m-BEREZIN TRANSFORM AND COMPACT OPERATORS
KYESOOK NAM, DECHAO ZHENG, AND CHANGYONG ZHONG

ABSTRACT. m-Berezin transforms are introduced for bounded operators on
the Bergman space of the unit ball. The norm of thkderezin transform as a
linear operator from the space of bounded operatofs’tds found. We show

that them-Berezin transforms are commuting with each other and Lipschitz
with respect to the pseudo-hyperbolic distance on the unit ball. Usingithe
Berezin transforms we show that a radial operator in the Toeplitz algebra is
compact iff its Berezin transform vanishes on the boundary of the unit ball.

1. INTRODUCTION

Let B denote the unit ball im-dimensional complex spad&® anddz be nor-
malized Lebesgue volume measure®nThe Bergman spade’ = L?(B,dz) is
the space of analytic functioson B which are square-integrable with respect to
Lebesgue volume measure. BoE (z1,...,2,) € C", let (z,w) = > | 2w,
and|z|? = (z, 2).

Forz € B, let P, be the orthogonal projection @" onto the subspack]
generated by and letQ), = I — P.. Then

z— P, (w) — (1 —|2[)Y2Q.(w
o) = 2P =0 00

is the automorphism oB that interchange$ and z. The pseudo-hyperbolic
metric onB is defined ap(z, w) = |p.(w)|.
The reproducing kernel in? is given by

1
(1 = (w, 2))n+t’
for z,w € B and the normalized reproducing kerriglis K, (w)/||K.(-)||2. If
(-,-) denotes the inner product it?, then(h, K.) = h(z), for everyh € L?

andz € B. The fundamental property of the reproducing kerlig{w) plays an
important role in this paper:

K, (w) =

K (w) = kx(2) K, () (9a(w))Ra (w). (1.1)
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Given f € L™, the Toeplitz operatof; is defined onB by T h = P(fh)
where P denotes the orthogonal projectiéhof L? onto L2.

Let £(L?) be the algebra of bounded operatorsign The Toeplitz algebra
T(L*>) is the closed subalgebra 8fL2) generated by 7} : f € L>=}.

Forz € B, letU, be the unitary operator given by

sz = (fogbz) : J¢z
whereJ¢, = (—1)"k,. ForS € £(L?), set
S, =U,SU,.

Since U, is a selfadjoint unitary operator ob? and L2, U, T;U, = Ty.4. for
everyf € L™.

Let 7 denote the class of trace operatorsign ForT' € 7, we will denote
the trace off” by tr[T] and let||T’||, denote the”; norm of T" given by ([12])

||T||Cl = t”f’[v T T]
Supposef andg are inL2. Consider the operatgr® g on L? defined by

(f@g)h=<{hg)f,

for h € L2. Itis easily proved thaf ® g is in 7 and with norm equal td f ®
glley = [Ifll21lg]l> and
trlf @ gl = (£, 9)-

For a nonnegative integen, the m-Berezin transform of an operatdt €
£(L?) is defined by

_ - k! WP u®
BnS(z) = C™mr |8, Co ® (1.2)
- (Z <t DA u)]

|k|=0

= CI"™"tr | S, (Z C'm;u”C ® uk)

[k|=0
wherek = (ki,--- ,k,) € N", N is the set of nonnegative integets| =
Sk uF = bk R = Ryl k),
man (TN oy q\JE] k]!
Cpt = ( n ) and  Cpp = Clfj(—1) A

Clearly, B,, : £(L?) — L* is a bounded linear operator, the normi) will be
given.
Given f € L*, define

B (f)(2) = Bu(Ty)(2).



B.(f)(z) equals the nice formula in [1]:

/fOCbz )dv (),

for = € B wheredv,,(u) = C™™(1 — |u|?)"du.

Berezin first introduced the Berezm transforBy(S) of bounded operators
S and them-Berezin transform of functions in [5]. Because the Berezin trans-
form encodes operator-theoretic information in function-theory in a striking but
somewhat impenetrable way, the Berezin transféiS) has found useful ap-
plications in studying operators of "function-theoretic significance” on function
spaces ([2], [3], [4], [6], [7], [11], and [15]). Suarez [16] introducedBerezin
transforms of bounded operators on the Bergman space of the unit disk. We will
show that ourn-Berezin transform coincides with the one defined in [16] on the
unit disk D by means of an integral representatiomoeBerezin transform. The
integral representation shows that many useful properties oftBerezin trans-
forms inherit from the identity (1.1) of the reproducing kernel. On the unit ball,
some useful properties of the-Berezin transforms of functions were obtained
by Ahern, Flores and Rudin [1]. Recently, Coburn [10] proved RdtS) is Lip-
schitz with respect to the pseudo-hyperbolic distameew). In this paper, we
will show that B,,,S(z) is Lipschitz with respect to pseudo-hyperbolic distance
p(z,w). We will show that then-Berezin transforms,, are invariant under the
Mobious transform,

B (S,) = (BnS) 0 ¢, (1.3)
and commuting with each other,
Bj(BrnS)(z) = Bm(B;5)(2) (1.4)

for any nonnegative integersandm. Properties (1.3) and (1.4) were obtained
for S = T} in [1] and for operator$' on the Bergman space of the unit disk [16].

