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INTRODUCTION

Let D be the open unit disk iC. LetdA denote Lebesgue area measure on the
unit disk D, normalized so that the measurelbfequalsl. The Bergman spack? is
the Hilbert space consisting of the analytic functionsidrihat are also in the space
L%(D,dA) of square integrable functions @ Because the nonnegative powdes }
span the Bergman spagg, {v/n + 1z" neo form an orthonormal basis ae.

For a bounded analytic functighon the unit disk, the multiplication operatdf,
is defined on the Bergman spabkgiven by

Mgh = ¢
forh € L2

Lete, = v/n+ 1z". Then{e, }§° form an orthonormal basis of the Bergman space
L2. On the basige, }, the multiplication operatoM, by z is a weighted shift operator:

[n+1
Mzen = men+l.

So it is usually called the Bergman shift.

A reducing subspack] for an operatofl’ on a Hilbert spacé{ is a subspac#/ of
H suchthafM C M andT*M C M. In[2] and [7] we have studied reducing subspaces
of multiplication operators on the Bergman space via the Hardy space of the bidisk. The
multiplication operatoMI; is a weighted shift. The general multiplication operadg
is a holomorphic calculus of the weighted shift. Shift operators have been studied very
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extensively [3], [4]. In [5], Stessin and Zhu obtained a complete description of the reduc-
ing subspaces of weighted unilateral shift operators of finite multiplicity to shed a light
on thatM_~ on the Bergman space hasnontrivial minimal reducing subspaces, but the
multiplication operator byN on the Hardy space has infinitely many reducing subspaces.
A natural question is to characterize the multiplication operators on the Bergman
space unitarily equivalent to a weighted unilateral shift operators of finite multiplicity.
This paper continues our study on the multiplication operatégson the Bergman space
in [2], [7] by using the Hardy space of the bidisk to completely answer the question.
Our main result of this paper almost says that allyy up to unitary equivalence is a
weighted unilateral shift operator of finite multiplicity.

THEOREMO.1. Ifthe multiplication operatoM,, on the Bergman space is unitarily
equivalent to a weighted unilateral shift operator of finite multiplicity, tifes: ccpﬁ\\’, for

a constant and some Mdbius transforgy (z) = f_‘/_\AZ.

Let T denote the unit circle. The tord¥ is the Cartesian produ@ x T. Letdo be
the rotation invariant Lebesgue measurél8n The Hardy spacéi?(T?) is the subspace
of L2(T?, do), each function inH?(T?) can be identified with the boundary value of
the function holomorphic in the bidigd? with the square summable Fourier coefficients.
The Toeplitz operator ofi?(T?) with symbol f in L*(T?, do) is defined by

Ty(h) = P(fh),

for h € H?(T?) whereP is the orthogonal projection froi? (T2, do) onto H?(T?).
For each integen > 0, let

n . .
pu(z,w) =Y Zw"
i=0

Let H be the subspace &f?(T?) spanned by function§p,, }%_,. Thus
H*(T?) = H @ cl{(z — w)H?*(T?)}.
Let
B = PyT:|y = PyTuwln
wherePy, be the orthogonal projection froi? (T2, do) onto’H. SoB is unitarily equiv-
alent to theBergman shift M, on the Bergman spade via the following unitary operator
u:L12(D) — H,
uZVl _ pn(zlw)‘
n+1

This implies that the Bergman shift is lifted up as the compression of an isometry on a
nice subspace dfi>(T?). Indeed, for each Blaschke prodyetz) with finite order, the
multiplication operatoiM, on the Bergman space is unitarily equivalenipt@) on H.

