MULTIPLICATION OPERATORS ON THE BERGMAN SPACE VIA THE
HARDY SPACE OF THE BIDISK
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ABSTRACT. In this paper, we develop a machinery to study multiplication operators on the
Bergman space via the Hardy space of the bidisk. Using the machinery we study the structure
of reducing subspaces of a multiplication operator on the Bergman space. As a consequence,
we completely classify reducing subspaces of the multiplication operator by a Blaschke product
¢ with order three on the Bergman space to solve a conjecture of Zhu [40].

1. INTRODUCTION

Let D be the open unit disk in C. Let dA denote the Lebesgue area measure on the unit disk
D, normalized so that the measure of D equals 1. The Bergman space L2 is the Hilbert space
consisting of the analytic functions on D that are also in the space L?(ID,dA) of square integrable
functions on D.

Our main objective is to study multiplication operators on L2 by bounded analytic functions
on the unit disk D via the Hardy space of bidisk. The theme is to use the theory of multivariable
operators to study a single operator. Our main idea is to lift the Bergman shift up as the
compression of a commuting pair of isometries on a nice subspace of the Hardy space of bidisk.
This idea was used in studying the Hilbert modules by R. Douglas and V. Paulsen [12], operator
theory in the Hardy space over the bidisk by R. Dougals and R. Yang [13], [37], [38] and [39];
the higher-order Hankel forms by S. Ferguson and R. Rochberg [10] and [11] and the lattice of
the invariant subspaces of the Bergman shift by S. Richter [22].

For a bounded analytic function ¢ on the unit disk, the multiplication operator M is defined
on the Bergman space L2 given by Myh = ¢h for h € L2. Let e, = /n + 12™. Then {e, }§° form
an orthonormal basis of the Bergman space L2. On the basis {e,}, the multiplication operator
M, by z is a weighted shift operator, called the Bergman shift: M,e,, = , /Z—i‘éenﬂ.

The multiplication operators on the Bergman space possess a very rich structure theory. Even
the lattice of the invariant subspaces of the Bergman shift M, is huge [4]. The Bergman shift M,
has a universal property [4]: for any strict contraction S on a Hilbert space H, there always exist
a pair of invariant subspaces of M., say M and N in LatM, ( the invariant subspace lattice of
M., is the set of subspaces M of L? with M, M C M), such that S = PANAIM M
where P4 Ar denotes the orthogonal projection of L?(D) onto M & N. This indicates that
existence of the invariant subspace problem for Hilbert space operator is equivalent to whether
LatM, is saturated, i.e., for any M, N € LatM,, with M D AN and dim(M © N)=oc, whether
there always exists some 2 € Lat M, such that

Let T denote the unit circle. The torus T? is the Cartesian product T x T. The Hardy space
H?(T?) over the bidisk is H?(T) ® H?(T). Let P be the orthogonal projection from the space

L?(T?) of the Lebesgue square integrable functions on the torus T? onto H?(T?). The Toeplitz
operator on H?(T?) with symbol f in L°°(T?) is defined by T¢(h) = P(fh), for h € H*(T?).
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Clearly, T, and T,, are a pair of doubly commuting pure isometries on H?(T?). For each integer
n >0, let
n ) ) n+l _ ,,n+1
pn(z7w) = Z 2wt = 2o Tw
=0
Let H be the subspace of H?(T?) spanned by functions {p, }2°,. The orthogonal complement of
H in H?*(T?) is

zZ—Ww

[z — w] = closurez 2y {(z — w)H?*(T?)}.
Then [z —w] is an invariant subspace of analytic Toeplitz operators Ty for f € H °(T?). Let Py
be the orthogonal projection from L?(T?) onto H. It is easy to check that

PHTZ|H = PHT“’|H'
Let B denote the operator above. It was shown explicitly in [29] and implicitly in [12] that B is
unitarily equivalent to the Bergman shift M, on the Bergman space L? via the following unitary
operator U : L2(D) — H,
UZn — pn(za w) .
n+1

Clearly, for each f(z,w) € H,
U*f)(z) = f(z,2),

for z € D. The simple observation that p,(z,w) = W gives that for each f(z,w) € H,

z—

there is a function f(z) in the Dirichlet space D such that
f(z) = f(w)

flew) = H2—L
Thus, for each Blaschke product ¢(z) with finite order, the multiplication operator M, on the
Bergman space is unitarily equivalent to ¢(B) on H.

In this paper we will study the operator ¢(1) on the Hardy space of the bidisk to shed light
on properties of the multiplication operator Mg. This method seems to be effective in dealing
with the multiplication operators on the Bergman space because functions in the Hardy space of
the bidisk behave slightly better than the functions in the Bergman space.

The difficulty to study B on H is to get better understanding the projection Pgy. The price
that we pay is that we will get a lot of mileage from developing a “heavy” machinery on the
Hardy space of the bidisk how to get rid of Py in the expression

n 1
B(B)"S = s Pry(oa((2). 6(w)) ).
for f € H. To do this, letting Ly denote the space kerT;(z) N kerT;(w) NH, for each e € Ly , we

construct functions {d*} in Section 3.1 and d? in Section 3.2 such that for each I > 1,

-1
pi(6(2), p(w))e+ D pr(d(2), d(w))d.* € H
k=0

and

pi(d(2), p(w))e + pi—1(d(2), p(w))dY € H.

On one hand, we have a precise formula of d2. On the other hand, d* is orthogonal to Lg. These
constructions are useful in studying the reducing subspaces of ¢(B). A reducing subspace M for
an operator T on a Hilbert space H is a subspace M of H such that TM C M and T*M C M.
A reducing subspace M of T is called minimal if only reducing subspaces contained in M are
M and {0}. As in [16], a subspace N of H is a wandering subspace of T if A is orthogonal to
T"N for each n = 1,2,---. If M is an invariant subspace of T, it is clear that M © TM is a
wandering subspace of T, and we will refer this subspace as the wandering subspace of M.
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In fact, for a reducing subspace M of ¢(B), and e in the wandering subspace of M

-1
pi(9(2) p(w))e + > pr(d(2), p(w))di ™" € M.
k=0

Although for a Blaschke product ¢ of finite order, My is not an isometry, using the machinery
on the Hardy space of bidisk we will show that there exists a unique reducing subspace M, the
so called distinguished subspace, on which the restriction of M, is unitarily equivalent to the
Bergman shift, which will play an important role in classifying reducing subspaces of My. The
functions d! and dY have the following relation.

Theorem 1. If M is a reducing subspace of ¢(B) orthogonal to the distinguished reducing
subspace My, for each e in the wandering subspace for M, then there is an element € in the
wandering subspace for M and a number \ such that

di = d2 + & + Aeg. (1)
To understand the structure of minimal reducing subspaces of ¢(B) we lift a reducing subspace

of ¢(B) as a reducing subspace of the pair of doubly commuting isometries T,y and Ty(,. For
a given reducing subspace M of ¢(B), define the lifting M of M

M= span{d(2) p(w)* M, 1,k > 0}.

Since M is a reducing subspace of ¢(B) and M is a reducing subspace of the pair of doubly
commuting isometries Tj () and Ty, by the Wold decomposition of the pair of isometries on
M, we have

M = @z,k20¢(2)l¢(w)kLﬂ,

where L M is the wandering subspace

LM = k'e?"T(Z(Z) N ke'l"T;(w) N M

The following theorem gives a complete description of the wandering subspace L+ .

M
(M)

Theorem 2. Suppose that M is a reducing subspace of ¢(B) orthogonal to M. If{egM), N
is a basis of the wandering subspace of M., then

M
LM = span{eg )7 ae(g%);digl\/ﬂa"' 7di((IJX/II>}7
and
dimLM = 2qp-

To prove Theorem 2, first we use the Wold decomposition of the pair of doubly commuting
isometries Ty(.) and T,y on the lifting Iy (= H) of H to get the dimension of the wandering
subspace Ly(= L'ﬁ) By means of the Fredholm theory in [8], we are able to show that the
dimension of L4 equals 2N — 1, where IV is the order of the Blaschke product ¢.

