
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Thus

‖S − TBmS‖ ≤ ‖S − S]
k‖+ ‖S]

k − TBm(S]
k)‖+ ‖TBm(S]

k) − TBmS‖

≤ 2‖S − S]
k‖+ ‖S]

k − TBm(S]
k)‖

and (4.1) implyTBm(S) → S asm →∞ in L(L2
a)-norm, henceS is compact.

The other direction is trivial. �

Example. This example shows that forn = 1, the numbern + 2 = 3 in
Theorem 3.7 is sharp. We show that there is a bounded operatorS on L2

a such
that

sup
z∈D

max{‖T(BmS)◦φz1‖3, ‖T ∗
(BmS)◦φz

1‖3} < ∞,

and for eachm ≥ 0, Bm(S)(z) → 0 asz → ∂D, butS is not compact onL2
a.

The following operatorS was constructed in [3] to show thatB0(S)(z) → 0
asz → ∂D, butS is not compact onL2

a. Let S be defined onL2
a by

S

(
∞∑
l=0

alw
l

)
=

∞∑
l=0

a2lw2l

.

It is clear thatS is a self-adjoint projection with infinite-dimensional range. Thus
S is not compact onL2

a. From

B0(S)(z) = 〈Skz, kz〉
= ‖Skz‖2

2

= (1− |z|2)2

∞∑
l=0

(2l + 1)(|z|2)2l

,

it is easy to see thatB0(S)(z) → 0 asz → ∂D. By Proposition 2.15, we see that
Bm(S)(z) → 0 asz → ∂D. This gives thatTBm(S) is compact. HenceTBm(S)

does not converge toS in the norm topology.
By means of the Zygmund theorem on gap series [18], it was proved in [13]

that

C = sup
z∈D

max{‖Sz1‖3, ‖S∗
z1‖3} < ∞.

Clearly,S is a radial operator. By Lemma 4.1, we have

T(BmS)◦φz1 =

∫
D

(Sw)z1dνm(w)

=

∫
D

Sφz(w)1dνm(w)

=

∫
D

Sλ1dνm ◦ φz(λ).
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Noting that for eachz ∈ D, dνm ◦ φz is a probability measure onD, we have

‖T(BmS)◦φz1‖3 ≤
∫

D

‖Sλ1‖3dνm ◦ φz(λ) ≤ C.

Similarly, we also have

‖T ∗
(BmS)◦φz

1‖3 ≤ C.
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