By Lemma 17 in [2], it is easy to see that for each Blaschke proglweith order
N, H can be decomposed as a direct sum of at mbséducing subspaces af,. We
will show that if ¢ has more than two distinct roots and at least one root is repeated, then
'H can not be decomposed as a direct sulN eéducing subspaces My, (Theorem 3.1).
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1. PREMIMINARIES

We need some basic constructions from [2]. Let
K¢ = span{¢' (z)¢*(w)H; 1,k > 0}.
ThenKy is a reducing subspace for bdf}y .y andTy,,), and sol,) andT ) are also
a pair of doubly commuting isometries &t. Introduce the wandering space
Ly= kerT$(Z) N kerTg(w) N K.
Let Ly bekerT;(Z) N kerTq‘;(w) N'H. In [2], for eache € L, we construct functions
{d%} andd? in £ such that for each> 1,

-1
pi(9(z), p(w))e + kZ Pr((2), p(w))d, " € H
=0

and

pi(9(2), p(w))e + pi1(9(2), p(w))de € H.
We have a precise formula df butd® is orthogonal tdcerTg(Z) N kerT$<w) N, and for
a reducing subspackt, ande € M,

-1
pi(p(2), p(w))e + kZ pe(9(z), p(w))dF e M.
=0

The relation betweed! andd? is given in [2] and stated as follows:

THEOREM 1.1. If M is a reducing subspace ¢f(5) orthogonal to the distin-
guished reducing subspackt, for eache € M N Ly, then there is an elemeit €
M N Ly and a numbeA such that
dl = d% + &+ Aep.
In this paper we often use the above theorem and the following theorem in [2].
THEOREM 1.2. If ¢ is a finite Blaschke product, then there is a unique reducing

subspaceM, for ¢(B) such thatp(B)| 4, is unitarily equivalent to the Bergman shift.
In fact,

Mo = spanp>o{pi(¢(z), ¢(w))eo},

p9(2)9(w))ep Yoo :
and{ Vel }&° form an orthonormal basis oM.

We call M|, to be the distinguished reducing subspacefds).
The following lemmas give some properties for functionggror .

LEMMA 1.3. If fis in H?(T?) and continuous on the closed bidisk anis in 7,
then

{(fzw)e(z,w)) = (f(z2)e(20) = (f(w,w),e0,w)).
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The proofs of the above lemma and the following lemmas are easy and left for
readers.

LEMMA 1.4. For h(z,w) € H?(T?), hisin H* iff h(z,z) = 0, for z € D.

LEMMA 1.5. Suppose that(z, w) is in H. If e(z,z) = 0 for eachz in the unit
disk, there(z, w) = 0 for (z, w) on the torus.

The above lemma tells us that a functiorHiis completely determined by its value
on the diagonal. The following result says thét, w) is symmetric with respect toand
w.

LEMMA 1.6. If e(z, w) is in H, then
e(z,w) = e(w,z).
LEMMA 1.7. Supposé€(z, w) isin H. LetF(z) = f(z,0). Then
f(AA) =AF(A)+F(A),
for eachA € D.

Fora € D, letk, be thereproducing kernel of the Hardy spacéi?(T) ata. That
is, for each functiorf in H2(T),
fa) = (f, ka)-

For an integes > 0, define
S

slz
ka(2) = Tzt
Let ¢ be a Blaschke product with zere@sk}{)< anday repeatsy, + 1 times. That is,
K
_ zZ—= D(k nk—i-l
z) = —_— .
0@ = 16—
The order ofp is given by
K
N=Y) (nj+1).
i=0
We assume thaty = 0, and so¢p(z) = z¢o(z) wheregy is the following Blaschke
product:
polz) — 20 [ [(Z= eyt
0 =1 11—z ’
For eachw € D and integet > 0, let
! t
t _ s t—s
(11) etx(zlw) - S;O S'(t _ S)!kzx(z)klx (w)

The Mittag-Leffler expansion of the finite Blaschke prodgigis

() =3 3 ek (2),

i=0t=0



MULTIPLICATION OPERATORS ANDSHIFTS 5

for some constantfc! }. Define

K n;
eo(z,w) =Y ) clel, (z,w).

i=0 t=0
Clearly,
eo(z,0) = ¢o(2).
Simple calculations give the following lemmas.

LEMMA 1.8. For eacha € D andt > 0, then

1)!zt
el (z, )—m.

LEMMA 1.9. For eachF(z, w) € H?(T?),

(F,en) = [(9z + 0w) F(z,w)]|z=w—s-

Noting that the dimension dfy is N and{e,’;fz. (zzw):0<i<K 0<t <mn}
are linearly independent, we immediately have the following lemma.