Then by means of the finite dimension of the wandering subspace of these isometries on the
reducing subspace we will be able to obtain some structure theorems on reducing subspaces of

the multiplication operators by finite Blaschke products on the Bergman space.

Theorem 3. Suppose that Q, M and N are three distinct nontrivial minimal reducing subspaces
contained in My for ¢(B). If

QCMaN,
then there is a unitary operator U : M — N such that U commutes with ¢(B) and ¢(B)*.
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The machinery on the Hardy space of the bidisk is not only useful in classifying the reducing
subspaces of multiplication operators on the Bergman space, but also it is helpful in understanding
the lattice of invariant subspaces of the Bergman shift as in [1] and hence the invariant subspace
problem. One of our goals is to develop the Bergman function theory [15], [17] via the Hardy
space of the bidisk.

The multiplication operators on the Bergman space is completely different from that in the
Hardy space. By the famous Beurling Theorem [9], the lattice of the invariant subspaces of the
multiplication operator by z on the Hardy space is completely determined by inner functions.
A Beurling’s theorem was recently obtained for the Bergman space [1]. On one hand, on the
Hardy space, for an inner function ¢, the multiplication operator by ¢ is a pure isometry and
hence unilateral shift (with arbitrary multiplicity). So its reducing subspaces are in one-to-one
correspondence with the closed subspaces of H?© ¢H? [5], [16]. Therefore, it has infinitely many
reducing subspaces provided that ¢ is any inner function other than a Mdbius function. Many
people have studied the problem of determining reducing subspaces of a multiplication operator
on the Hardy space of the unit circle [2], [3] and [20]. For an inner function ¢, the multiplication
operator by ¢ on the Bergman space is a contraction but not an isometry. On the other hand,
surprisingly, on the Bergman space, it was shown in [28] and [40] that for a Blaschke product ¢
with two zeros, the multiplication operator My has only two nontrivial reducing subspaces. Zhu
[40] conjectured that for a Blaschke product ¢ with N zeros, the lattice of reducing subspaces
of the operator M, is generated by N elements. In other words, My has exactly N nontrivial
minimal reducing subspaces.

Applying the machinery developed in the paper, we will be able to disproves Zhu’s conjecture
in the following theorem. For a holomorphic function ¢ on the unit disk and a point ¢ in the unit
disk, we say that c is a critical point of ¢ if its derivative vanishes at c.

Theorem 4. Let ¢ be a Blaschke product with three zeros. If ¢(z) has a multiple critical point
in the unit disk, then My has three nontrivial minimal reducing subspaces. If ¢ does not have
any multiple critical point in the unit disk, then My has only two nontrivial minimal reducing
subspaces.

Bochner’s theorem [35], [36] says that every Blaschke product with N zeros has exactly N —1
critical points in the unit disk ID. Theorem 4 gives a classifcation of reducing subspaces for M
for a Blaschke product ¢ with three zeros.

Critical points of ¢ have important geometric meaning about the self-mapping of the unit
disk. The work of Stephonson [24], [25], [26] suggests that the geometric version of the above
theorem should be in terms of the Riemann surfaces. A finite Blaschke product ¢ with N zeros
is an N to 1 conformal map of D onto D. Bochner’s theorem [35], [36] says that ¢ has exactly
N — 1 critical points in the unit disk D and none on the unit circle. Let C denote the set of the
critical points of ¢ in D and F = ¢~ 0 $(C). Then F is a finite set, and ¢~ ! o¢ is an N-branched
analytic function defined and arbitrarily continuable in D/F. Not all of the branches of ¢! o ¢
can be continued to a different branch, for example z is a single valued branch of ¢~ o ¢. The
Riemann surface for ¢! o ¢ over D is an N-sheeted cover of D at most N (NN — 1) branch points,
and it is not connected. The geometric version of Theorem 4 is the following theorem.

Theorem 5. Let ¢ be a Blaschke product with three zeros. Then the number of nontrivial

minimal reducing subspaces of My equals the number of connected components of the Riemann
surface of p~1 o ¢ over D.

We would like to point out that there are many essential differences in analysis and geometry
between Blaschke products with order three and Blaschke products with order two. On one hand,
for Blaschke products ¢ with order two, ¢! o ¢ contains two analytic functions on the unit disk
and hence the Riemann surface for ¢~ o¢ over I is just two copies of the unit disk. On the other
hand, for the most Blaschke products with order three, ¢~ o ¢ has three multivalue functions
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on the unit disk and the Riemann surface for ¢! o ¢ over I has two connected components.
This phenomenon makes it difficult for us to classify the reducing subspaces of a multiplication
operator with the Blaschke product of order highter than two. It seems that the machinery
developed in the paper is inevitable in classifying the reducing subspaces of the multiplication
operator by a Blaschke product of higher order.

The problem of determining reducing subspaces of a multiplication operator is equivalent to
finding projections in the commutant of the operator which is the set of operators commuting
with the multiplication operators. Every von Nuemann algebra is generated by its projections.
Theorem 4 says that every von Nuemann algebra contained in the commutant of mulitplication
operator by the Blaschke product with third order is commutative. A lot of nice and deep work
on the commutant of a multiplication operator has been done on the Hardy space [6], [33], [34]
while Blaschke products with finite zeros play an important role. Indeed Cowen proved that
for f € H*, if the inner factor of f — f(«) is a Blaschke product ¢ with finite order for some
a € D, then the commutant of the multiplication operator by f equals the commutant of the
multiplication operator by the finite Blaschke product ¢ [6]. Thus the structure of lattice of
reducing subspaces of the multiplication operator by a Blaschke product with finite order is
useful in studying the general multiplication operators on the Bergman space.

One of applications of the machinery on the Hardy space of the bidsk is that it was proved in
[32] that the multiplication operator on the Bergman space is unitarily equivalent to a weighted
unilateral shift operator of finite multiplicity if and only if its symbol is a constant multiple of the
N-th power of a Mobius transform. Another one is that we have obtained a complete description
of nontrivial minimal reducing subspaces of the multiplication operator by ¢ on the Bergman
space of the unit disk for the fourth order Blaschke product ¢ [31].

Using Theorems 1 and 3, for a finite Blaschke product ¢, we are able to show that for two
distinct nontrivial minimal reducing subspaces of ¢(B), either they are orthogonal or ¢(B) has two
distinct unitarily equivalent reducing subspaces and has also infinitely many minimal reducing
subspaces (Theorem 31). Thus either ¢(B) has infinitely many minimal reducing subspaces or
the number of nontrivial minimal reducing subspaces of ¢(B) is less than or equal to the order of
¢ (Theorem 32). We say that two reducing subspaces M and N of ¢(B) are unitarily equivalent
if there is a unitary operator U : M — AN such that U commutes with ¢(B) and ¢(B)*.

The adjoint of the multiplication operator by a finite Blaschke product is in a Cowen-Douglas
class [7]. The theory of Cowen-Douglas classes will be useful in studying the multiplication
operators on the Bergman space. On the other hand, we would like to see some applications of
the results obtained in the paper to the study of the Cowen-Dougals classes.

We thank R. Douglas for his insightful comments on the relations between multiplication
operators and Cowen-Dougals classes, R. Rochberg for his drawing our attention to his papers
[10] and [11] with S. Ferguson, K. Stephenson for his drawing our attention to his papers [24],
[25], [26] and K. Zhu for his useful comments on his conjecture.

