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INTRODUCTION

Let D be the open unit disk inC. Let dA denote Lebesgue area measure on the
unit disk D, normalized so that the measure ofD equals1. The Bergman spaceL2

a is
the Hilbert space consisting of the analytic functions onD that are also in the space
L2(D, dA) of square integrable functions onD. Because the nonnegative powers{zn}
span the Bergman spaceL2

a, {
√

n + 1zn}∞
n=0 form an orthonormal basis ofL2

a.
For a bounded analytic functionφ on the unit disk, the multiplication operatorMφ

is defined on the Bergman spaceL2
a given by

Mφh = φh

for h ∈ L2
a.

Let en =
√

n + 1zn. Then{en}∞
0 form an orthonormal basis of the Bergman space

L2
a. On the basis{en}, the multiplication operatorMz by z is a weighted shift operator:

Mzen =
√

n + 1
n + 2

en+1.

So it is usually called the Bergman shift.
A reducing subspaceM for an operatorT on a Hilbert spaceH is a subspaceM of

H such thatTM ⊂ M andT∗M ⊂ M. In [2] and [7] we have studied reducing subspaces
of multiplication operators on the Bergman space via the Hardy space of the bidisk. The
multiplication operatorMz is a weighted shift. The general multiplication operatorMφ

is a holomorphic calculus of the weighted shift. Shift operators have been studied very
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extensively [3], [4]. In [5], Stessin and Zhu obtained a complete description of the reduc-
ing subspaces of weighted unilateral shift operators of finite multiplicity to shed a light
on thatMzN on the Bergman space hasN nontrivial minimal reducing subspaces, but the
multiplication operator byzN on the Hardy space has infinitely many reducing subspaces.

A natural question is to characterize the multiplication operators on the Bergman
space unitarily equivalent to a weighted unilateral shift operators of finite multiplicity.
This paper continues our study on the multiplication operatorsMφ on the Bergman space
in [2], [7] by using the Hardy space of the bidisk to completely answer the question.
Our main result of this paper almost says that onlyMzN up to unitary equivalence is a
weighted unilateral shift operator of finite multiplicity.

THEOREM0.1. If the multiplication operatorMφ on the Bergman space is unitarily
equivalent to a weighted unilateral shift operator of finite multiplicity, thenφ = cφN

λ , for

a constantc and some Möbius transformφλ(z) = z−λ
1−λ̄z .

Let T denote the unit circle. The torusT2 is the Cartesian productT×T. Let dσ be
the rotation invariant Lebesgue measure onT2. The Hardy spaceH2(T2) is the subspace
of L2(T2, dσ), each function inH2(T2) can be identified with the boundary value of
the function holomorphic in the bidiscD2 with the square summable Fourier coefficients.
The Toeplitz operator onH2(T2) with symbol f in L∞(T2, dσ) is defined by

Tf (h) = P( f h),

for h ∈ H2(T2) whereP is the orthogonal projection fromL2(T2, dσ) onto H2(T2).
For each integern ≥ 0, let

pn(z, w) =
n

∑
i=0

ziwn−i.

LetH be the subspace ofH2(T2) spanned by functions{pn}∞
n=0. Thus

H2(T2) = H⊕ cl{(z− w)H2(T2)}.

Let
B = PHTz|H = PHTw|H

wherePH be the orthogonal projection fromL2(T2, dσ) ontoH. SoB is unitarily equiv-
alent to theBergman shift Mz on the Bergman spaceL2

a via the following unitary operator
U : L2

a(D) → H,

Uzn =
pn(z, w)

n + 1
.

This implies that the Bergman shift is lifted up as the compression of an isometry on a
nice subspace ofH2(T2). Indeed, for each Blaschke productφ(z) with finite order, the
multiplication operatorMφ on the Bergman space is unitarily equivalent toφ(B) onH.

By Lemma 17 in [2], it is easy to see that for each Blaschke productφ with order
N, H can be decomposed as a direct sum of at mostN reducing subspaces ofMφ. We
will show that if φ has more than two distinct roots and at least one root is repeated, then
H can not be decomposed as a direct sum ofN reducing subspaces ofMφ (Theorem 3.1).
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1. PREMIMINARIES

We need some basic constructions from [2]. Let

Kφ = span{φl(z)φk(w)H; l, k ≥ 0}.

ThenKφ is a reducing subspace for bothTφ(z) andTφ(w), and soTφ(z) andTφ(w) are also
a pair of doubly commuting isometries onKφ. Introduce the wandering space

Lφ = kerT∗φ(z) ∩ kerT∗φ(w) ∩Kφ.

Let L0 bekerT∗
φ(z) ∩ kerT∗

φ(w) ∩H. In [2], for eache ∈ L0, we construct functions

{dk
e} andd0

e in Lφ such that for eachl ≥ 1,

pl(φ(z), φ(w))e +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
e ∈ H

and

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))d0
e ∈ H.