A common intuition is that for operators on the Bergman spagéclosely
associated with function theory”, compactness is equivalent to having vanishing
Berezin transform on the boundary of the unit BallOn the unit disk, Axler and
Zheng [2] showed that if the operatSrequals the finite sum of finite products
of Toeplitz operators with bounded symbols th€ns compact if and only if
By(S)(z) — 0asz — 9D. Englis extended this result to the unit ball even
the bounded symmetric domains [11]. But the problem remains open whether
the result is true ifS is in the Toeplitz algebra. Recently, Suarez [17] solved
the problem for radial operatdgt on the unit disk via then-Berezin transform.
Using them-Berezin transform, we will show that for a radial operatoin the
Toeplitz algebra on the unit balf, is compact iffB,S(z) — 0 as|z| — 1.

Throughout the papet'(m, n) will denote constant depending only enand
n, which may change at each occurrence.

The authors thank the referees for their suggestions.
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2. m-BEREZIN TRANSFORM

In this section we will show some useful properties of theBerezin trans-
form. First we give an integral representation of théBerezin transfornB,,(.S).
Forz € B and a nonnegative integet, let

1

K'(u) = 0= (a2t u € B.

Foru, A € B, we can easily see that

Zm: Con st N = (1 — (u, \))™. (2.1)

k|=0
Proposition 2.1. Let S € £(L?), m > 0 andz € B. Then
BmS(Z> — O;H_n(l o |Z|2)m+n+1x
/ / (1= (u, \))" K™ () KON S R (@) dud
BJB

Proof. For A € B, the definition ofB,, implies

BnS(2) = C™ Y Cn e (S:AF, AF)

\k\—O

S O / &5k (N FEOVER (VA
\k\ 0

=0 N Crk B (u) (N, (N)S* Ky (u)dud) (2.2)
> [ [ o1

where the last equality holds BY(¢*k.)(\) = (S(¢Fk.), Ky) = (¢¥k., S*K)) .
Using (2.1) and (1.1), (2.2) equals

i / / (1= (s(1), 62(N)))™ K () (N) 5" For () dud

m/(n+1)
o (ko (V) TSR
_cr /B /B (—mu) ) I (1) e (V) S () dud A

= O (1 — |22ttt /B /B(l — (u, \)" K (u) K (A)S* Ky (u)dud\

as desired. O

Proposition 2.2 gives another form 6f,,.



Proposition 2.2. Let S € £(L?), m > 0 andz € B. Then

BS(z) = Cp™(1— [2)™ N " Cp (S(WF K WP KT . (2.3)
|k|=0

Proof. Since

/B/B(l = (u, N KT () K (M) S* K\ (u) dud

=Y Cui / / WK (1) K7 () S* Ky (u) dud\
BJB

|k|=0
= > Cos [ SWHKDOFRZ
|k|=0 B
Proposition 2.1 implies (2.3). 0

Forn = 1, the right hand side of (2.3) was used by Suarez in [16] to define the
m-Berezin transforms on the unit disk.
Recall that givery € L>, define

B (f)(2) = Bu(Ty)(2).

The following proposition gives a nice formula @, (f)(z). Let dv,,(u) =
Cmr (1 — |ul*)™du.

Proposition 2.3.Letz € Band f € L*™. Then
Bu(£)(2) = [ fo0u(u)dunm(u)
B
Proof. By the change of variables, Theorem 2.2.2 in [14] and (2.3), we have

/B 1 0 6 (u)dvm(u)

e o (S ()

= O Y G [ F(la PR () P
B

|k|=0

= O (L= 2N Co (T (WP KT, uF Ky = B (T)(2).
|k|=0

The proof is complete. O

The formula in the above proposition was used in [1] to definertiBerezin
transform of functions.
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Clearly, (1.2) gived| B,,,S||oc < C(m,n)||S.|| = C(m,n)||S| for S € £(L2).
Thus,B,, : £(L?) — L*> is a bounded linear operator. The following theorem
gives the norm of3,,,.

Theorem 2.4.Letm > 0. Then||B,,|| = C™™ Z\k\ —0|Cmk nﬂlkk'\)'

Proof. From [8], we have the duality resuy(Z?) = 7*. So, the definition of
B,, gives the norm of3,,. In fact,

m 1T s
Bm _ C«m+n Cm n
1Bull = O™ > Cons o i T © T
|k|=0 C1
!
l;o Gt DY
as desired. -

The Mobius map). (w) has the following property ([14]):
¢.(0) = —(1 = [z])P. — (1 = |2])*Q.. (2.4)

To show thatm-Berezin transforms are Lipschitz with respect to the pseudo-

hyperbolic distance we need the following lemmas.
Forz,w € C", z&w onC" is defined by(z@w)\ = (\, w)z.