2. THE WANDERING SUBSPACE OF THE LIFTING OF THE BERGMAN SPACE

As pointed out before, we can identify the Bergman space with H. First we introduce notations
and show some properties of functions in H. Then we compute the dimension of the wandering
space for the lifting H of H. The dimension is useful for us to find the wandering space for the
lifting M of a reducing subspace M of ¢(B).

For a € D, let k, be the reproducing kernel of the Hardy space H?(T) at . That is, for each
function f in H?(T),

fla) = {f ka).
In fact, k, = ﬁ For ¢ in H*(T), let T¢ denote the analytic Toeplitz operator with symbol
¢ on H?(T), given by
Tyh = ¢h.
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Thus it is easy to check that
Tika = ¢p(a)kq- (2)

For an integer s > 0, let

slz®

k(2) = ———.
S
Lemma 6. For each f € H*(T),

R C Y
Tk — 1)) ks—l.
e ;l!(s—l)!‘f (ke

The proof of the above lemma is left for readers. Lemma 6 gives that the kernel of the Toeplitz
operator T; on the Hardy space of the unit circle is spanned by {{k3: }s, =0, n, }r=0,- K-

Recall that H is the subspace of H?(T?) spanned by functions {p, }5°,. The following two
lemmas give some properties for functions in H or H~.

Lemma 7. If f is in H?(T?) and continuous on the closed bidisk and e is in H, then
(), ez w)) = (F(2,2),€(2,0)) = (f (w, w), e(0, w)).
The proof of Lemma 7 is left for readers.
Lemma 8. For h(z,w) € H*(T?), h is in H* iff h(z,z) = 0, for z € D.
Proof. As pointed out before,
HE = cl{(z — w)H*(T?)}.
I}:eé ;kj_e in D. For each function f(z,w) € (z —w)H?(T?), f(z,2) = 0. Thus h(z, z) = 0 for each

Conversely, assume that for a function h € H?(T?), h(z,2z) = 0, for z € D. For 0 < r < 1,
define

he(z,w) = h(rz, rw).

Then for each fixed 0 < r < 1, h,(z,2) = 0, and h,(z,w) is continuous on the closed bidisk
and in H?(T?).
By Lemma 7, for each e(z,w) in H,
(hr(z,0), e(z,w)) = (hr(2, 2), e(2,0)) = 0.
On the other hand, by Theorem 3.4.3 in [23],
(h(z,w),e(z,w)) = lim (h.(z,w),e(z,w)) = 0.

r—1-

Hence we conclude that A is in H= .
The Dirichlet space D consists of analytic functions on the unit disk whose derivative is in the
Bergman space L2.

Theorem 9. For each f(z,w) in H*(T?), f is in H if and only if there is a function f(z) in D
such that

fzw) = =—/———,
for two distinct points z w in the unit disk.
This immediately gives the following three lemmas, which proofs are left for readers.

Lemma 10. Suppose that e(z,w) is in H. If e(z,z) = 0 for each z in the unit disk, then
e(z,w) =0 for (z,w) on the torus.
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Lemma 11. Ife(z,w) is in H, then
e(z,w) = e(w, 2).
Lemma 12. Suppose f(z,w) is in H. Let F(z) = f(z,0). Then
FOLA) = AF'(\) + F(N),
for each \ € D.
For an operator T on a Hilbert space, let kerT denote the kernel of T. Then
kerT* =HOoTH.
Given a pure isometry U on a Hilbert space H, the classical Wold decomposition theorem [19]
states that
H=®,>U"E,
where £ = H © UH is the wandering subspace for U and equals kerT™.

For a function ¢ in H>(D), we can view ¢(z) and ¢(w) as functions on the torus T?. While
M, is not an isometry on the Bergman space of the unit disk, the analytic Toeplitz operators
Ty(») and Ty(,) are a pair of doubly commuting pure isometries on the Hardy space H 2(T?) of
torus. Since

Tz*pn = T;;pn = Pn—-1
forn > 1 and
Tipo = Typo=0,
‘H is an invariant subspace for both 77 and T};. So ‘H is also an invariant subspace for both
T;(Z) and Tg(w). Recall the lifting ICy of H:
Ky = span{¢'(2)¢* (w)H; 1, k > 0}.
Then ICy is a reducing subspace for both Ty .y and T .,), and so T,y and Ty, are also a pair
of doubly commuting isometries on K.

We consider the Wold decompositions for the pair on both /Cy and Kldf (H*(T?) 6 Ky).

Introduce wandering subspaces

£¢ = ke’]"T;(z) n ke"'T;(w) n ’C¢7
and

;C«d; = ke?”T(;;(z) n k'@'f'T;(w) n ’Cj{

To get the dimension of the wandering subspaces £, and Z;, we will identify the wandering
subspace L for the Blaschke product ¢ with distinct zeros. The following lemma follows from
the remark after Lemma 6 about kerT;.

Lemma 13. If ¢(z) is a Blaschke product with distinct zeros {a;}Y 1, then intersection of the

kernel of T7 ) and T, is spanned by {ka,(2)ka, (W)}

The following lemma is implicit in the proof of Theorem 3 [29]. But we give a complete proof
of the lemma.

Lemma 14. Suppose that ¢(z) is a Blaschke product with distinct zeros {c;}.,. Then the
wandering space Ly is equal to the space spanned by {kq, (2)ka, (W) — ko, (2)ka, (w) : 1 <i < j <

N} and {(TF_ , [koy (2)kayy, (W) F ko, (2)ka, (W) Ko, (2)ka, (w)] : 2 < T+1 < g < N}. Moreover,
the dimension of[/.',; equals (N — 1)2.
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Proof. First we show
o * * 1
Ly = kerTy ) NkerTy, NH™.
Since H C Ky,
e * * 1
Ly C kerTy ) NkerTy NH™.
Conversely, if f is in k‘erT;(z) N kerTg(w) NHL, then f is in kerT;(Z) N kerT(;;(w) and orthogonal
to M. Thus for each g(z,w) =37, ;5 #(2)!p(w)*hiy € Ky where hyy € H, we have
(f,9) = D (f,6(2)'d(w) i)

>0

= > AT [T huk) = 0.

k>0
So f is also in Z; Hence we have
Z; = kerTy,) NkerTjq,,N HE.

We are to prove that the dimension of Z;, is (N —1)2. Without loss of generality, we assume
that ;7 = 0. By Lemma 13, the N? dimensional space k‘erTg(z) N k‘erTQf( is spanned by

w)

{ka, (2)ka, (w)}N;_ ;. So it follows from Lemma 8 that [/.',; consists of the elements h in kerT7 )N

kerT; ., which satisfy h(z,z) = 0. That is,

. N N N N
Ly={h= Z Zcz‘jkai (2)ka,; (w) : h(z,2) = ZZ Cijka,(2)ka, (2) = 0}.

i=1 j=1 i=1 j=1

For any h € ZZ;, taking the limit at infinity and testing the multiplicity at its poles 1/c; of
the function h(z, z), we immediately have that h(z, z) = 0 implies ¢;; =0, j = 1,2..., N. That is,

. N N N N
Lo={h= Y cijka,(2)ka, (W) : h(z,2) = > > cijka,(2)ka,(z) = 0}.

i#j,i=1j=1 i#j,i=1j=1

Observe that kq, (2)ka,(2) = aijka,(2) + bijka;(2) where a;; = aff — and b;; = %, and

5 =
kay(2)y s kay (2) are linearly independent. Write h(z,z) as linear com]bination of ka,(2),j =
2, ..., N, then all the coefficients of k4, (z) must be zero. So we have a system of another N —1
linear equations governing c;j,¢ # j,4,7 = 1,...,N. It is easy to check that the rank of the
coefficient matrix of the system is N — 1. Hence the dimension of Z; (as the solution space of
N? — N unknown variables governed by N — 1 linearly independent equations) equals N2 — N —
(N —1). The proof is finished.