We have a precise formula ofd0
e but dk

e is orthogonal tokerT∗
φ(z) ∩ kerT∗

φ(w) ∩H, and for

a reducing subspaceM, ande ∈ M,

pl(φ(z), φ(w))e +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
e ∈ M.

The relation betweend1
e andd0

e is given in [2] and stated as follows:

THEOREM 1.1. If M is a reducing subspace ofφ(B) orthogonal to the distin-
guished reducing subspaceM0, for eache ∈ M ∩ L0, then there is an elementẽ ∈
M∩ L0 and a numberλ such that

d1
e = d0

e + ẽ + λe0.

In this paper we often use the above theorem and the following theorem in [2].

THEOREM 1.2. If φ is a finite Blaschke product, then there is a unique reducing
subspaceM0 for φ(B) such thatφ(B)|M0 is unitarily equivalent to the Bergman shift.
In fact,

M0 = spanl≥0{pl(φ(z), φ(w))e0},

and{ pl(φ(z),φ(w))e0√
l+1‖e0‖

}∞
0 form an orthonormal basis ofM0.

We callM0 to be the distinguished reducing subspace forφ(B).
The following lemmas give some properties for functions inH orH⊥.

LEMMA 1.3. If f is in H2(T2) and continuous on the closed bidisk ande is inH,
then

〈 f (z, w), e(z, w)〉 = 〈 f (z, z), e(z, 0)〉 = 〈 f (w, w), e(0, w)〉.
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The proofs of the above lemma and the following lemmas are easy and left for
readers.

LEMMA 1.4. For h(z, w) ∈ H2(T2), h is inH⊥ iff h(z, z) = 0, for z ∈ D.

LEMMA 1.5. Suppose thate(z, w) is in H. If e(z, z) = 0 for eachz in the unit
disk, thene(z, w) = 0 for (z, w) on the torus.

The above lemma tells us that a function inH is completely determined by its value
on the diagonal. The following result says thate(z, w) is symmetric with respect toz and
w.

LEMMA 1.6. If e(z, w) is inH, then

e(z, w) = e(w, z).

LEMMA 1.7. Supposef (z, w) is inH. Let F(z) = f (z, 0). Then

f (λ, λ) = λF′(λ) + F(λ),

for eachλ ∈ D.

For α ∈ D, let kα be thereproducing kernel of the Hardy spaceH2(T) at α. That
is, for each functionf in H2(T),

f (α) = 〈 f , kα〉.
For an integers ≥ 0, define

ks
α(z) =

s!zs

(1− ᾱz)s+1 .

Let φ be a Blaschke product with zeros{αk}K
0 andαk repeatsnk + 1 times. That is,

φ(z) =
K

∏
k=0

(
z− αk

1− ᾱkz
)nk+1.

The order ofφ is given by

N =
K

∑
i=0

(ni + 1).

We assume thatα0 = 0, and soφ(z) = zφ0(z) whereφ0 is the following Blaschke
product:

φ0(z) = zn0
K

∏
k=1

(
z− αk

1− ᾱkz
)nk+1.

For eachα ∈ D and integert ≥ 0, let

(1.1) et
α(z, w) =

t

∑
s=0

t!
s!(t− s)!

ks
α(z)kt−s

α (w).

The Mittag-Leffler expansion of the finite Blaschke productφ0 is

φ0(z) =
K

∑
i=0

ni

∑
t=0

ct
i k

t
αi

(z),
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for some constants{ct
i}. Define

e0(z, w) =
K

∑
i=0

ni

∑
t=0

ct
i e

t
αi

(z, w).

Clearly,

e0(z, 0) = φ0(z).

Simple calculations give the following lemmas.

LEMMA 1.8. For eachα ∈ D andt ≥ 0, then

et
α(z, z) =

(t + 1)!zt

(1− ᾱz)t+2 .

LEMMA 1.9. For eachF(z, w) ∈ H2(T2),

〈F, et
α〉 = [(∂z + ∂w)tF(z, w)]|z=w=α.

Noting that the dimension ofL0 is N and{eti
αi (z, w) : 0 ≤ i ≤ K, 0 ≤ ti ≤ ni}

are linearly independent, we immediately have the following lemma.

LEMMA 1.10.

L0 = span{eti
αi (z, w) : 0 ≤ i ≤ K, 0 ≤ ti ≤ ni}

Consequently, the above lemma gives the following lemma.

LEMMA 1.11. For each functionF(z, w) ∈ kerT∗
φ(z) ∩ kerT∗

φ(w), there is a function

E(z, w) ∈ L0 such that

F(z, 0) = E(z, 0).

Theorem 17 in [2] only gives the existence of the family of functions{d(k)
e } ⊂

Lφ 	 L0. It will be useful to know how those functions are constructed frome. Theorem

1.14 will give a recursive formula of{d(k)
e }. First we need the following simple but useful

lemma.
For two functionsx, y in H2(T2), the symbolx ⊗ y is the operator onH2(T2)

defined by

(x⊗ y)g = [〈g, y〉H2(T2)]x

for g ∈ H2(T2).