Lemma 2.5. Letz,w € B and\ = ¢.(w). Then
P (w) = (1= (X, 2))(I — A®z)[¢.(0)] .

Proof. Suppose thaP, and (), have the matrix representations @#’,);;) and
((Q.)ij) under the standard base®©f, respectively. In fact,

(P.)ij = TzT; it 2 £0.
Let (a;;(w)) = ¢.(w). Write ¢.(w) = (fi(w), -, fa(w)). Then
ofi
a;;(w) = ai (w).
Noting that
_ 2= (Paw)i — (1= [2[)*(Q.w);

filw) = 1 —(w,z) ’

we have

a~-(w) _ (Zz - (Pzw)i — (1 — |Z|2)1/2<sz)i)gj B (Pz)ij + (1 _ |z|2)1/2(Qz)ij
! (1= (w,z))? 1~ (w,2)
filw)z; (P + (1= |Z|2)1/2(Qz)ij_

:1—<w,z> 1 — (w,z)




Let A = ¢.(w). The above equality becomes
A = (P + (1= [2)2(Q2))

a;;(w)

1 — (w,z)
Thus R p1o
z— (P, 1— |z P
R e e e e
From Theorem 2.2.5 in [14], we have
1 1—(\2)

1—(w,z) 1—z2°
Thus (2.4) implies
_ A= zP)A@z 4+ (1 2P) P+ (1 - [2P)Q.
1 —(w,z2)
(A=) (=A®z+ 1)
1 —(w,z)
=(1—(\2)(I - A\®z2)

where the first equality follows fron?,Q). = Q.P, =0, P.z = z,andQ.z = 0.
The proof is complete. O

Lemma 2.6. Supposéz| > 1/2 and|w| > 1/2. If |¢,(w)| < e < 1/2, then
|P, — P,|| < 50e(1 — |2]*)"2.

Proof. First we will get the estimate of the distance betweeand w. Since
|p.(w)] < e < 1/2,wisinthe ellipsoid:

Pz_2 z2
PP |Quf _

¢-(eB) ={w e B: 2 2 }
with centerc = (1(1_;—52;) andp = % Noting that|z| > 1/2 ande < 1/2, we
havep < 2(1 — |z|?). Thus
Qwl* < p <2(1— =), |Paw—c| <ep < 2e(1—[2]?)
and
(1 —2)
—c < < 263(1 —|2%).

|z —c| < 0= aqLp) =% (1 —1z2]%)

So, we have

|Pow — 2| < |Pow —c| + |z — ¢| < 3e(1 —|2%).
Becausd = P, + (), andP,(Q, = 0, writing
(z—w)=P,(z —w)+ Q.(z —w),
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we have
|z —w]? = |P.(z — w)]* + |Q:(z — w)[?
= |Pzw - Z|2 + |sz|2
< 11E(1 — 2.
Noting that
z .z (z—w).z w.(z—w)
=R = R+ —® +
2| 2] 1 I F-{ B V-1 B 1
(- ) oo
— = || QW+ —&—,
27 Jw]? [w| ~ [wl
we have
— A A — 1 1
2] 12| |2] 2| |22 |wl
to obtain
HP _p ||<|Z_w|+2’2_w| ||Z|2_|w|2|
Ed |2 |2

< 2|z —w|+ 4|z — w| + 8|z — w|
< 14V/11€(1 — |2]%)Y/?
< 50e(1 — |2]})Y?

where the last inequality holds by (2.5).

For givenz, w € B, setA(z,w) = —(1 — |z]?)P, — (1 — |2*)Y2Q,.
Lemma 2.7. Supposéz| > 1/2 and |w| > 1/2. If |¢,(w)| < e < 1/2, then

192(0) — A(z, w)|| < 150¢(1 — [2[*).
Proof. Using (2.4), we have

162(0) = A(z, w)l| = (1 = [2*)(Py = P.) + (1 = [2[)/2(P, — P

<3(1 = )21 P = Pull
< 150e(1 — |2[%)
as desired. The last inequality follows from Lemma 2.6.
Let $i(n) be the group ofi x n complex unitary matrices.
Lemma 2.8.Letz,w € B. ThenU.U, = V,,Us,(.) Where
(Ve f)(w) = f(Uu)dettd
for f € L2 andU = ¢y, (») © dw © ¢, satisfying
|1 +U|l < Cn)p(z,w).