LEMMA 1.10.

Ly = Span{e,t,jl.(z,w) :0<i<K 0<t<mn}
Consequently, the above lemma gives the following lemma.

LEMMA 1.11. For each functiorf (z, w) € kerT(;;(Z) ﬂkerTg(w),there is a function
E(z,w) € Ly such that
F(z,0) = E(z,0).
Theorem 17 in [2] only gives the existence of the family of functi«{dék)} C
Ly © Lo. It will be useful to know how those functions are constructed feomiheorem

1.14 will give a recursive formula c{fdgk) }. First we need the following simple but useful
lemma.

For two functionsx, y in H2(T?), the symbolx ® y is the operator orH?(T?)
defined by

(x®y)g = (& ¥)r2(12)lx

for ¢ € H2(T?).

LEMMA 1.12. On the Hardy spacéf?(T?), the identity operator equals

I = LT +)Y vew=T,T;+) 7.
1>0 1>0
By Lemma 1.12, a simple calculation gives the following lemma.
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LEMMA 1.13. Suppose thap(z) = z¢o(z) for some Blaschke produgp(z) with
finite order. If f is a function inH?(T?), then for each > 1,

T w(pi(9(2),0(w))f) = pi(9(2), ¢(w)) To_iof + Po(2) p1-1(¢(2), (w)) £ (0, w)
—¢o(w)p1-1(¢(2), ¢(w))f(2,0).

By Lemma 1.13, a simple calculation gives the following theorem to obtain a recur-
sive formula for those functiongd* }, which will be used in the construction df.

THEOREM 1.14. Suppose that is in Lo and {dX} are a family of functions in
H?(T?). Then for a given integer > 1,

-1
pi(¢p(z), p(w))e + kZ pr(¢(2), p(w))di ¥ e N,
=0

for eachl <[ < n, iff the following recursive formula holds
do(z)e(0,w) — po(w)e(z,0) + Ti_,dL(z,w) = 0;
and
$o(2)de (0,w) — o(w)dy(2,0) + Ti_ (dh ) (z,w) =0,
forl <k<n-1.
The following theorem is proved in [2] and is used in the proof of Theorem 1.16.

THEOREM1.15. If for a functionf € H, p;(¢(z),¢(w))f € H, for eachl > 0,
then there exists a constahtsuch thatf = Aey.

Next for a givere € Ly, we will show that there is a unique functidp € Ly © eg
such that

pi(¢(2), ¢(w))e + pi1(9(2), p(w))de € H

for eachl > 1.

THEOREM1.16. For a givene € Lo, there is a unique functiod, € Ly © ey such
that

pi(¢(2), ¢(w))e + pia(9(z), p(w))de € H

for eachl > 1. If e is linearly independent afy, thend, # 0. Moreover, the mapping
e —d,
is a linear operator fromlg into £y © eo.

Proof. First we show the existence df. For the givere, by Theorem 17 in [2],
there is a functiom! L such that

p1(o(2), ¢(w))e +di € H.
By Theorem 1.14 we have

(1.2) ¢o(2)e(0,w) — do(w)e(z,0) + Ti_,dy (z,w) = 0.
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Sincee(z, w) is in H, by Lemma 1.64. (z,w) is symmetric with respect toandw. In
addition,p; (¢(z), ¢(w)) is also symmetric with respect toandw. This gives

dl(z,w) = d}(w,z).
Thus
d}(z,0) = d}(0,z).
By Lemma 1.11, choose a functiéfz, w) € L, such that
dl(z,0) = é(z,0).
Hence
d;(0,2) = 2(0,2),
becausé(z, w) is also symmetric with respect toandw. Letd, = d} — é. Clearly,
p1(9(2), p(w))e +de € H,
and
de(2,0) = d.(0,2)
= d}(z,0) —&(z,0) = 0.
Lettingd! = d, andd® = 0, for k > 1, by (1.2), we have following equations:
90(2)e(0, ) — o (w)e(z,0) + T, (2, w)
= ¢o(2)e(0,w) — do(w)e(z,0) + T, [dL(z, w) — é(z,w)] =0,
¢0(2)d (0,w) — go(w)dy (z,0) + T, (d ) (2, w)
= 0-0-0=0