LEMMA 1.12. On the Hardy spaceH2(T2), the identity operator equals

I = TzT∗z + ∑
l≥0

wl ⊗ wl = TwT∗w + ∑
l≥0

zl ⊗ zl .

By Lemma 1.12, a simple calculation gives the following lemma.
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LEMMA 1.13. Suppose thatφ(z) = zφ0(z) for some Blaschke productφ0(z) with
finite order. If f is a function inH2(T2), then for eachl ≥ 1,

T∗z−w(pl(φ(z), φ(w)) f ) = pl(φ(z), φ(w))T∗z−w f + φ0(z)pl−1(φ(z), φ(w)) f (0, w)
−φ0(w)pl−1(φ(z), φ(w)) f (z, 0).

By Lemma 1.13, a simple calculation gives the following theorem to obtain a recur-
sive formula for those functions{dk

e}, which will be used in the construction ofde.

THEOREM 1.14. Suppose thate is in L0 and {dk
e} are a family of functions in

H2(T2). Then for a given integern ≥ 1,

pl(φ(z), φ(w))e +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
e ∈ H,

for each1 ≤ l ≤ n, iff the following recursive formula holds

φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−wd1
e (z, w) = 0;

and

φ0(z)dk
e(0, w)− φ0(w)dk

e(z, 0) + T∗z−w(dk+1
e )(z, w) = 0,

for 1 ≤ k ≤ n− 1.

The following theorem is proved in [2] and is used in the proof of Theorem 1.16.

THEOREM 1.15. If for a function f ∈ H, pl(φ(z), φ(w)) f ∈ H, for eachl ≥ 0,
then there exists a constantλ such thatf = λe0.

Next for a givene ∈ L0, we will show that there is a unique functionde ∈ Lφ 	 e0
such that

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))de ∈ H
for eachl ≥ 1.

THEOREM 1.16. For a givene ∈ L0, there is a unique functionde ∈ Lφ 	 e0 such
that

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))de ∈ H
for eachl ≥ 1. If e is linearly independent ofe0, thende 6= 0. Moreover, the mapping

e → de

is a linear operator fromL0 intoLφ 	 e0.

Proof. First we show the existence ofde. For the givene, by Theorem 17 in [2],
there is a functiond1

e ∈ Lφ such that

p1(φ(z), φ(w))e + d1
e ∈ H.

By Theorem 1.14 we have

(1.2) φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−wd1
e (z, w) = 0.
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Sincee(z, w) is inH, by Lemma 1.6,d1
e (z, w) is symmetric with respect toz andw. In

addition,p1(φ(z), φ(w)) is also symmetric with respect toz andw. This gives

d1
e (z, w) = d1

e (w, z).

Thus
d1

e (z, 0) = d1
e (0, z).

By Lemma 1.11, choose a functionẽ(z, w) ∈ L0 such that

d1
e (z, 0) = ẽ(z, 0).

Hence
d1

e (0, z) = ẽ(0, z),

becausẽe(z, w) is also symmetric with respect toz andw. Let de = d1
e − ẽ. Clearly,

p1(φ(z), φ(w))e + de ∈ H,

and

de(z, 0) = de(0, z)

= d1
e (z, 0)− ẽ(z, 0) = 0.

Letting d̃1
e = de andd̃k

e = 0, for k > 1, by (1.2), we have following equations:

φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−wd̃1
e (z, w)

= φ0(z)e(0, w)− φ0(w)e(z, 0) + T∗z−w[d1
e (z, w)− ẽ(z, w)] = 0,

φ0(z)d̃k
e(0, w)− φ0(w)d̃k

e(z, 0) + T∗z−w(d̃k+1
e )(z, w)

= 0− 0− 0 = 0

for 1 ≤ k ≤ l− 1. The last equality in the first equation follows from thatT∗z−w ẽ(z, w) =
0. By Theorem 1.14, we conclude that

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))de ∈ H,

as desired.
Next we show that if there is another functionbe ∈ Lφ such that

pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))be ∈ H,

for eachl ≥ 1, thende − be = µe0 for some constantµ.
Since

pl−1(φ(z), φ(w))[de − be] = pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))de

−(pl(φ(z), φ(w))e + pl−1(φ(z), φ(w))be) ∈ H,

letting f = de − be, we have thatf ∈ H and

pl(φ(z), φ(w)) f ∈ H.

By Theorem 1.15, we obtain thatf = λe0 to conclude

de = be + λe0.
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If de = 0, i.e.,
pl(φ(z), φ(w))e ∈ H,

then Theorem 1.15 again implies thate = λe0. This gives that ife is linearly independent
of e0, thende 6= 0.