(2.5)
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Proof. The mapg,,, - © ¢, © ¢ is an automorphism aob that fixes0, hence it
is unitary by the Cartan theorem in [14]. Thig o ¢. = ¢4, (-) o U for some
U € i(n). Sinceg,, is an involution, we have

U.Usf(u) = (f © dw © ¢.) (1) Ju (92 (u)) J . (u)

= ([ 0 04, (2) Uu) T (D © D, (2) UW)) T i (D, (2) (UW)) T D, () (U) det
= (f © Ppu(2)) UU) J g, () (Uu)det

= VuUs,, (2 f (u)

as desired.
Now we will show that

11+ U]l < C(n)p(z, w).
Noting thatl/ is continuous fotz| < 1/2 and|w| < 1/2, we need only to prove
17 +U| < 20000p(z, w),
for |z| > 1/2, Jw| > 1/2 and|¢,(2)| < 1/2. Let XA = ¢, (2). Then|\| = p(z, w)
andz = ¢, (). Since
Gw © ¢ (u) = Pr(Uu),
taking derivatives both sides of the above equations and using the chain rule give
O (92()) & (u) = S\ (UuU.
Lettingu = 0, the above equality gives
= [¢4(0)] 7 ¢,(2).(0).
By Lemma 2.5, write
U+ 1= [@(0)] 7 (1 = (A w))(I = Aow)[¢),(0)]7'¢L(0) + 1
= [#A(0)] 71 (1 — (A w)) (I — A@w)[4],(0)] 1 [¢(0) — A(z, w)]
+ ([2A(0)] (1 = (A w) (I = Aow)[¢,,(0)] Az, w) + 1)
=1 + 1.
By Lemma 2.7, we have

I [F < MDA O1 L = (A w)lT = A&w(l[l[¢,,(0)] [ [1#2(0) — A(z, w)]

3 2
§4x2x2xm[150|/\|(1—|z| )]
Theorem 2.2.2 in [14] leads to
L—1]z>  1—]|A]
L= Jwl* 1=\ w)*

Thus
1] <4 x2x2x3x2x150[\| = 14400|\|.



10 KYESOOK NAM, DECHAO ZHENG, AND CHANGYONG ZHONG
Also, we have

(1—|=1)"2 1— |2

1——— 2 <] - ——1 < 32|\,
‘ <r4wmv2—‘ T Jwp| =32
Hence, we get
Lo (1= e
— P,— ——F————0Q,l <32\l
H T Jwf e T Iy e < 32X

On the other hand, clearly,
A7 + I < 4, (1= (A w)) = 1] [
and
I(1 = A&w) —I| < [Al.
These give
17+ [ O] (L = (A w) (I = A@w)|| < 16]A].
Hence, we have

2]l < N[5 (1 = (A w) (I = Asw)[¢,, (0)] " A(z, w)
= [ 0)] (1 = (A w)(I = Adw)|
+I[SA O] (1 = (A w)( = A&w) + I]]
(1= [z

1— |
P’LU_— w
T~ (1 Jwp)ia?

guwxmr%uwxw»u—x®wMP—

+16])|
<4 x 2 x 2 x 32|A] + 16|\ < 600[A|.

Combining the above estimates we conclude that
|24 + I|| < 14400[A| 4 600|A| < 20000|A|.
U
Theorem 2.9.LetS € £(L?), m > 0andz € B. ThenB,,S. = (B,,S5) o ¢..
Proof. Proposition 2.2 and (1.2) give

By S.(0) = Cp ™ > " Cone (Sett¥, u¥) = BS(2) = (BwS) © 6.(0).

|k|=0
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For anyw € B, Proposition 2.1 and Lemma 2.8 imply
(BmS:) © ¢u(0) = B ((S2)w)(0)
_ cmen / / (1= (u, V)" T U5 U Uy R () dud\
B JB

= / / (1 — (u, \))™VaeUy (1) S* Uy () Vi For () duud A
BJB
= BnSs. () (0)
whereV, is in Lemma 2.8. ThusB,, S, (w) = (B,,S) o ¢.(w). O
Lemma 2.10.LetS € £(L?),m > 1andz € B. Then

m-+n u
BnS(z) = Bt (s -y TMST(@)J (2)
=1

m

where(¢,); is i-th variable of¢,.

Proof. By Theorem 2.9, we just need to show that

BnS(0) = m;; "B (S -y TuiSTu,L) (0)
=1

Using Proposition 2.1 and (2.1), we get

B,S(0) = ¢ / / (1 — (u, \))™S* K (u) dud

n m-—1

m-+n I "
= — B850 C*ZZlek//uMu)\kSKA( )dudA

=1 |k|=0

n m—1

m-+n e
= ——Bu18(0) - Y G lk/ (uF1;) (V)N X dA

i=1 [k|=0

n m-—1

= B 18(0) = O ST 3 o (ST (), T, (u5))

=1 |k|=0

as desired. 0

Form = 0, the following result was obtained in [10].

Theorem 2.11.Let S € £(L?) andm > 0. Then there exists a constant
C(m,n) > 0 such that

1BuS(2) = BuS(w)| < C(m,n)[S] oz, w).
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Proof. We will prove this theorem by induction on. If m = 0, (1.2) gives

|BoS(z) — BoS(w)| = [tr[S.(1 ® 1)] — tr[Sw(1 ® 1)]|
= |tr[S.(1® 1) — SU,(1 ® 1)U,]|
= |tr[S.(1® 1) — SU.(U,U,1 ®@ U,U,1)U,]||

From Lemma 2.8, the last term equals

tr[S:(1 @ 1= Up, (51 @ Up, () DIl < [19:/1 @1 = Up,,(5)1 ® Ugy, ()Ll
< V28012 = 211 ko)1)
=2||S|I[L = (1 = |gu(2)])"1]"2
< C)[[SNll¢w (=)l

where the second equality holds [§¥||c: < V/I(tr[T*T))*/? wherel is the rank
of T