We are ready to prove our main result in the section.
Theorem 15. Let ¢ be a Blaschke product with N zeros in the unit disk. Then
Iy = @1 rz00'(2)9" (w) Ly,
and
H*(T*) 6Ky = @l,k20¢l(z)¢k(w)z\¢>'
The dimension ofl/.',; equals (N —1)% and the dimension of L, equals 2N — 1.

Proof. As pointed out early in this section, Ty(.) and Ty, are a pair of doubly commuting
isometries on both Ky and H?(T?) © Ky. Consider the Wold decomposition of Ty(,) on Ky to
get

Ko = ®1>¢(2)' E
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where F is the wandering subspace for Tj.) given by
E Ko & [Ty Kol
keT[Tg(z)|]C¢] = keTT;(Z) n K¢

Since Ty () and Ty, are doubly commuting, £ is a reducing subspace of Ty(,). Thus Ty |e
is still an isometry. The Wold decomposition theorem again gives

E= @kzo¢(w)kE1
where E is the wandering subspace for Ty, | given by
Ei = E©6 T¢(w)E
This gives
Iy = @1 kz00'(2)0" (w)Ly.
Considering the Wold decompositions of T,y and Ty, on H?*(T?) &Ky, similarly we obtain
H2(T?) © Ky = @00 (2)¢" (w) L.
Noting
we have
dim[kerTy  NkerTy )] = dim[Ly] + dim[Ly].
By Lemma 13, the dimension of kerT;(Z) N kerT;(w) equals N2. Hence

dim[Lg) = N? — dim[Ly).

To finish the proof, it suffices to show that the dimension of [/.',; equals (N — 1)2. By Lemma 14,

for a Blaschke product ¢(z) with distinct zeros, the dimension of L4 equals (N — 1)2. We need
to show that this is still true for a Blaschke product B with N zeros which perhaps contains
some repeated zeros. To do so, for a given A € D, let ¢, (z) be the Mobius transform 12:,’\); . Then
@ o ¢(z) is a Blaschke product with N zeros in the unit disk and

Tyro0z) = (To(z) = M) = XTy()) ™.

Thus Ky = ICy, 04, and so
Loros = kerTy, opy NkerTs oo N H(T?) © Kg,os)
= kerTjy_x NkerTyu, N [H?(T?) & ICy).
The last equality follows from that
keTT;(Z)_A = ke""T;)\od)(z),
and
kerTy )\ = kerTy, o)
We have the fact that
dimLg,op = —index(Ty )\, Tj)—»):

where indew(Tg(z)fA,T;‘(w)fk) is the Fredholm index of the pair (T;(z)—/\qut(w)—A)’ which was
first introduced in [8]. The proof of the fact is left for readers. It was shown [8] that the Fredholm
index of the pair (T;(Z)_ o Ly - ,) is a continuous mapping from the set of the Fredholm tuples
to the set of integers. Thus for a sufficiently small A,

index(Ty .y x Tyiuy—x) = index(T5 ), T5,))-
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If X\ is not in the critical values set C = {u € D : u = ¢(2) and ¢’'(z) = 0 for some 2z € D} of
@, then ¢y o ¢(z) is a Blaschke product with N distinct zeros in D. In fact, Bochner’s theorem
implies that there are at most N — 1 points in C. In this case, by Lemma 14,

dimLy, 0p = (N — 1)

Since the set C has zero area, we conclude that the dimension of l/.',; equals (N —1)2.

3. BASIC CONSTRUCTIONS

In this section we will construct a family {d*} of functions and a function d in £, for each
e € kerTg(z) N kerT;(w) N H, which have properties in Theorem 1 in Section 1 to present the
proof of Theorem 1 that gives a relation between d! and d2. The relation is very useful for us to
understand the structure of the minimal reducing subspaces in the rest of the paper.

3.1. First Construction. Let Lj be kerT;(z) N k:erT(;‘(w) N H. It is easy to check that the
dimension of Ly equals the order of the Blaschke product.

First we will show that for a given reducing subspace M for ¢(B), for each e € M N Ly and
each integer [ > 1, there are a family of functions {d¥}!_, such that

-1
P(6(2), pw)e + 3 pr(6(2), d(w))d € M.
k=0

These functions are useful in studying the structure of the multiplication operator M on the
Bergman space.

The following lemma shows that for each reducing subspace M of ¢(B), the intersection of
M and Ly is nontrivial.

Lemma 16. If M is a nontrivial reducing subspace for ¢(B), then the wandering subspace of
M is contained in Lg.

Proof. Let M be a nontrivial reducing subspace for ¢(1B). For each f in ‘H, Py f is in M.
Thus for each e in the wandering subspace M & ¢(B)M of M,

0 = (e, 0(B)Ppyf) = (e, Ppo(B)f)
= (e, ¢(B)f) = <T;§(z)e,f>-

The second equality follows from that M is a reducing subspace and the last equality follows
from the fact that for each f € H,

So T(;(Z)e = 0. Similarily, we also have that T;(w)e = 0. This gives that e is in Ly to complete
the proof.

Lemma 17. If M is a reducing subspace for ¢(B), then ¢(B)*M = M.

Proof. First note that for a Blaschke product ¢(z) with finite order, ¢(B) is Fredholm and the
kernel of ¢(B) contains only zero. Thus

o(B)*H ="H.
Suppose that M is a reducing subspace for ¢(B). Let N = ML Then
H(B)" = 0(B)"| pq © 6(B)' [y
under the decomposition H = M @ N. Since ¢(B)* is subjective,
(B) | pgM = M.
This completes the proof.
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Theorem 18. Suppose that M is a reducing subspace for ¢(B). For a given e in the wandering
subspace of M, there are a unique family of functions {d*} C Ly © Ly such that

(1) Pi((2), d(w))e + Sy—o pr(d(2), $(w))d* is in M, for each 1 > 1.
(2) Pylpi(¢(2), o(w))dE] is in M for each k > 1, and 1 > 0.

Proof. For a given e in the wandering subspace of M, first we will use mathematical induction
to construct a family of functions {d¥}.

By Lemma 16, e is in L. A simple calculation gives T;(Z [(6(2)+o(w))e] = e, and T, [(#(2)+
¢(w))e] = e. By Lemma 17, there is a unique function é € M & Ly such that

Tiwe = Tiweé=e
This gives
s olE— (6(2) + d(w))e] = e—e=0,
and
Tiwle — (8(2) + d(w))e] = e—e=0,

to get that letting dl = € — (¢(2) + ¢(w))e, d} is in kerTy ., NkerT},, and

p1(6(2), ¢(w))e + dg = (¢(2) + d(w))e + dg € M.

Because both € and e are in M, we have that d! is in ICy, and hence d! is in L.
Next we show that d? is orthogonal to Lg. To do so, let f € Ly. A simple calculation gives

(de, ) = (€~ (d(2) + d(w))e, f)
= (&, f) = {(o(2) + d(w))e, )
=0~ (e, T}y f + Ty f) = 0.

The third equality follows from that € is in M & Lg. This gives that d! is in L4 © Lo.
Assume that for n < [ there are a family of functions {d*}?_, C L4 © Lo such that

P (&( Je + Z (6 w))d"* e M.
Let B = pu(9(2), p(w))e + 74 pr(6(2), ¢(w))d?*. By Lemma 17 again, there is a unique
function E in M & Lg such that
Lk = ThwmE=E
Let F = pos1(6(2), 6(w))e + 20—y pr(9(2), d(w))dz 1. Since
T30 Pe((2), d(w)) [ = T3 [Pr(6(2), o(w)) f] = pr—1((2), d(w)) [,
for each f in L4 and k > 1, simple calculations give
Thus

LB~ F) = Ty (E-F)
- E-E=0.