As showed above, we know that the mappinge → de is well-defined fromL0 into
Lφ 	 e0. To finish the proof we need to show that the mapping is linear. To do so, lete1
ande2 be inL0. For given constantsc1 andc2, we have

pl(φ(z), φ(w))e1 + pl−1(φ(z), φ(w))de1 ∈ H
pl(φ(z), φ(w))e2 + pl−1(φ(z), φ(w))de2 ∈ H
pl(φ(z), φ(w))[c1e1 + c2e2] + pl−1(φ(z), φ(w))dc1e1+c2e2 ∈ H.

Thus
pl−1(φ(z), φ(w))[c1de1 + c2de2 − dc1e1+c2e2 ] ∈ H,

for eachl ≥ 1. By Theorem 1.15,

c1de1 + c2de2 − dc1e1+c2e2 = c3e0,

for some constantc3. But de1 , de2 , anddc1e1+c2e2 are orthogonal toe0. We conclude

c1de1 + c2de2 − dc1e1+c2e2 = 0.

2. WEIGHTED SHIFTS

In this section we will characterize multiplication operators on the Bergman space
which is unitarily equivalent to a weighted shift of finite multiplicity to prove our main
result.

A weighted shiftT of finite multiplicity n on Hilbert spaceH is an operator that
maps each vector in some orthonormal basis{ek}∞

k=0 into a scaler multiple of the next
nth vector

Tek = wkek+n,
for all k. The sequence{wk} is called the weight of the weighted shiftT. In fact, T is
unitarily equivalent to the multiplication operator byzn on some Hilbert space of analytic
functions on the unit disk. [3] and [4] contain many results on the shift operators, which
will be used in this paper.

Indeed, a weighted shift of finite multiplicity is unitarily equivalent to a direct sum
of finite weighted shifts. The following theorem tells us that if a multiplication operator
on the Bergman space is unitarily equivalent to a weighted shift of finite multiplicity, then
the first construction in [2] will become much simpler.

THEOREM 2.1. Suppose thatφ is a Blaschke product with orderN. If there areN
mutually orthogonal reducing subspaces{Mi} of φ(B) such thatφ(B)|Mi is unitarily
equivalent to a weighted shift, then for eachei ∈ Mi ∩ L0 and eachl > 1,

dl
ei

= 0.
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Proof. By Theorem 1.2 we may assume thatφ(B)|M1 is unitarily equivalent to the
Bergman shift. Letei be a nonzero vector inMi ∩ L0. By Theorem 19 in [2], there are
functionsdl

ei
∈ Lφ 	 L0 such that

pl(φ(z), φ(w))ei +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
ei

∈ Mi.

Theorem 1.2 implies thatdl
e1

= 0 for l ≥ 1 andd1
ei
6= 0, for i > 1. Let

Eil = pl(φ(z), φ(w))ei +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
ei

.

ThenEil is in Mi and

φ(B)∗Eil = T∗φ(z)Eil

= P[φ(z)(pl(φ(z), φ(w))ei +
l−1

∑
k=0

pk(φ(z), φ(w))dl−k
ei

)]

= pl−1(φ(z), φ(w))ei +
l−2

∑
k=0

pk(φ(z), φ(w))dl−k
ei

= Ei(l−1).

The last equality follows from thatP(φ(z)ei) = 0, andP(φ(z)dl
ei
) = 0. Thus{Eil}l are

orthogonal to{Ejl}l for i 6= j and so{dl
ei
}l are orthogonal to{dl

ej
}l. Sincedim[Lφ 	 L0]

equalsN − 1 andd1
ei

does not equal zero fori > 1, {d1
ei
} form an orthogonal basis of

Lφ 	 L0. This gives that there are constantsβil such that

dl
ei

= βild1
ei

.

Becauseφ(B)|Mi is a weighted shift, there are an orthonormal basis{Fl} of Mi
such that

φ(B)Fl = al Fl+1

where{al} are weights ofφ(B) on Mi. ThusF0 is in the kernel of[φ(B)|Mi ]
∗, and so

F0 = λ0ei for some constantλ0. Sinceφ(B)∗F1 = a0F0, we have

φ(B)∗[F1 − a0λ0Ei1] = 0.

Thus

F1 = a0λ0Ei1 + µ1ei.

But bothF1 andEi1 are orthogonal toei. Soµ1 = 0. Hence there is a constantλ1 such
that

F1 = λ1Ei1.

By induction, we obtain that there are constantsλl such that

Fl = λlEil .
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This implies that{Eil} form an orthogonal set. Note

Eil = p1(φ(z), φ(w))ei + [
l−1

∑
k=0

pk(φ(z), φ(w))βi(l−k)]d
1
ei

.

We conclude thatβil = 0 for l > 1. This gives

Eil = p1(φ(z), φ(w))ei + pl−1(φ(z), φ(w))d1
ei
∈ Mi

anddl
ei

= 0 for l > 1. This completes the proof.