SupposgB,,-15(z) — B,—15(w)| < C(m,n)||S||p(z, w). By Lemma 2.10,
we have

| BmS(2) = BnS(w)]
m—+n

< |Bin-15(2) = Bp—1S(w)|

m

m+n w—
D ‘Bm_l (T@ST(@)Z.) (2) — By (TWST(%)) (w)‘ .
i=1

Since the term in the summation is less than or equals

Bt (T55Tio0,) (2) = Bt (TiSTion, ) (2)
+ ‘Bmfl (Tm3:5T01.) (2) = B (Tmy:STeou,) (z))

+ ’Bm—l (TmST(d,w)i) (Z) - Bm—l (TWST(QSw)i) (w)‘ s
it is sufficient to show that

< C(m,n)|[Slp(z, w).

’Bm_l (T5:5Ti001.) (2) = Bt (T STeou, ) (2)
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Lemma 2.8 gives

’Bmfl <T@_(¢w)ZST(¢Z)z) (’Z> ‘

k! u” u®
= e | (T opp— ®
[< (9=)i=(0w) ) g:o P D TE] T Tt
s 1K u” u”
SC’rT—i_n_l |Cm— |n— <ST 2)i0QPz z w OZ >‘
Z ATy A 7 R R T
uk
< C(m,n) T(6:)i—(6w)i)od= TR (2.6)
[},
Let A = ¢,(2). Then
HT((@) —(Pw)i)od= 11 11 [ kH / [ — (P O¢z)i(u)|2du
/ |(Uu); (u));|*du
< 2/ (W) + il + s + (6(w))iPdu
B
whereg,, o ¢, = ¢ o U for someld € $(n).
Noting that
A= (wNu+[1— (1= [AP)]Qx(u)
Pt = Y ’
we have that fof\| < 1/2,
|oa(u) +ul < 2|1+ [A] + [A]P) < 6]A].
By Lemma 2.8 we also have
/ W), + P du = / (U + Du)iPdu < ClU + 1P < CIAP.
B B
Thus (2.6) is less than or equal to
C(m, n)|[S:|[B6|AP + CIA[P]Y2 < C(m,n) [[S]||A].
The proof is complete. O

Lemma 2.12.LetS € £(L2) andm,j > 0. If |[S*K)(2)| < C foranyz € B
then(B,,B;)(S) = (BjBn)(95).
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Proof. By Theorem 2.9, it is enough to show thd,,B,)S(0) = (B;B,,)S(0).
From Proposition 2.3, Proposition 2.1 and Fubini’'s Theorem, we have

Byn(B;S)(0) = B (T5,;5)(0)
:c;;Hn/ B;S(2)(1 — |2[2)"d=

Cm+n0j+n/ / / |Z| m+j+n+1(1 _ <u7 )\>)j><

K7 (u)KZ(\)S* K\ (u)duddz
Cm+nc«y+n// 1_ u )\ /( _ |Z|2)m+j+n+1><
K7 (u)KZ(\)dzS* K (u)dudA.

Let

Fong(u, A) = (1 = (u, >\>)j/B(1 = [Py (u) K2 (V)

ThenF,, ;(u,\) = S\, H;(u)G;(\) where H; andG; are holomorphic func-
tions and for somé > 0. Thus, from Lemma 9 in [9], we just need to show
Fi (AN A) = Fj (X A) for X € B. The change of variables implies

s (AN) = (1— A2 / (1= o2y K (2) [Pz
— (1 APy / (1 = [6a(2) 2™ K (62 (2)) Pl (2) P

= (= P [ (@ [y )
EaON)
as desired. O
Lemma 2.13.For any S € £(L?), there exists sequencés,, } satisfying
|Se K (u)] < Ce)
such thatB,,(S,) converges td3,,(.S) pointwise.

Proof. SinceH> is dense in.2 and the set of finite rank operators is dense in the
ideal K of compact operators ab?, the set{Zﬁ:1 fi®gi : fi, gi € H*®} isdense

in the ideal/C in the norm topology. Sinc& is dense in the space of bounded
operators orl.2 in strong operator topology, (2.3) gives that for ahye £(L?),
there exists a finite rank operator sequernges- Zﬁzl fi ® g; such thatB,, (S,)
converges td3,,(S) pointwise for somef;, ¢; in H>. Also, forl > 0, for such
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Se =31, fi ® gi, we have
!
|Sa K (u)| = Z(Qz ® fi)Kx(u)
=1
l

= Z (Ka(u), fi(u)) gi(u)

i=1

!
< Z | fi(M)[lgi(w)]

!
< Z | filloollgilloo < C.
i=1

The proof is complete. O

Proposition 2.14. Let S € £(L?) andm, j > 0. Then
(B B;)(5) = (BjBm)(5).
Proof. Let S € £(L?). Then Lemma 2.13 implies that there exists a sequence