12 GUO, SUN, ZHENG AND ZHONG

So letting dp*t = £ — F, dy™ is in kerT ., N kerT;
that for each f € Ly,
<d2+13f> :<Eaf>7<Faf>

= _Kpn-&-l((b(z)v (/b(w))ea f> + Z<pk(¢(z)7 ¢(w))d?+1_k7 f”

k=1

(w)" Noting E is orthogonal to Ly, we have

to get that d2T! is in £, © L. Hence

Po1(6(2), d(w))e+ D> pr((2), p(w))di ™+ + dith e M.
k=1

This gives a family of functions {d*} C L4 © Ly satifying Property (1).
To finish the proof we need only to show that Property (2) holds. A simple calculation gives
20(B)e = Ppy(p1(9(2), p(w))e)
= Py (p1((2), d(w))e + dg) — Ppy(de)
= pi(¢(2), p(w))e + de — Ppy(de).
This implies
Pyy(de) = [p1(6(2), ¢(w))e + dg] — 2¢(B)e € M.

Noting that (d} — Pyyd}) is in H' = [z — w] and [z — w] is an invariant subspace for analytic
Toeplitz operators, we have that

[pi-1(6(2), p(w))(dg — Ppydy)] € H,
and so
Pyylpi-1(9(2), p(w))(de — Ppyde)] =0,
to get
Pylpi—1(9(2), 9(w)(de)] = Ppy{pi-1(6(2), p(w)) [Ppyde]} € M.

Assume that Pyy[pi(¢(z), o(w))dE] € M for k < n and any I > 0. To finish the proof by
induction we need only to show that

Pylpi((2), p(w))dg ™)) € M

for any [ > 0.
A simple calculation gives

n

(n+2)6(B)* e = Pyylpnia($(2), (w))e + Y pr(6(2), d(w))dg T

k=0

Py [de ]+ P D p(6(2), d(w)detH]}

k=1
Thus

Py 2] = Pyylpns1(9(2), ¢(w))e + Zpk(éf’(z), d(w))dr k] —

k=0
n

{(n+2)8(B)" e+ Py pr(@(2), o(w))dg M)

k=1
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Property (1) gives that the first term in the last equality is M, the induction hypothesis gives
that the last term is in M and the second term belongs to M since e € M and M is a reducing
subspace for ¢(B). So Ppy[dt!] is in M. Therefore we conclude

Ppy[pi(9(2), p(w))de ™) = Ppg[(pi(9(2), d(w)) (Ppydi ™)) € M,
to complete the proof.

In the special case for H, as H is a reducing subspace for ¢(B), Theorem 18 immediately
gives the following theorem.

Theorem 19. For a given e € Lo there are a unique family of functions {d%} C L4 & Lo such
that

-1
pi(d(2), p(w))e + > pi((2), p(w))d ™ € H,
k=0

for each 1 > 1.

3.2. Second Construction. Next for a given e € Lo, we will show that the function d%(z,w)
given by
d2(z,w) = we(0,w)ep(z, w) — who(w)e(z, w)
is in L4 and satisfies
pi(d(2), d(w))e + pi_1(4(2), (w))de € H

for each [ > 1.

Recall that ¢ is a Blaschke product with zeros {ax}& and «j repeats nj + 1 times, and
d(2) = z¢0(z) where ¢ is a Blaschke product with N — 1 zeros. Let eg = w Theorem
9 gives that ey is in H since ¢ is a Blaschke product with finite order. This also gives that

€0(2,0) = ¢o(2).
Theorem 20. Let f be a nonzero function f in H. pi($(z),d(w))f € H, for somel > 1 if and

only if f = Xey for some constant \

The proof of Theorem 20 is left for readers.
Theorem 20 gives that

Mg = span>o{pi(¢(2), p(w))eo}
is a reducing subspace of ¢(B). We will study the space in next section.
For each e(z,w) in Lo, let
d2(z,w) = we (0, w)eg(z,w) — wpo(w)e(z, w).

Theorem 21. For each e(z,w) in Lo, d2(z,w) is a function in L, such that

pi((2), p(w))e + pi_1(¢(2), p(w))de € H, 3)
forl>1.

Proof. First we show that the function d2(z,w) is in kerT;(z) N kerT;(w). To do this, by Theorem
9, write

¢e(z) B ¢e(w) (4)

for some function ¢, in the Dirichlet space D with ¢.(0) = 0. Letting w = 0 in the above equality
gives that e(z,0) = €(0, z) = Zp.(2).

e(z,w) =

d(z,w) = we(0,w)eo(z,w) — wepo(w)e(z, w)

= pulw) LTy g2l
Pe(W)P(2) — P(w)de(2)

z—w ’
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This gives that d(z,w) is a symmetric function of z and w. Since eg(z,w) and e(z,w) are
symmetric functions of z and w in Ly, we have

Tioldd(z,w)] = T, [we(0,w)eo(z, w) — wo(w)e(z, w)]
= we(0, )T}, le0(z, w)] — weo(w) Ty, e(z,w) =0,

Thwlde(z,w)] = Tj,lde(w, 2)]
= Tu[ze(0, 2)eo(w, 2) — 2¢0(2)e(w, 2)]
= 2e(0,2) T}, leo(2, w)] — 2¢0(2) T, (2, w) = 0,
to get that d2(z,w) is in kerTy ., NkerT;

B(w)
Next we show that d2(z,w) satisfies (3). To do this, let

Ey = pi(6(2), p(w))e + pi—1(6(2), (w))de.
We show that
0e(2)¢'(2) = P (w)g' (w)
By Theorem 9, this gives that Ej is in H. Simpfe_c;l}culations give
1+1 I1+1 2) — b (w
no owe — [CB=g(Wgld e
P (2)de(2) — ¢ (2)de(w) — ' (w)de(2) + 6 (2) P (w)
(6(2) — ¢(w))(z — w)

E =

and

p171(¢(z)»¢(w))dg = |

¢l(z) ¢l(w)][¢e( )¢(Z) — ¢(w)¢e(z)]
¢

Z—w

)
) — ¢ (2)p(w)pe(2) — ¢! (w)(2)de(w) + ' (w) e (2)
(6(2) — o(w)) (z — w) '

Thus
B = pi(o(2), d(w))e + pi-1(e(2), d(w))dy
¢! (2)¢e(2)((2) — ¢(w)) — ¢ (w)de (w)(H(2) — d(w))

(0(2) = ¢(w))(z — w)
9e(2)6(2) — 6. (w)6'(w)

zZ—w

Since p1(¢(2), p(w))e+d? is in H and p1(¢p(2), p(w))e is in Ky, we conclude that d2 is in 1Cy.
Hence d? is in L£4. This completes the proof.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Since M is orthogonal to M, we have

H =MiasM;
= Moo Me Mg n M.
Thus
Lo = Ceg ® [M N Lo] ® [Mg N M* N L.
So e is orthogonal to eg, and
LoSep=[MN (Lo S ep)] ® My N M0 (Lo S ep).

Let Py denote the orthogonal projection from H?(T?) onto the space Ceqy. Let d. = d? — Pyd?.
Then d, is orthogonal to eg. Theorems 20 and 21 give

pi(9(2), d(w))e + pi—1(¢(2), d(w))de € H, ()
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for [ > 1. By Theorem 19, there is a function d* € L4 & Lg such that

pr(( e+2pk w))d, " e M,

for each { > 1. Thus

de — de = p1((2), p(w))e + de — (p1(6(2), p(w))e + dg) € H.
So d. — d}! is in Ly © ey. Write
de —dl =¢ +¢
for ¢ € M N (Lo S ep) and ¢’ € M* N (Lo S ep). Thus (5) gives that the following function is
in H:

p2(6(2), p(w))e + p1(p(2), d(w))d.
= [p2(¢(2), p(w))e + p1((2), d(w))dE + d2] + [p1(B(2), d(w))e’ + dL]
+[p1(d(2), p(w))e"” +dli] — (dF + df +dL).