THEOREM 2.2. Suppose thatφ is a finite Blaschke product andφ(0) = 0. If φ has
a nonzero rootα, then there is a functione ∈ L0 such thatd0

e is not orthogonal toL0.

Proof. Recall thatL0 equalskerT∗
φ(z) ∩ kerT∗

φ(w) ∩ H. Assuming that for each

e ∈ L0, d0
e is orthogonal toL0, we will derive a contradiction.

Observe that{{esk
αk}sk=0,··· ,nk}k=0,··· ,K form a basis forL0. So for eache ∈ L0

there is a vector

(u0
0, · · · , un0

0 , · · · , u0
αK

, · · · , unK
αK ) ∈ CN

such that

e(z, w) =
K

∑
i=0

ni

∑
t=0

ut
αi

et
αi

(z, w).

Noting thatdimL0 = N, we see that

e → (u0
0, · · · , un0

0 , · · · , u0
αK

, · · · , unK
αK )

is a linear invertible mapping fromL0 ontoCN .
Let αj be a nonzero root ofφ with multiplicity nj + 1. Then

φ(t)(αj) = 〈φ, kt
αj
〉 = 0

for 0 ≤ t ≤ nj and

φ(nj+1)(αj) = 〈φ, k
nj+1
αj 〉 6= 0.

Becaused0
e is orthogonal toL0 and{et

αj
}t

t=0 is in L0, we have

0 = 〈d0
e , et

αj
〉

= 〈[wφ0(w)e(z, w)− we(0, w)e0(z, w)], et
αj
〉

= 〈wφ0(w)e(z, w), et
αj
〉 − 〈we(0, w)e0(z, w), et

αj
〉.

By Lemma 1.9,

〈wφ0(w)e(z, w), et
αj
〉 = {[∂z + ∂w]tφ(w)e(z, w)}|z=w=αj

=
t

∑
s=0

t!
s!(t− s)!

φ(s)(αj){[∂z + ∂w]t−se(z, w)}|z=w=αj

= 0.
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Thus

〈we(0, w)e0(z, w), et
αj
〉 = 0

for 0 ≤ t ≤ nj. By Lemma 1.9 again, we have

0 = 〈we(0, w)e0(z, w), et
αj
〉

= {[∂z + ∂w]twe(0, w)e0(z, w)}|z=w=αj

=
t

∑
s=0

t!
s!(t− s)!

(we(0, w))(s)(αi){[∂z + ∂w]t−se0(z, w)}|z=w=αj(2.1)

for 0 ≤ t ≤ nj. Whent = 0, the above equation gives

αje(0, αj)e0(αj, αj) = 0.

Noting thatαje(0, αj) = 0 is equivalent to

K

∑
i=0

ni

∑
t=0

ut
i e

t
αi

(0, αj) = 0,

we see that there is a functione in L0 such thatαje(0, αj) 6= 0. Hencee0(αj, αj) = 0.
Letting t = 1, (2.1) gives

αje(0, αj){[∂z + ∂w]e0(z, w)}|z=w=αj + (we(0, w))(1)|w=αj e0(αj, αj) = 0,

Thus

{[∂z + ∂w]e0(z, w)}|z=w=αj = 0.

By induction we obtain

{[∂z + ∂w]te0(z, w)}|z=w=αj = 0,

for 0 ≤ t ≤ nj. In particular,

0 = {[∂z + ∂w]nj e0(z, w)}|z=w=αj .

A simple calculation gives

{[∂z + ∂w]nj e0(z, w)}|z=w=αj = 〈e0, e
nj
αj 〉

= 〈enj
αj e0(z, w), 1〉

= 〈PH[e
nj
αj (z, w)e0(z, w)], 1〉.

Becausee
nj
αj is in H∞(T2) ande0(z, w) is inH, we have

PH[e
nj
αj (z, w)e0(z, w)] = PH[e

nj
αj (z, z)e0(z, w)].
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Thus

{[∂z + ∂w]nj e0(z, w)}|z=w=αj = 〈PH[e
nj
αj (z, z)e0(z, w)], 1〉

= 〈enj
αj (z, z)e0(z, w), 1〉

= 〈e0(z, w), e
nj
αj (z, z)〉

= 〈e0(z, 0), e
nj
αj (z, z)〉

= 〈φ0(z),
(nj + 1)!znj

(1− ᾱjz)
nj+2 〉.

On the other hand, we also have

0 = φ
(nj)
0 (αj)

= 〈φ0, k
nj
αj 〉

= 〈φ0,
nj!z

nj

(1− ᾱjz)
nj+1 〉.

Combining the above two equalities gives

0 = 〈φ0(z), [
znj

(1− ᾱjz)
nj+2 −

znj

(1− ᾱjz)
nj+1 ]〉

= 〈φ0(z),
ᾱjz

nj+1

(1− ᾱjz)
nj+2 〉.