{S.} satisfying|S: K, (u)| < C(a), henceB,,(B;S,)(z) = B;(B,S.)(z) by
Lemma 2.12. From Proposition 2.3, we know

Bon(B;5.)(2) = / (B;5a) 0 62 ()i (1)

and||(B;Sa.) © ¢:]lec < C(j,n)||S]|. Also, (B;S,) o ¢.(u) converges tdB;S) o
¢.(u). ThereforeB,,(B;S,)(z) converges td,,(B;S)(z). By the uniqueness of
the limit, we have(B,,,B;)(S) = (B;B,)(95). O
Proposition 2.15.Let S € £(L?) andm > 0. If BS(z) — 0 asz — 9B then
B,S(z) — 0asz — 0B.

Proof. Suppose3,S(z) — 0 asz — dB. Then we will prove that, — 0 in the
7*-norm asz — 0B. Suppose it is not true. Then for some Ret,} € B and
an operato” # 0 in £(L?), there exists a sequen¢s§,,, } such thatS,,, — V
in the 7*-norm asw, — 0B, hencetr[S,, T] — tr[VT] foranyT € 7. Let
T = k) ® k, for fixed A € B. Then Theorem 2.9 implies
tr[Sw,T] = tr[Sw, (kx @ k)]

= (Swakr, k)

— Bgswa ()\)

= (BoS) © ¢u, (A) = 0
asw, — 0B. Sincetr[VT] = B,V (\) and B, is one-to-one mapping; = 0.
This is the contradiction. Thus, — 0 asz — 0B inthe7*-norm. (1.2) finishes
the proof of this proposition. O
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3. OPERATORSS APPROXIMATED BY TOEPLITZ OPERATORSI 5, (s)

In this section we will give a criterion for operators approximated by Toeplitz
operators with symbol equal to theii-Berezin transforms. The main result in
this section is Theorem 3.7. It extends and improves Theorem 2.4 in [17]. Even
on the unit disk, we will show an example that the result in the theorem is sharp
on the unit disk.

From Proposition 1.4.10 in [14], we have the following lemma

Lemma 3.1. Suppose < 1 anda + b < n + 1. Then

su / dA < 0
cen Js L= P = (2P =7
This lemma gives the following lemma which extends Lemma 4.2 in [13].

Let1 < ¢ < oo andp be the conjugate exponent @f If we takep > n + 2,
theng < (n+2)/(n+1).

Lemma 3.2. Let S € £(L?) andp > n + 2. Then there exist§'(n,p) > 0 such
thath(z) = (1 — |2]?)"® wherea = (n + 1)/(n + 2) satisfies

/B (SE)(w)|h(w)dw < C(n,p)[|S:1],h(2) (3.)
forall z € B and
/B (SE)(w)|h(=)dz < C(n, p)l|S51ph(w) (3.2)

forall w € B.
Proof. Fix z € B. Since
Ul = (=1)"(1 = [o]) "2 K,
we have
SK,

(=1)™(1 = [2]*)~"250.1
(=D)™(1 = |2}~ "2U,8.1
= (1= |2]?)~"*V2(S,1 0 ¢,)k,

Thus, |etting)\: ¢:(w), the change of variables implies
ISR ’Slo¢z )£ (w)]
/ 1—|w| = <1—|z| D7 A=y

/ [5:1(M)]
(1 - ’Z‘ ) Jg (1 —|A[2)21 = (A, z)|ntl-2e

1

sl f 1 ;

< ax| .
= W)\ (= L = (3, 012

d\
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The last inequality comes from Holder’s inequality. Siage< 1 andag + (n +
1 —2a)q < n+1, Lemma 3.1 implies (3.1).

To prove (3.2), replac® by S* in (3.1), interchangea andz in (3.1) and then
use the equation

(5" Kuw)(2) = (5K, Kz) = (Ky, SK.) = SK.(w) (3.3)

to obtain the desired result. O

Lemma 3.3.LetS € £(L%) andp > n + 2. Then

1/2

1/2
181 < ) (suplisial,) - (suplstl, )
zeB z€B
whereC'(n, p) is the constant of Lemma 3.2.
Proof. (3.3) implies
(SF)(w) = (Sf, Ku)

/ F(2) (5K (2)dz
- /B F(2)(SK-) (w)dz

for f € L? andw € B. Thus, Lemma 3.2 and the classical Schur’s theorem
finish the proof. O

Lemma 3.4. Let S,, be a bounded sequencediZ?) such that]| ByS,,||. — 0
asm — oo. Then

sup [((Sm)-1, f)] — 0 (3.4)

z€EB

asm — oo forany f € L? and

sup |(Sm).1| — 0 (3.5)

z€B

uniformly on compact subsets Bfasm — oo.