Theorem 18 gives that the first term and the second term in the right hand side are in M and
the third term is in M™. Thus the last term must be in H and hence

2 1 _
de + de/ e// S H M keTT¢(Z) n T¢(w) = L .
By Theorem 18 again, we have
dz + dé/ + di// € L¢ ) LO,
to get
di + di/ + d(li// - O
This gives
Pyydl, = —(Pyydl, + Ppyd?).

On the other hand, Theorem 18 gives Ppydl, + Ppyd? is in M and Ppyd}, is in Mt Thus
PHdé,, = 0, and so simple calculations give

lden|1? = {den, de)

< e”?pl( )a¢(w)) e”>

= (den PH[P1(¢(Z),¢( w))e” + den])
=

Pay(dn), p1(6(2), p(w))e” +di) =0
Hence we have that di,, =0, to get
p1(9(2), p(w))e” € H.

Theorem 20 gives that ¢’ = Aeg, for some constant \. Since ¢’ € M* N (Lo © ep) we conclude
that e” = 0 to get d. = d! + €. Letting é = —¢’ € M, we obtain

d = d.+é
= - Pd’+é
= d24 &+ Xeo,
as desired. The last equality follows from that Pyd? = —\ey for some constant. This completes

the proof.
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4. THE DISTINGUISHED REDUCING SUBSPACE

Theorems 1 and 19 are useful in studying reducing subspaces of ¢(B). In this section we will
use them to show that there always exists a unique reducing subspace M for ¢(B) such that
the restriction of ¢(B) on My is unitarily equivalent to the Bergman shift. The existence of
such reducing subspace is the main result in [18]. Moreover, we will show that such reducing
space is unique. We call M to be the distinguished reducing subspace for ¢(B). In fact, My
is unitarily equivalent the subspace span{¢'¢™ : m =0,--- ,n,---} of the Bergman space [27] if
¢(0) = 0. Furthermore we will show that only the multiplication operator by a finite Blashcke
product has such nice property.

Assume that ¢ be a Blaschke product of order N with ¢(0) = 0. Recall ey(z,w) = W
The following lemmas will be used in the proofs of Theorems 25 and 26. The proofs of those
lemmas are left for readers.

Lemma 22. Let f be a function in H*(T?). Then
n+1

P62 (6(2), () f) = " Ppelpas1 (6(2). 9(w)) ).

Lemma 23. Let ¢(z) be an inner function satisfying W € H?(T?), then
$(2) — p(w)
zZ—w
Lemma 24. For an inner function ¢(z), w is in H*(T?) iff ¢(2) is a finite Blaschke
product. Moreover, for a Blaschke product ¢ of order N,
leoll* = N

L ¢(2)H?*(T?).

Now we are ready to prove the first main result in this section.

Theorem 25. Let ¢ be a Blaschke product of order N. There is a unique reducing subspace Mg
for &(B) such that ¢p(B)|n, is unitarily equivalent to the Bergman shift. In fact,

M = spani>o{pi(9(2), d(w))eo},

and {2U2Z0W)eovoo for g orthonormal basis of M.

VIFIVN

Proof. First we show that there exists a reducing subspace My of ¢(B) such that ¢(B)|n, is
unitarily equivalent to the Bergman shift.
Let

My = spang>o{pi(¢(2), p(w))eo}.
As pointed out before, Theorem 20 gives that M, is a reducing subspace of ¢(B). Here eg(z, w) =
d(2)—¢(w)
Xisuimple calculation gives

lp1(6(2), (w))eolls = (L + Dlleall3,
and
(P1(¢(2), p(w))eo, pn(d(2), d(w))eo) = 0,
for n # 1. Let E, = bol@@dwleo mpyg {E,} are an orthonormal basis of M. By Lemma 22

N V(n+1Dlleoll2
B(B)[pu(9(2). ow))eo] = Prglo(2Ipn(9(2). ow))eo]
= Prl s (602), 6(w))ea]

n+1

=7 2pn+1(¢(z)a¢(w))607
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to obtain
¢(B)[pn(9(2), p(w))eo]
Vv (n+1)eoll2

_ At 1pnn(@(z) d(w))eo _ [n+1, )
n+2 JnrDlel,  Vnrz
Clearly, ¢(B)*Ey = 0. This implies that ¢(B)] M, is unitarily equivalent to the Bergman shift.

Suppose that M is a reducing subspace of ¢(B) and ¢(M)| M, is unitarily equivalent to the
Bergman shift, i.e., there is an orthonormal basis {F,,} of M such that

In+1
¢(B)Fn - an+1-

Next we will show that M = M. Observe

Pyl(0(2) + o(w)) Fo] = 2¢(B)Fp =

Fy.

Sl

Thus
[1Pr(0(2) + d(w)) o[> = 2
Since
T:;(Z)Fo = ¢(B)"Fy=0,
a simple calculation gives

1(6(2) + ¢(w)) Fo||? = ((¢(2) + ¢(w)) Fo, (¢(2) + d(w)) Fo)
= (¢(2) Fo, ¢(2) Fo) + (¢(w) Fo, p(w) Fo)
+(o(2) Fo, ¢(w) Fo) + (p(w) Fo, ¢(2) Fo)
= 2(Fp, Fy) = 2.
Thus we obtain
Po [(6(2) + $(w) Fo] =0
because
1(¢(2) + d(w)) Fol|* = | Pe[(6(2) + ¢(w)) Fo] |* + || Py [(6(2) + ¢(w)) Eo] |
So p1(p(z), d(w))Fo = (P(z) + ¢p(w))Fy is in ‘H. Theorem 20 gives that Fy = Aeg for some
constant A. Thus M, is a subspace of My but M, is a reducing subspace of ¢(B)| o, , which is
unitarily equivalent to the Bergman shift. But the Bergman shift is irreducible. So we conclude
that M; = M, to complete the proof.
For ¢(z) € H>*(D), let Sy denote PyyMy|py. Then
U*SeU = My,

where M, is the multiplication operator on LZ(D). Indeed, for each g € H and anyz € D, we
have

(U"Ss9)(2) = (Ss9)(z,2)
= (Pyo9)(z,2)
(69 — Pyyrdg9)(z, 2)
$(2)9(z,2) = (MpUg)(2).
The last equality follows from Lemma 8. This gives that U*Sy = MyU*. Thus U*SyU = My.
Theorem 25 tells us that for each finite Blaschke product ¢, My has a unique the distinguished

reducing subspace. The following theorem shows that only a multiplication operator by a finite
Blaschke product has such property.
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Theorem 26. Let ¢ € H*(D). Then M, acting on LZ(D) has the distinguished reducing
subspace iff ¢ is a finite Blaschke product.

Proof. We only need to prove that if M, has the distinguished reducing subspace, then ¢ is a
finite Blaschke product. Now, assume Mg has the distinguished reducing subspace M such that
My M is unitarily equivalent to the Bergman shift M., that is, there exists a unitary operator

U: M — LZ(D) such that U*M.U = My| pq. Let K;{\A be the reproducing kernel of M for
A € D. Clearly, K /{Vl = 0, except for at most a countable set. Thus we have
(MEM B = o] M2
(UM UM
I o M2 < e,

IN

to get that |#(X)| < 1 except for at most a countable set. So ||@|loc < 1. Since S, acting on
H = H*(T?)S[z—w] is unitarily equivalent to M, acting on L2 (D), this means that Sy, restricted
on its corresponding reducing subspace N, is unitarily equivalent to M, acting on L2(D), that
is, there exists a unitary operator V' : N — L7 (D) such that V*M.V = Sy|pr. Set e, = V*e],
where e/, = v/n+ 12" forn =0,1,--- . Then Sgeo =0, and hence M;(Z)eo =0 and M;(w)eo =0,
where M.y and My, are the operators acting on H?(T?). Noticing Sy(.) = Sg(w), we have

IV S(z)+opeoll® =z + 2)> = 2,

to obtain
(9(2)e0, p(w)eo) = (Mg, €0, Mg, €0) = 0.
Thus
1(¢(2) + d(w))eol* = [[d(2)eol|” + [|p(w)eo|* < 2.
Since

2 = |[VS(sz)4ow)eoll® = IV Py (d(2) + d(w))eol|* = | Py (6(2) + d(w))eoll?,
we have

(¢(2) + ¢(w))eo € H,
9(z) — o(w)

zZ—w
for some constant c¢. This follows from Theorem 20.
On the other hand,

to obtain

€p = C

1(¢(2) + d(w))eoll* = [lo(2)eoll® + l[p(w)eo|* = 2.
As showed above, ||¢]|s < 1. We have that ||¢(2)eo||?> =1 to get

[ 09 = 1)feaPPdins = 0.
T2

Thus |¢(z)| = 1 almost all on the unit circle and so ¢ is an inner function. Lemma 24 gives that
¢ is a finite Blaschke product. This completes the proof.