Hence

φ
(nj+1)
0 (αj) = 〈φ0(z), k

nj+1
αj (z)〉

=
(nj + 1)!

ᾱj
〈φ0(z),

ᾱjz
nj+1

(1− ᾱjz)
nj+2 〉

= 0.

This contradicts the fact thatαj is a nonzero root ofφ0 with multiplicity nj + 1.
We are ready to prove our main result.
Proof of Theorem 0.1. We may assume that‖Mφ‖ = 1. Suppose thatMφ is

unitarily equivalent to the direct sum⊕N
i=1Wi whereWi is a weighted shift. Then

dimkerM∗
φ = ∑

i
dimkerW∗

i

and the essential spectrum ofMφ is

σe(Mφ) = ∪N
i=1σe(Wi).

Noting thatWi is subnormal, we see that the essential spectrum ofWi is a circle with
center at origin. So∪N

i=1σe(Wi) is a union of circles with the same center at origin. On
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the other hand, by Corollary 20 [6], the essential spectrum ofMφ is connected. Thus
∪N

i=1σe(Wi) is the unit circle and|φ(z)| = 1 onT. Soφ is an inner function.
We claim thatφ is a Blaschke product withN zeros in the unit disk. Ifφ is not

so, there is a singularityz0 ∈ T of φ(z) ( that is a point thatφ(z) does not extend
analytically), by Theorem 6.6 in [1], the cluster set ofφ(z) is the closed unit disk. Note
that a pointη in the cluster set ofφ(z) at z0 iff there are pointszn in D tending toz0 such
that φ(zn) converges toη. This implies that the cluster set ofφ(z) at every pointz0 on
the unit circle is contained in the essential spectrum ofMφ, which is a contradiction.

By Theorem 1.16, there areN linearly independent functions{ei} of L0 such that
{dei} are orthogonal toe0 and

pl(φ(z), φ(w))ei + pl−1(φ(z), φ(w))dei ∈ H.

Also we have

pl(φ(z), φ(w))ei + pl−1(φ(z), φ(w))d0
ei
∈ H,

for l ≥ 0. Thus

pl(φ(z), φ(w))(dei − d0
ei
) ∈ H.

Sodei − d0
ei

is in L0 and hence Theorem 1.15 gives that there are constantsλi such that

dei = d0
ei

+ λie0.

Sinceen0
0 is in L0 anddei is orthogonal toL0, we have

0 = 〈dei , en0
0 〉

= 〈d0
ei

, en0
0 〉+ λi〈e0, en0

0 〉.

On the other hand, Lemma 1.9 gives

〈e0, en0
0 〉 = 〈e0(z, w), en0

0 (z, z)〉
= 〈e0(z, 0), en0

0 (z, z)〉
= (n0 + 1)!〈φ0(z), zn0〉

= (n0 + 1)!φ(n0)
0 (0) 6= 0,

〈d0
ei

, en0
0 〉 = 〈wφ0(w)ei(z, w)− wei(0, w)e0(z, w), en0

0 (z, w)〉
= 〈φ(w)ei(z, w), en0

0 (z, w)〉 − 〈wei(0, w)e0(z, w), en0
0 (z, w)〉.

The Leibniz rule and Lemma 1.9 give

〈φ(w)ei(z, w), en0
0 (z, w)〉 = [(∂z + ∂w)n0(φ(w)ei(z, w))]|z=w=0

=
n0

∑
s=0

n0!
s!(n0 − s)!

φ(s)(0)[(∂z + ∂w)n0−sei](0, 0)

= 0.
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The last equality follows from the fact that0 is a root ofφ with multiplicity n0 + 1.
Similarly, we have

〈wei(0, w)e0(z, w), en0
0 (z, w)〉

= [(∂z + ∂w)n0(wei(0, w)e0(z, w))]|z=w=0

=
n0

∑
s=0

n0!
s!(n0 − s)!

(wei(0, w))(s)(0)[(∂z + ∂w)n0−se0](0, 0).

Lemmas 1.3 and 1.9 give

[(∂z + ∂w)n0−se0](0, 0) = 〈e0(z, w), en0−s
0 (z, w)〉

= 〈e0(z, w), en0−s
0 (z, z)〉

= 〈e0(z, 0), en0−s
0 (z, z)〉

= 〈φ0(z), (n0 − s + 1)!zn0−s〉
= 0

for 0 < s ≤ n0. The second equality follows from

PH[en0−s
0 (z, w)e0(z, w)] = PH[en0−s

0 (z, z)e0(z, w)].

Thus
n0

∑
s=0

n0!
s!(n0 − s)!

(wei(0, w))(s)(0)[(∂z + ∂w)n0−se0](0, 0) = 0,

and so
〈wei(0, w)e0(z, w), en0

0 (z, w)〉 = 0.