for1 < k <1—1.The last equality in the first equation follows from that ,é(z, w) =
0. By Theorem 1.14, we conclude that

pi(9(z), ¢(w))e + pi-1(¢p(2), p(w))de € H,
as desired.
Next we show that if there is another functibne L, such that

pi(¢(2), ¢(w))e + pia(9(z), p(w))be € H,

for eachl > 1, thend, — b, = ue( for some constant.
Since

pi-1(¢(2), p(w))[de = be] = pi(¢(2), p(w))e + pr-1(¢(2), P(w))de
—(p(¢(2), p(w))e + p1-1(9(2), (w))be) € H,
letting f = d. — b,, we have thaf € ‘H and
pi(@(2), ¢(w))f € H.
By Theorem 1.15, we obtain thit= Aej to conclude
de = be + Aeg.
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Ifd, =0,i.e.,
pi(¢(2), ¢p(w))e € H,
then Theorem 1.15 again implies that Aey. This gives that it is linearly independent
of eg, thend, # 0.
As showed above, we know that the mapping> d. is well-defined fromL into
Ly © eg. To finish the proof we need to show that the mapping is linear. To do sa, let
ande;, be inLy. For given constants; andc,, we have

pi(¢(z), p(w))er + pr-1(P(2), p(w))de, € H
pi(¢(z), p(w))ez + pr-1(P(2), p(w))de, € H
pi(¢(z), p(w))[c1e1 + c2e2] + pr-1(P(2), §(w))deyey +cre, € H-
Thus
Pi-1(9(2), ¢(w))[crde, + c2de, — deyey+eres] € H,
for eachl > 1. By Theorem 1.15,

C1d€1 + Czdez - dc1e1+czez = (€360,
for some constant. Butd,, , d.,, andd.,e, +c,e, are orthogonal teg. We conclude

Cldel + Czdt’z - dC]€1+C262 =0.

2. WEIGHTED SHIFTS

In this section we will characterize multiplication operators on the Bergman space
which is unitarily equivalent to a weighted shift of finite multiplicity to prove our main
result.

A weighted shiftT of finite multiplicity » on Hilbert spaced is an operator that
maps each vector in some orthonormal bgsjs;;> , into a scaler multiple of the next
nth vector

Tey = wiekyn,
for all k. The sequencéw } is called the weight of the weighted shift In fact, T is
unitarily equivalent to the multiplication operator b§ on some Hilbert space of analytic
functions on the unit disk. [3] and [4] contain many results on the shift operators, which
will be used in this paper.

Indeed, a weighted shift of finite multiplicity is unitarily equivalent to a direct sum
of finite weighted shifts. The following theorem tells us that if a multiplication operator
on the Bergman space is unitarily equivalent to a weighted shift of finite multiplicity, then
the first construction in [2] will become much simpler.

THEOREM2.1. Suppose thap is a Blaschke product with ordeX. If there areN
mutually orthogonal reducing subspacgs; } of ¢(B) such thatp(B)|y; is unitarily
equivalent to a weighted shift, then for eaghe M; N Ly and each > 1,

dy = 0.
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Proof. By Theorem 1.2 we may assume tigai3)|,,, is unitarily equivalent to the
Bergman shift. Let; be a nonzero vector iM; N Ly. By Theorem 19 in [2], there are
functionsd,, € Ly © Lo such that

pl(‘P el + Z Pk )dl k M;.