5. STRUCTURE OF MINIMAL REDUCING SUBSPACES

In this section we will first show that every nontrivial minimal reducing subspace of ¢(B) is
orthogonal to the distinguished subspace My if it is other than M. We will show the proof of
Theorem 3 in the section.

Theorem 27. Suppose that Q is a nontrivial minimal reducing subspace for ¢p(B). If Q does not
equal My then § is a subspace of Mé.
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Proof. By Lemma 16, there is a function e in Q2N Ly such that e = Aeg + e; for some constant A
and a function e; in Mg N Lg. By Theorem 18

p1(0(2), p(w))e + d: € Q.

Here d! is the function constructed in Theorem 18. Let

B = o(B)"[6(B)e] — e
Since p1(¢(z), p(w))ep is in H, we obtain

Simple calculations give
1
FE = ¢)(B)*{¢)(B) [/\6() + 61]]} — 5[/\60 + 61]
1
- _§¢(B)*PHd;

The sixth equality holds because that p1(¢(z), ¢(w))er + di, € H. The eighth equality follows
from that df, is in L£4. We claim that E # 0. If this is not true, we would have

1 *
§¢(B) PHdil =
This gives that Pygd is in Lo. And hence
0 = (Pyde,. dg,) = |lde, |I*.

This gives that dél = 0. Thus we obtain that p;(¢(z),d(w))e; € H. By Theorem 20, we get
that e; is linearly dependent on eg. This contradicts that e; € Mé‘. By Theorem 18, Pf’.‘dé1
is in M and so is E = —1 (B)*Pyyd?,. This implies that E is in QN M. We conclude that
Qn Mﬁ = ) since (2 is minimal to complete the proof.

Lemma 28. IjM and N are two mutually orthogonal reducing subspaces of ¢(B), then M is
orthogonal to N.

Proof. Let f =37 150 0(2 Yep(w)*my, and g = > 1ks0 P2 Yep(w)*nyy, for finite numbers of ele-
ments my, € M and ny, € N. Then

(f.e) =D ¢ o(w)rmu, Y ¢(2) d(w)*nu)

1,k>0 1,k>0
= > > 6 e(w) T g, nyyk,)
1,k>011,k1 >0
Since M is orthogonal to N and both M and N are invariant subspaces of T’ ¢(z and T¢(w)

the above inner product (f,¢) must be zero. Thus we conclude that M is orthogonal to N to
complete the proof.

Proof of Theorem 2. Suppose that {e(M), e eqM)} form a basis of M N Lg. First we show
(M) (M) N
span{ey ', -+ eq, Sdt Qa0 ’degﬁ‘é)} C LM.
Note that {egM), e ,egl\z\;{); dl(M), e dt (M)} are contained in L£4. It suffices to show
€1 €an

M
{eM)

’ ’QM’

):d" REUERS ,d! (M>} c M.

Cang
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Since M N Lj contains {e(lM),~~ ,e,(;]]\j)}, for each [,k > 0, ¢(z)l¢k(w)e§M) is in M for

1 <i < qum-. Thus p1(¢p(2), gb(w))eEM) is in M. By Theorem 18, we have

p1(6(2), (w))el™ + 'y € M.

So we have that d',,, € /\N/l, to obtain

(M) . (M), g1 B L—
span{ey ;- eq, ’de<1M>’ 7d€§11]\\4{>} Y
Next we will show that {egM), e 76((111\5); dl(M)7~-~ ,dl(M)} are linearly independent. Suppose
€1 €aqpg

that for some constants A; and p;,

q q
SN+l =0
i=1 i=1 ‘
Thus
q ) q
Do die™ == ).
i=1 i=1 ‘

The right hand side of the above equality is in Ly but the left hand side of the equality is
orthogonal to Ly. So we have

q

S el =0,

i=1

and
q
D midjan) = 0.
i=1 ‘
The first equality gives that A; = 0 and the second equality gives

dl a = 0.
SO el

Because M is orthogonal to My, by Theorem 20, we have

q
Z,uiel(»M) = 0.
i=1

(M

This gives that p; = 0. Hence {e&M), e ,eqM); dl(M)7 e ,dl(M)} are linearly independent. So far,
€1 Cang

we have obtained

To finish the proof, we need only to show that

d’imLm < 2qp-

To do so, we consider the decomposition of H,

H=M;d Mo [ MynM,

and
Lo = [MoN Lyl ® [M N Lol @ {{Mg N M| N L}
Then
dim{IMgz N M*|NLy} = dimLo — dim|[Mg N Lo] — dim[M N L]
=N-1- qmr-

Letting N = [Mg N M™], Lemma 28 gives
Ks=Mod M&N,
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and

L',¢=LMO @LM@LN.
Replacing M by A in the above argument gives

dszNZ 2(N —1- qM).
By Theorem 15, so we have

2N —1=1+ dzm[LM] + dzm[LKA.
Hence
dzm[Lﬂ] =2N -2 — dzm[LKﬂ
SQN—Q—Q(N—I—QM):QQNI.

This completes the proof.

Lemma 29. Suppose that M, N, and Q are three distinct nontrivial minimal reducing subspaces
of ¢(B) such that
QCMaWN.

If M, N, and Q are orthogonal to My, then
MNO=NNQ={0}.
Proof. Since the intersection MNQis also a reducing subspace of the pair of isometries Ty,

and T;‘(w), the Wold decomposition of the pair of isometries on MNQ gives

MG = 1200(2) d(w) Ly

where L Mod 8 the wandering space given by

To prove that M N Q = {0}, it suffices to show

To do this, let ¢ € LM N Lg. By Theorem 2, there are functions ey, €y € M N Ly and
eq,eqa € QN Ly such that

¢ =em+d,
=eq + d}gﬂ.

The above two equalities give
_
e — e = dé

M—éq”
On the other hand, df _,  is orthogonal to Ly. Thus
déMféQ = ey —eq=0.
This gives
€M = €Q

But e is in M and eq is in 2 and hence both ej; and eq are zero. Since déM*éQ = 0, Theorem
20 implies that €,; — € linearly depends on egy. Since both M and 2 are orthogonal to M, we
have that é;; = éq. Thus we obtain €3; = 0 to conclude that ¢ = 0, as desired. So

MNQ={0}.
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Similarly we obtain o
NN Q= {0}

Lemma 30. Suppose that M, N, and Q are three distinct nontrivial minimal reducing subspaces
of ¢(B) such that

QCMaN.
If M, N, and Q are orthogonal to My, then

PMLQ = Ly,
and

PNLQ = LKT’

where P./T/l denotes the orthogonal projection from H?(T?) onto M.