Hence we have that the constantλi = 0. Therefored0
ei

is orthogonal toL0 for eachi.
Noting that{ei} form a basis forL0 we see thatd0

e is orthogonal toL0 for eache ∈ L0.
By Theorem 2.2, we conclude thatφ = φN

λ , to complete the proof.

3. Decomposition ofH

The proof of Theorem 0.1 in the previous section suggests a more general result
stating that ifφ has more than two distinct roots and at least one root is repeated, thenH
can not be decomposed as a direct sum ofN reducing subspaces ofMφ. In this section
we will prove the result.

THEOREM 3.1. Suppose thatφ is a Blaschke product of orderN. If 0 is a zero and
a critical point of φ and the zero set ofφ contains at least one nonzero point in the unit
disk, thenH cannot be decomposed as a direct sum

⊕N−1
i=0 Mi of N mutually orthogonal

nontrivial reducing subspaces{Mi}N−1
i=0 of φ(B).

Proof. By the assumption, we may write

φ = zφ0 = zn0+1φ1,
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where

φ0 = zn0 φn1+1
α1 · · · φnK+1

αK

and

φ1 = φn1+1
α1 · · · φnK+1

αK

for some nonzero pointsα1, · · · αK in the unit disk and nonegative integersn0, · · · , nK.
Recall thatL0 is equal tokerT∗

φ(z) ∩ kerT∗
φ(w) ∩H. Then

L0 = span{1, p1, ..., pn0 , e0
α1

, ..., en1
α1 , ..., e0

αK
, ..., enK

αK}.

Assume thatφ(B) hasN mutually orthogonal nontrivial reducing subspaces{Mi}N−1
i=0

such that

H =
N−1⊕
i=0

Mi

whereM0 is the distinguished reducing subspaceM0 in Theorem 1.2.
By Lemma 1.10, for eachi, there is anei 6= 0 such thatei ∈ Mi ∩ L0, and

L0 = span{e0, e1, ..., eN−1}.

By Theorems 19 in [2], there are functions{d1
ei
} ⊂ Lφ 	 L0 such that

p1(φ(z), φ(w))ei + d1
ei
∈ Mi.

SinceMi is orthognal toMj for distinct i andj, we have

〈p1(φ(z), φ(w))ei + d1
ei

, p1(φ(z), φ(w))ej + d1
ej
〉 = 0

On the other hand, a simple calculation gives

〈p1(φ(z), φ(w))ei + d1
ei

, p1(φ(z), φ(w))ej + d1
ej
〉

= 〈p1(φ(z), φ(w))ei + d1
ei

, p1(φ(z), φ(w))ej〉+ 〈p1(φ(z), φ(w))ei + d1
ei

, d1
ej
〉

= 〈p1(φ(z), φ(w))ei, p1(φ(z), φ(w))ej〉+ 〈d1
ei

, d1
ej
〉

= 〈d1
ei

, d1
ej
〉.

The second equality follows from the fact thatdei anddej are inLφ 	 L0. The equality
follows sinceei andej are inL0. Thus,

〈d1
ei

, d1
ej
〉 = 0.

By Theorems 19 in [2], eachd1
ei
6= 0 for i > 0 and

{d1
ei
}N−1

i=1 ⊂ Lφ 	 L0

are linearly independent.
By Theorem 1.1, there are numbersβi, λi such that

(3.1) d1
ei

= d0
ei

+ βiei + λie0, i = 1, · · ·, N − 1.
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We will show thatd0
ei

ande0 are in

{1, p1, ..., pn0−1, e0
α1

, ..., en1−1
α1 , ..., e0

αK
, ..., enK−1

αK }⊥.

To do this, observe that for0 ≤ k ≤ n0,

−〈d0
ei

, pk〉
= 〈φ(w)ei − wei(0, w)e0, pk〉
= 〈φ(w)ei(w, w), pk(0, w)〉 − 〈wei(0, w)e0(w, w), pk(0, w)〉
= 〈φ(w)ei(w, w), wk〉 − 〈wei(0, w)(wφ′0(w) + φ0(w)), wk〉
= 〈wn0+1−kφ1(w)ei(w, w), 1〉 − 〈wn0+1−k[wφ′1(w) + (n0 + 1)φ1(w)]ei(0, w), 1〉
= 0.

The second equality follows from Lemma 1.3 and the third equality follows from Lemma
1.7.

Sinceet
αj

is in the kernel ofT∗
φ(w) andφ(s)(αj) = 0 for 0 ≤ s ≤ nj, we have that

for 0 ≤ t ≤ nj − 1 andj = 1, ..., K,

〈d0
ei

, et
αj
〉 = 〈wei(0, w)e0(w, w)− φ(w)ei, et

αj
〉

= 〈wei(0, w)e0(w, w), et
αj

(0, w)〉

= 〈wei(0, w)[wφ′0(w) + φ0(w)], et
αj

(0, w)〉

= 〈wei(0, w)φ′, kt
αj
〉

= (wei(0, w)φ′)(t)|w=αj

= 0,

and

〈d0
ei

, e
nj
αj 〉 = [wei(0, w)φ′(w)](nj)|αj

= αjei(0, αj)φ(nj+1)(αj).