Theorem 1.2 implies thai’e =0forl >1 anddg. #0,fori > 1. Let

Ei = pi(¢(z), ¢(w))e; + Z Pr(¢ w))dg, "
ThenE; is in M; and
$(B)'Eqy = Ty Ei
= Plp(2)(pi(9(2),¢(w))e; + Z Pr(¢ w))de; )]
= pi-1(9(), Pp(w))e; + Zpk w))dy;
= Ejg-1)-

The last equality follows from tha?(¢(z)e;) = 0, andP(¢(z)d- ) = 0. Thus{E; }, are
orthogonal to{ Ej; }, for i # jand so{dél_}l are orthogonal théj}l. Sincedim[Ly © Lo
equalsN — 1 anddgi does not equal zero far> 1, {dgi} form an orthogonal basis of
Ly © Lo. This gives that there are constafifssuch that

dg, = Bids,-
Becausep(B)|;, is a weighted shift, there are an orthonormal bdsig of M;
such that

¢(B)F = ajF14
where{a;} are weights ofp(B3) on M;. ThusF is in the kernel off¢(B)|a,]*, and so
Fy = Age; for some constam. Since¢p(B)*F, = apFy, we have
¢(B)*[F1 — apAoEi1] = 0.
Thus
Fy = agAoEi + pae;.

But bothF; andE;; are orthogonal te;. Sou; = 0. Hence there is a constait such
that

B =ME;j.
By induction, we obtain that there are constahtsuch that

F = ME;.
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This implies that{ E; } form an orthogonal set. Note

Ej = p1(¢(2), Z pi(¢ w))Bi1—k))de,-

We conclude thag;; = 0 for [ > 1. This gives
Eir = p1(9(2), p(w))e; + pr-1(¢(2), p(w))de, € M;

anddlei = (0 for ! > 1. This completes the proof.

THEOREM2.2. Suppose thap is a finite Blaschke product ang0) = 0. If ¢ has
a nonzero rook, then there is a function € Ly such thati? is not orthogonal td..

*
Proof. Recall thatLy equalskerT 0(2) N kerT(p(w)

e € Ly, d% is orthogonal td., we will derive a contradiction.
Qbserve thal{{e,iﬁ{ }si=0,-- m; Jk=0,.- x form a basis forLy. So for eache € Ly
there is a vector

N H. Assuming that for each

0 n 0 n N
(u()r"' ,uool... /utXK/"' ,uaﬁ) € (
such that

Z Z ”alé’a, z,Ww)

i=0t=
Noting thatdimLy = N, we see that

0 no ng
e — (uo,...,uo /”'/uﬂc[(/”'/uﬂlK>

is a linear invertible mapping frorhy ontoCV.
Leta; be a nonzero root af with multiplicity 7; + 1. Then

9 (w)) = (9, kL) =
for0 <t < n; and
,+1>

pU D () = (9,

Becausel! is orthogonal td.q and{ea

£0.

t_,isin Ly, we have

= ([wgpo(w)e(z, w) — we(0,w)eg(z, w)], e ]>

= (wpo(w)e(z,w), ek} — (we(0, w)eo(z w), e, ).

]
By Lemma 1.9,

(wpo(w)e(z,w),eh) = {12+ el p(w)elz )} momsy
tis)!(/l)(s)(‘xj){[az + 0] e (2, W) } lz=w=e

< s!(t

Il
Mﬁ

I
=1
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Thus
(we(0,w)ey(z, w),eij,) =0

for0 <t <n;. By Lemma 1.9 again, we have

(
= {[92 + 0] we (0, w)e (2, W) }z=ww=a;

! t
(2.1) :s;)m(we(orw))()( a;){ [0 + 9w]' *e0 (2, W) }|z=w=y

for 0 <t < n;. Whent = 0, the above equation gives

aje(0,aj)eo(aj, aj) = 0.

Noting thata]-e(o, a]-) = ( is equivalent to

K n;
Y Y uje (0,a) =0,
i=0t=0

we see that there is a functienin Ly such thate(0,«;) # 0. Henceep(a;, «;)
Lettingt =1, (2.1) gives

aje(0,){[9z + dw]eo (2, W) }z=w—a; + (we(0, )M |wg;e0(w;, a)) =0,
Thus
{[0z + dwleo(z, W) } |z=w=a; = 0.
By induction we obtain
{12: +8u)'e0(2,0) }zmoma, = 0,

for 0 <t < n;. In particular,

0 = {[9z + 9uw]"leo(z, ) }Hz=w=s;-

]
A simple calculation gives
{19z + 3u]"eo(z, @) Hemw—a; = {e0,u)
= (edeo(zw),1)
= (Puled (zw)eo(z,w)], 1),

Because?Z; is in H*(T?) andeg(z, w) is in H, we have

Py [eZ; (z,w)ep(z,w)] = Py [eZ;(z,z)eO(z,w)].