Proof. To prove (3.4), we only need to have

sup |((Sm)-1, w*)| — 0 (3.6)
z€B
asm — oo for any multi-indexk.
Since
K. (w) = i ME“U}”‘ (3.7)
A nlal ’ '
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we have

Sm(92(A)) = Bo(Sm)=(A)
|/\| n+1 Z Z (n+ [a)! (n +[8])! <(Sm)zwa7wﬂ>xa/\ﬁ

nlal n!3!
la|=0 |8]=0 b

whereq, 3 are multi-indices.
Then for any fixedt and0 < r < 1,

BoSm (- (A)A"
/m (L= APy o

- > >0 LR R (s [ 3o

nlal
la[=018|=0
n - n+ |a)! a a
= 7”2 +21k] <<(Sm)z].7wk> + Z ( n'0|{' |) <(Sm)zw , W +k> T2| ) .
=1 ol

SinceS,, is bounded sequence, we have

[((Sm)s1, "))

—k
it | [ BuSu(é.(0)
< 2n—2|k| / 0 d\
=" s (L= R T
S P IO o
la)=1
< r 22 By S| / M d)\+0ir2“|
< o8l | T Ay ’

laf=1

hence, by assumption

limsupsup | {(Sy).1,w")| < C Z el

m—oo 268 laf=1

Lettingr — 0, we have (3.6).
Now we prove (3.5). From (3.7), we get

(S)-1N)] = (8L, K|
< 30 P 61w

n+ |« (n+ |a ol o
(tlaDt s ) 1wy + 3 LR PR

|ee|=0 || =l
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forz € B, A € rB andl > 1. Since the second summation is less than or equals
to
1/2

= ((n+ )N I e e (0 g)! 3o
§:<nm 2 al M‘§§:7m! 2:5“'

J=l =5

for anye > 0, we can find sufficiently largé such that the second summation
is less thare. Thus, (3.6) implysup.z [(Sm)-1] — 0 uniformly on compact
subsets of3 asm — . U

Lemma 3.5. Let {S,,} be a sequence ig(L?) such that for some > n + 2,
| BoSim||co — 0 @SM — 00,

wmm m):1lp <C  and a@W%&HMSC
zE

whereC' > 0 is independent ofz, thenS,, — 0 asm — oo in £(L2?)-norm.

Proof. Lemma 3.3 implies

1/2 1/2
1Sl < Cln,p) (sup H(Sm>z1|\p) (sup H(S;)Zal) < Cln.p).
z€B z2€EB
hence, Lemma 3.4 gives
sup |(Sp)-1] = 0 (3.8)

z€B

uniformly on compact subsets &f asm — oo.
Here, forn 4+ 2 < s < p, Holder’s inequality gives

sup || (Sm). 1|3 < sup/ (Sm) - 1( de—l—sup/ (S w)|*dw
z€EB z€EB B\rB z€B
< Csup |(Sm)- 151 — 1)+ sup / (S)o1(w)
z€B z€B

and (3.8) implies the second term tend$)tasm — oo. Also, the first term is
less than or equals 16°(1 — r)'~*/? which can be small by taking close tol.
Consequently, Lemma 3.3 gives

1/2 1/2
||Sm||sc*(n,s)(supu(sm)zlns) (supH(Sg)Zlns) .
z€B 2EB

1/2
< C(n,s) (sup r|<sm>zlus) ~0

zeB



20 KYESOOK NAM, DECHAO ZHENG, AND CHANGYONG ZHONG

Corollary 3.6. LetS € £(L?) such that for somg > n + 2,
sup ||S;1 — (Tg,,s):1|l, < C and sup [|S:1 — (T, (s+)) -1, < C,
z€B z€B
(3.9)
whereC' > 0 is independent ofr. ThenTp, s — S asm — oo in £(L2)-norm.

Proof. Let S, = S — Tp, 5. Then Proposition 2.14 and Theorem 2.11 imply

m

By(Sm) = BoS — By(TB,,s)
= ByS — B (ByS)
which tends uniformly td asm — oo, hence|| By(S,,)]l« — 0. Consequently,
by Lemma 3.5 we complete the proof. O
Theorem 3.7.Let S € £(L?). If there isp > n + 2 such that

Up [ T{p5100. 1, < O amd - sup [T, 500, 1, <C (3.20)

whereC' > 0 is independent of, thenTs_ ¢ — S asm — oo in £(L?)-norm.

Proof. By Corollary 3.6, we only need to show that (3.10) implies (3.9). Since
T(Bms)o¢z = (TBmS>z and

T(5,.8)06. = TBsz = TBu(sz) = T(Bu(5%))06.

it is sufficient to show that

sup ||, 1], < oo.
z2€B

By Lemma 3.3, we get

1/2 1/2
wmﬁscm@(mwﬁwmwQ (mﬂ@meQ
z2€B z€B
< C

whereC'is independent of:, hence writings,, = S—1%,,5, we have|S,,|| < C
where(C' is independent ofn. Also, the proof of Corollary 3.6 implies

HBOSmHoo —0

asm — oo.
Let f be a polynomial withj| f||, = 1. Then Lemma 3.4 implies

sup [((Sm)=1, f)] = 0

zeB

asm — oo. Thus, for any > 0 andz, € B, we have
[ (S L, /)] < sgg\ ((Sm):L ) [+ 1 {(TBs)z L f) [ < €+ C
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for sufficiently largem, whereC' is independent ofz. Sincee is arbitrary, we get

sup [|S,1]|, < oo
z€B

as desired. 0

4. COMPACT RADIAL OPERATOR

GivenU € i(n), defineVy f(w) = f(Uw)dettd for f € L2. ThenVy is a
unitary operator oi2. We say thats € £(L2) is a radial operator ifV;, = 1;,S
for anyU € U(n).