These give that

(3.2) d0
ei
⊥ {1, p1, ..., pn0−1, e0

α1
, ..., en1−1

α1 , ..., e0
αK

, ..., enK−1
αK }.

We also have that for0 ≤ k ≤ n0 − 1

〈e0, pk〉 = 〈e0(w, w), pk(0, w)〉
= 〈φ′

(w), wk〉
= 0

and

〈e0, pn0〉 =
1

n0!
φ(n0+1)(0)

6= 0.
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A simple calculation shows that forj = 1, ..., K, 0 ≤ t ≤ nj − 1

〈e0, et
αj
〉 = [e0(w, w)](t)|αj

= φ(t+1)(αj)
= 0

and

〈e0, e
nj
αj 〉 = φ(nj+1)(αj)

6= 0.

These give

(3.3) e0 ⊥ {1, p1, ..., pn0−1, e0
α1

, ..., en1−1
α1 , ..., e0

αK
, ..., enK−1

αK }.

We claim that there are at mostK nonzeroβi’s. If βi0 does not equal0 for somei0,
(3.1) yields

ei0 =
1

βi0
[d1

ei0
− d0

ei0
− λi0 e0].

Noting thatd1
ei

is orthogonal toL0, by (3.2) and (3.3) we have

ei0 ⊥ {1, p1, ..., pn0−1, e0
α1

, ..., en1−1
α1 , ..., e0

αK
, ..., enK−1

αK }.

Thus

(3.4) ei0 ⊥ {1, p1, ..., pn0−1, e0
α1

, ..., en1−1
α1 , ..., e0

αK
, ..., enK−1

αK , e0}.

So there are at mostK nonzeroβi’s and hence our claim holds.
On the other hand ifβi = 0, then (3.1) gives

d1
ei

= d0
ei

+ λie0.

Sincepn0 is in L0 andd1
ei
⊥ L0, we have thatd0

ei
⊥ pn0 , and

〈e0, pn0〉 6= 0,

to obtain thatλi = 0 andd0
ei

= d1
ei

is orthogonal toL0. By Theorem 2.2, there is at least
one nonzeroβi.

Without loss of generality, assume that for somem, βN−j 6= 0 for 1 ≤ j ≤ m and
β j = 0 for 1 ≤ j ≤ N −m− 1. (3.4) gives

eN−j ⊥ {1, p1, ..., pn0−1, e0
α1

, ..., en1−1
α1 , ..., e0

αK
, ..., enK−1

αK , e0}

for 1 ≤ j ≤ m. Now we extend

{1, p1, ..., pn0−1, e0
α1

, ..., en1−1
α1 , ..., e0

αK
, ..., enK−1

αK , e0, eN−1, ..., eN−m}

to a basis ofL0:

{1, p1, ..., pn0−1, e0
α1

, ..., en1−1
α1 , ..., e0

αK
, ..., enK−1

αK , e0, eN−1, ..., eN−m, f1, ..., fK−m}
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by adding some elementsf1, ..., fK−m in L0. Let {gj}N−m−1
j=1 denote

{1, p1, ..., pn0−1, e0
α1

, ..., en1−1
α1 , ..., e0

αK
, ..., enK−1

αK , f1, ..., fK−m}.

Since for1 ≤ j ≤ N −m− 1, ej is in L0 and

ej ⊥ {e0, eN−1, ..., eN−m}
we have thatej is in the subspacespan{1, g2, ..., gN−m−1} of L0. This implies that there

are numbers{cjl}N−m−1
j,l=1 such that for1 ≤ j ≤ N −m− 1

(3.5) ej = cj1 + cj2g2 + · · ·+ cjN−m−1gN−m−1.

On the other hand, becauseβ j = 0 for 1 ≤ j ≤ N −m− 1, we have thatd0
ej

= d1
ej

is orthogonal toL0, and

〈d0
ej

, en1
α1 〉 = α1ej(0, α1)φ(n1+1)(α1)

= 0.

This implies thatej(0, α1) = 0. Hence (3.5) gives

ej(0, α1) = cj11 + cj2g2(0, α1) + · · ·+ cjN−m−1gN−m−1(0, α1)
= 0

for 1 ≤ j ≤ N − m − 1. Thus the determinantdet[cjk] of the coefficient matrix of the
above system must be zero. So There is a nonzero vector(x1, · · · , xN−m−1) such that

c1l x1 + c2l x2 + · · ·+ cN−m−1l xN−m−1 = 0

for 1 ≤ l ≤ N −m− 1. This implies

x1e1 + x2e2 + · · ·+ xN−m−1eN−m−1 = 0.

We obtain a contradiction thate1, ..., eN−m−1 are linearly independent to complete the
proof.
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