11

= 0.
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Thus
{19z +u)"leo (2, W) Hamwma; = (Puleal(z,2)e0(zw)],1)
= (e (z2)eo(zw), 1)
= {eo(z ), ) (2,2))
= (eo(z,0),e4(2,2))
, n
= ), )
On the other hand, we also have
0 = o)
= (4’01k2§>
nilz"i
= {0, !

(1 _ E{jZ)nj+1 '

Combining the above two equalities gives

Z" Z"i
0 =(%l2). [(1 —az)t? (1- Ec]-z)”i*lb
B Ec]-z”fﬂ
= (¢o(z), W :
Hence
0V () = (po(2), KT ()
_ (mj+ 1) az"t!
- 5‘]' <¢0(Z ’ (1 - &jZ)nj+2>

=0.

This contradicts the fact thaf is a nonzero root o, with multiplicity n; + 1.

We are ready to prove our main result.

Proof of Theorem 0.1. We may assume thatM,|| = 1. Suppose thaM is
unitarily equivalent to the direct su@filwi whereW; is a weighted shift. Then

dimkerM;‘, = Z dimkerW;
1

and the essential spectrumafy is
0e(My) = U 0 (W;).

Noting thatW; is subnormal, we see that the essential spectrui,ofs a circle with
center at origin. Smjilil(re(wi) is a union of circles with the same center at origin. On
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the other hand, by Corollary 20 [6], the essential spectrunMgfis connected. Thus
UN ,0e(W;) is the unit circle and¢(z)| = 1 onT. So¢ is an inner function.

We claim thatp is a Blaschke product wittN zeros in the unit disk. 1 is not
so, there is a singularityy € T of ¢(z) ( that is a point thatp(z) does not extend
analytically), by Theorem 6.6 in [1], the cluster setgdf) is the closed unit disk. Note
that a pointy in the cluster set ap(z) atz iff there are points,, in D tending tozy such
that¢(z,) converges toy. This implies that the cluster set ¢fz) at every point on
the unit circle is contained in the essential spectrunvigf which is a contradiction.

By Theorem 1.16, there ai¥ linearly independent functiong&; } of Ly such that
{d.,} are orthogonal tey and

pi(¢(z), p(w))ei + pi-1(¢(z), p(w))de; € H.
Also we have

p1(@(2), (w))e; + pi-1(p(2), p(w))dY, € H,
for! > 0. Thus

pi(#(z), p(w)) (de, — d) € H.
Sod,, — dg. is in Ly and hence Theorem 1.15 gives that there are constastsch that
dei = dgl, + Ajep.
Sinceeg0 is in Lo andd,, is orthogonal td.g, we have

0 = <del n0>
(g, ) + Aileo, €°).-

On the other hand, Lemma 1.9 gives

(e, 6p”) = (eo(z,w),ep°(z,2))
= (e0(2,0),¢,°(2,2))
= (np +1)! ( ( ),2")
= (mp +1)1¢5™) (0) # 0,
(d2,eg®) =

ool 10) we; (0, w)eo(z, w), el (2, w))
= (p(w)ei(z,w), e’ (z,w)) — (we; (0, w)eo(z,w), " (z,w)).
The Leibniz rule and Lemma 1.9 give

(p(w)ei(z,w), e’ (z,w)) = [(0:+ aw)”o (@(w)ei(z, w))]|z=w=0

nZ‘ '(ng —s) )(0)[(82 +94)" ¢;](0,0)
0.
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The last equality follows from the fact théitis a root of¢ with multiplicity ng + 1.
Similarly, we have
(we; (0, w)eg(z,w), e, (z,w))
= [(3: + )" (wei 0, w)eo (2, )] |z—o

10

= L iy —oyi (e 00D P O)1(0: +0)" 0] (0,0).