If S € £(L?), the radialization of5 is defined by

ﬁ:/wwmw
)3t

wheredl/ is the Haar measure on the compact gréifp) and the integral is
taken in the weak sense. Théh = S if S is radial andy-invariance ofdi/
shows thatS* is indeed a radial operator.

If f € L andg,h € L? then

Wi TyViag, ) = [ F(w)Viagloo) V)
- / J U w)g(w)h(w)duw.
ThusV,*TyVy = Ty~ and
Vi'Ty, - TpVie = Triaue - - Thouss
for fi,....fi € L>, 1> 0.

Lemma4.1.LetS € £(L2) be aradial operator. Thefis ,(s) = [ Swdvm(w).

Proof. Let z € B. By (2.3) and Lemma 2.8, we obtain

l%(éswmdwo(@:<(A9MMAM)JJ>

:/\@mﬁ%uwaam
B

—/<U¢z(w)VJSVuU¢Z(w)1,1>dum(w)
B
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whereVj, isin Lemma 2.8. Sincé# is a radial operator, Theorem 2.9, Proposition
2.3 and Proposition 2.14 imply that the last integral equals

[ VeVt V) o) = [ Bus o 6. )
B B
= BmB()S(Z)
= By(Tg,.(s))(2)-
SinceB, is one-to-one mapping, the proof is complete. 0

Theorem 4.2.Let S € (L) be a radial operator. Thety is compact if and
only if ByS = 0ondB.

Proof. SupposeByS = 0 ondB. ThenB,,S = 0 on 9B by Proposition 2.15,
hencel’s,, s is compact for alln > 0.
Let

©= /Tflou* o Tpoy-dd
by

with fi,..., f; € L* for somel > 0. Then@ € £(L?). By Lemma 4.1, for any
z € B, we have

Tib(@poss = / (Q)-)udvm(w)

— /B/qulou*o@o(bw .- .TflOZ/[*og{)zod)wdude(w).

Consequently,
1 T(B@)os. | < CONfrolU 0 ¢z 0yl [[fiolU™ 0 ¢ 0 ullu
= CDf1llos -~ lfilloo-
Similarly, we have
11T, @)00. | < CON fillso - Lfillso-

Thus, Theorem 3.7 gives that

in £(L2)-norm.

SinceS € T(L*>), there exists a sequen¢s;} such thatS, — S in £(L2)-
norm where eachi;, is a finite sum of finite products of Toeplitz operators. Since
the radialization is continuous arttlis radial,S! — S* = S. From Lemma 4.1,
we have

Tl = H / swdumw)H < [ ISuldn(u) = 51,
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Thus
1S = Tp,.sll < IS SIEH + HSIE - TBm(S,’i)H + HTBm(sg) — T,

<25 = Sl + 15, = T, (s

and (4.1) implyl's,, sy — S asm — oo in £(L2)-norm, hence5 is compact.
The other direction is trivial. O

Example. This example shows that for = 1, the numbem + 2 = 3 in
Theorem 3.7 is sharp. We show that there is a bounded opé&tainrL? such
that

sup max{||T(p,.s)00- LlI3; |1{5,, 50, 113} < 00,

and for eachn > 0, B,,(S)(z) — 0 asz — 0D, butS is not compact ori.2.
The following operatorS was constructed in [3] to show th#&(S5)(z) — 0
asz — 9D, butS is not compact ori.2. Let S be defined ori.? by

S (Z alwl> = ZazszZ.
=0 =0
Itis clear thatS is a self-adjoint projection with infinite-dimensional range. Thus
S'is not compact or.2. From
Bo(5)(2) = (Sk, k=)
= ISk 13

o0

= (L= [z Y@+ )(|=P)*,

=0

itis easy to see thab,(S5)(z) — 0 asz — dD. By Proposition 2.15, we see that
B (S)(2) — 0asz — 0D. This gives thallz ,(s) is compact. Hencés, (s
does not converge t6 in the norm topology.

By means of the Zygmund theorem on gap series [18], it was proved in [13]
that

C = sugmax{”szlﬂ& 15713} < oo.
FAS

Clearly, S is a radial operator. By Lemma 4.1, we have

T(B"Ls)c,@l Z/(Sw)zldym(w>
D
:/S¢Z(w)1dl/m(w)
D

== / S)\ldl/m (¢] ngZ()\)
D
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Noting that for each € D, dv,, o ¢. is a probability measure oR, we have

1T, 5700, 13 < /D 1531 lsdm 0 6. (A) < C.

Similarly, we also have

175, 5)00. LIz < C.
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