Lemmas 1.3 and 1.9 give
[(9z 4 9w)"™ €] (0, 0)

for 0 < s < ny. The second equality follows from

Py e *(z,w)ep(z,w)] = PH[MEO(Z, ).
Thus
“ S!(T();S)!(wei(o, w))(S)(O)[(aZ +9)"0 %] (0,0) = 0,
and so

(we; (0, w)eg(z, w), ey’ (z,w)) = 0.
Hence we have that the constant= 0. Thereforedgi is orthogonal tol, for eachi.

Noting that{e;} form a basis forly we see thaﬂg is orthogonal td. for eache € L.
By Theorem 2.2, we conclude that= ¢, to complete the proof.

3. Decomposition of{

The proof of Theorem 0.1 in the previous section suggests a more general result
stating that ifp has more than two distinct roots and at least one root is repeatediithen
can not be decomposed as a direct sunWakducing subspaces dfl,. In this section
we will prove the result.

THEOREM3.1. Suppose thap is a Blaschke product of orde¥. If 0 is a zero and
a critical point of ¢ and the zero set af contains at least one nonzero point in the unit
disk, therfH cannot be decomposed as a direct @ﬁgl M; of N mutually orthogonal
nontrivial reducing subspacesV; } Y ! of ¢(B).

Proof. By the assumption, we may write

1
¢ =z¢p = 2"y,



MULTIPLICATION OPERATORS ANDSHIFTS 15

where
n1+1 ng+1
<PO = ZnO(sz% .. "Poq[é

and
ny+1 ng+1
¢1=nl - Pk

for some nonzero points, - - - ag in the unit disk and nonegative integers - - - , ng.
Recall thatly is equal tokerT;(z) N kerT;j(w) NH. Then

0 n 0 n
Lo = span{1,py, ..., Prgs €y s -eor €y eer Cogr s eak }.

Assume thaip(B) hasN mutually orthogonal nontrivial reducing subspaded; figl
such that

N-1
H=EP M,
i=0
whereM is the distinguished reducing subspaleg) in Theorem 1.2.
By Lemma 1.10, for each there is are; # 0 such thae; € M; N Ly, and
Lo = span{eg, e1,...,eN—1}-
By Theorems 19 in [2], there are functio{lsgi} C Ly © Lo such that
pL(¢(2), @(w))e; + d, € M.
SinceM,; is orthognal taV; for distincti andj, we have
(1(@(2), 9 (w))e; + L, p1(§(2), p(w))e; +db ) =0
On the other hand, a simple calculation gives
(P1(p(2), p(w))ei +de, p1(9(2), p(w))e; + dg)
= (p1(9(2), p(w))e; + dy, pr(¢(2), (w))ej) + (p1(9(2), p(w))e; + g, do )
= (p1(9(2), p(w))ei, p1(9(2), p(w))ej) + {dg,, do)

The second equality follows from the fact thkt andde]. are inLy © Ly. The equality
follows sincee; ande; are inLy. Thus,

By Theorems 19 in [2], eaoih}i # 0fori > 0and
{de 35! C Lye Lo

are linearly independent.
By Theorem 1.1, there are numbgs A; such that

(3.1) dy =d) + Bie;+ Aieg,i =1, -, N — 1.
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We will show thatd?. ande are in

0 ny— 1 ng— 151
{1/ Pl/-'-/ P}’lo*l/ eall eﬂcl 7 eaK/ eIJKK }

To do this, observe that for < k < ny,
—(d2,, pr)
(w)e; — we;(0,w)eo, pi)
p(w)ei(w,w), pr(0,w)) — (we;(0, w)eo(w, w), pi(0,w))
p(w)ei(w,w), w*) — (we;(0,w) (weh(w) + go(w)), w*)
Wy (w)ei(w, w), 1) — (@ wgf (w) + (ng + 1)1 (w)]ei (0, w), 1)
0.

The second equality follows from Lemma 1.3 and the third equality follows from Lemma
1.7.

(¢
(
(
(

Since}, is in the kernel off; and¢®) (j) = 0for 0 < s < n;, we have that
for0 <t < nj— landj=1,..,K,

(o en) = (wei(0,w)eo(w,w) — P(w)ei e )
= (we; (0, w)eg(w, w), et,(O w))
= (we;(0, w) [wey(w) + po(w)], ex, (0, w))
— (e (0, )9 K,
= (wei(ozw)¢/)(t>|w:txj
=0,
and
@0,y = [wes(0, w)e! ()]

These give that

-1 —
(3.2) dgi 1{1,p1, ., pno,l,egl,. € ,...,egk,...,e% 1}.
We also have that fad < k < np—1

(eo,pk) = (eo(w,w), px(0,w))
= (¢ (w), w)

and
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A simple calculation shows that for=1, ..., K,0 < t < nj— 1

(o €0,) = leo(w, )] V)],
47(t+1>(06])
=0
and
(eo ey = ¢ ()
# 0.
These give
(3.3) €0 L {1, Pty s Prg—1,€0 il eyl e etk

We claim that there are at mastnonzerog;’s. If g;, does not equd) for somei,
(3.1) yields

_1n 0
elo - ‘Biio[deio - di’io - )\1060]'
Noting thatdgi is orthogonal td.g, by (3.2) and (3.3) we have
-1 _
Cip L AL P Prg—1,€0s sl €0 s Ol .
Thus
(3.4) eip L AL, 1, Prg-1,€0,, oo eZ%fl,..., €0 s eZﬁfl,eo}.

So there are at most nonzeroB;’s and hence our claim holds.
On the other hand i; = 0, then (3.1) gives

dgi = dgl, + Ajep.
Sincepy, is in Ly andd(}i 1 Ly, we have thaﬂg L py,, and

<€0, p”0> 7é 0/

to obtain that\; = 0 andd), = d;. is orthogonal td. By Theorem 2.2, there is at least
one nonzerg;.

Without loss of generality, assume that for someBy; # 0for1 < j < m and
pj=0forl1 <j<N-—m—1.(3.4)gives

0 ny—1 0 ng—1
en—j L {1,p1, pno_l,eal,...,e,x} s oer Coger veer Co ,e0}

for1 <j < m. Now we extend

0 n—1 0 ng—1
{1r P1s- pno—lreal/"'lea% /"'leth/"'leﬂéﬁ /eO/eN—ll"'reme}

to a basis of.j:

0 ni—1 0 ng—1
{L,P1 s Prig—1/€ays -+ €ai roves Cagr s Cay 1€0,EN—1s s ©N—pus f1s woer fKom }
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by adding some elemenfs, ..., fx_, in Lo. Let {g]-}].li‘l'”‘1 denote

{1r P1s--s Pno—l/eglz LY ez%_ll (Y 621(/ (Y] eZ£71/f1/ -~-/fK7m}-
Sinceforl <j < N—-—m—1, € isin Ly and
€]‘ L {60, EN—1/ s eN,m}
we have that; is in the subspacepan{1, g, ..., ¢n-m—1} Of Ly. This implies that there
are numbergc; } y_}' ' such thatforl <j < N —m—1
(3.5) ej =Cj1 +Cpg2+ -+ CiN-m-18N-—m—-1-
On the other hand, becaugg=0for1 < j < N —m — 1, we have thaﬂgj = dg],
is orthogonal td.(, and

<d8j,€Z%> = “1€j(0,0¢1)4’(n1+1)(“1)
= 0.
This implies thae; (0, «1) = 0. Hence (3.5) gives
ej(0,a1) = cpl+cpga(0,a1) + -+ ciN—m-18N-m-1(0,&1)
= 0

for1 <j < N—m— 1. Thus the determinantet[c;| of the coefficient matrix of the
above system must be zero. So There is a nonzero vectpr- - , xn_,;—1) such that
cyxy+eyxa+ -+ ON—m-uXN-m-1 =0
for1 <1< N —m— 1. This implies
x1e1 +xpep + -+ XN_m—1eN—m—-1 = 0.

We obtain a contradiction that, ...,en_,,—1 are linearly independent to complete the
proof.
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