Proof. Since M is orthogonal to A, Lemma 28 gives that M is orthogonal to N and
Qc MaN.
We will show that P Lg = L.
Since Q! C M @& N, we have
QN Ly C[MnN Lyl NN Lg).
For each e € QN Ly, there are two functions e™) € M N Ly and eN) € N'N L such that
(@) — (M) 4 (N)
oy = dgan + dgow).-

By Theorem 2, d{le(M) is in M and di(N) is in V. Since M, N, and Q are orthogonal to My, the
above decompositions are unique. Thus

Pﬂe(m = M)
and
So for each f = e + dé(n) € Lg, where e and e, we have
P]\;‘.f = 6(1\/[) + dé(M)

is in L, to obtain

M P~ L L
M2 C A
To prove that PJT/iLQ = L, it suffices to show that

is subjective. If this is not so, by Theorem 2, there are two functions e,é € M N Ly such that
0 # e + d} is orthogonal to PyqLa-

Assume that {e1,--- ,eq, } are a basis of QN Ly. Then
M
PMLQ = span{eg )7 t ,6((1?2/[); di(lj\/l)a co ’dié]g)}.

If e # 0, then (e,el(-M)) =0, for 1 < < qq. Thus
0 = (e e(M)>

L

= <e,ez(»M) + ez(-N)> = (e, e;),

and
(e, dé> =0,
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for each 1 < i < gq. So e is orthogonal to Lg = span{er, - ,eqq;de - ,dém}. Noting e is
in Lo, we see that e is orthogonal to ¢(z)!¢(w)*Lg, for each [ > 0 or k > 0. This gives that e
is orthogonal to Q and hence orthogonal to €. Since e is in M, e must be orthogonal to the
closure of Py4Q C M, which is also a reducing subspace of ¢(1). Therefore e is orthogonal to
M., which is a contradiction.

If e = 0, then dl # 0 and
0 = <dévdiw>>

gl p gLy gl ol

- <de7 PMdeI> <de7dei>7
and

<dé7 6,’> =0,

for each 1 < i < gq. This gives that d} is orthogonal to L. But d} is also in £,. We have that
for any f € Lg,

(2, 9(2)!¢(w)" f) = 0,
for | > 0 or k > 0. We have that d} is orthogonal to Q and hence orthogonal to Q to obtain
that Ppyd; is orthogonal to Q. On the other hand, by Theorem 18, Ppyd} is in M. Thus Pyyd}

is orthogonal to the closure of Pp4€ and so PHdé must be zero because the closure of Pp4
equals M. Therefore,

= <dé,p1((b(2’),qj)(w))é+ dé>
= (dz, dz) = ||dg|*.

The second equality follows from that p1(¢(z), ¢(w))é +dL is in H and the third equality follows

that d! is orthogonal to pi(¢(2), #(w))é. This gives that di = 0, which is a contradiction. We
have obtained that P;/\M/t : Lg — LM is subjective and hence

PMLQ = LM
Similarly we obtain
PNLQ = L]V'

This completes the proof.
Now we are ready to prove Theorem 3.
Proof of Theorem 3. First we will show

Ppq = PPy
Let NV denote the orthogonal complementary of M @ N in H. Write

H=MaN&N.
Lemma 28 gives

H=MONON,.
For each function f in H?(T?), write

[ =Igeh

=Ipm @I I @ Lo
where fo is orthogonal to H, f,’~_£ eH, fM eEM, fNaE N, and fJ\71 € M. Since M contains
M., we write

Im=Imo s
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for two functions frq € M and f3 € M & M. Thus f3 is orthogonal to both N and ./\/71 and
hence orthogonal to both A and N;. So f; is orthogonal to
H=MNSN,.
This gives that Py f3 = 0. We have

PHPﬂf = P’Hfﬁ)l
= PHfM —|—PHf3
=Prim=Im
and
Paf=Ims
to get
Py = P’HP]\V/t'

Next we will show that Py 4 is subjective from {2 onto M. For each ¢ € M, by Lemma 30,
there are functions g, € Lg such that

g= Y ¢(2)'p(w)Fmuy,
1,k>0

and

lgll> = > llmukll* < oo,

1,k>0

where myy = P qu. Since Lg and Ly; are finite dimension spaces, there are two positive
constants ¢; and ¢y such that

cillawll < llmull < e2llquell-

Define
i= Y ¢() o(w) .
1,k>0
Thus
lal* = > laxl?
1,k>0
< e Z ||mlk||2 < o0.

1,k>0

So we obtain that ¢ is in Q, and

i = ¢2) ow)

I
N
SN
&
Y
=
<
=
+
g

= Z ¢(Z)l¢(w)kmlk + Z ¢(z)l¢(w)k[PK/qlk]

1k>0 LE>0
=q+gqn,

where ¢y = Zl,kZO qs(z)kgb(w)l[PK/qlk] is in N. Hence PMQ = ¢q. We have
PpPpd = Pra=a

to obtain
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Since M is a subspace of H, Pag = PpgPpy. Thus
PMPH(j = PMQZ(].

Writing g, = e,(d + d~<s2) for functions ekl ,e,(c?) € QN Ly, we have

Pypi =Y Prlo(2)'o(w)an)

1,k>0

= > Ppgo(2)' o) (e + o)
1,k>0

= D (Pro(2)'ow)e”) + D (Ppyo(2)'d(w) d )
1,k>0 1,k>0 "

= D (Ppo2)' ow)ei”) + D [Prol=) o(w)* (Ppydlo))]
1,k>0 1,k>0

The last equality follows from that ¢(z) ¢(w)*(1 — PH)dl(m is orthogonal to H. The the first

sum in the last equality is in 2 and Theorem 18 gives that the second sum in the equality is in
2 also. Letting w = Ppyq, we have proved that Pyqw = g to get that

Pagd =M.

On the other hand, ker[Pp,|o] C € is a reducing subspace of ¢(B3). Since {2 is a nontrivial
minimal reducing spaces of ¢(1), we see that ker[Pp4|o] = {0}. This implies that P4 : @ — M
is bijective and bounded. By the closed graph theorem we conclude that P M|Q is invertible.

Similarly we can show that that Pprlq is invertible. Define

S = [Ppdal[Paqlal ™!

Then S is an invertible operator from M onto N. Both S and S* commute with ¢(B) because
2, M and N are three distinct nontrivial minimal reducing subspaces for ¢(B). Thus S*S
commutes with ¢(1B). Making the polar decomposition of S, we write

S =U|S],
for some unitary operator U from M onto N, where |S| = [S*S]'/2. So U commutes with both
¢(B) and ¢(B)*. This completes the proof.

Theorem 31. Let M and N be two distinct nontrivial minimal reducing subspaces of ¢(B).
Then either they are orthogonal or ¢(B) has two distinct unitarily equivalent reducing subspaces
and has also infinitely many minimal reducing subspaces.

Proof. Let M and N be two distinct nontrivial minimal reducing subspaces of ¢(B). Consider
W = [closure(M + N)| & M.
Then W is a reducing subspace of ¢(B). For each y € closure(M + N), we have
y=Ppy+P MY
Thus

closure(M + N) = M o W.

If M and N are not orthogonal, by Theorem 27, M, N are orthogonal to the distigushied
minimal reducing subspace My, and then A does not equal W and

NcMaw. (6)

Now we show that W is a minimal reducing subspace of ¢(B). Since M and N are distinct
and they are minimal reducing subspaces, we have that the intersection of M and N equals 0.
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Noting that NN M is a reducing subspace and contained in A/, we see that N'N M= equals
0 to get that
keT(PML/V‘) = {0}
This gives that for each ¢ € N, P 'M 4 # 0. Since N is a minimal reducing subspace, for each
0 # qo in N, the closure of {g— Papa:qe N} is the reducing subspace generated by qo — Praqq0
which equals W. Thus W is a minimal reducing subspace. By (6), we observe that M, N and
W satisfy the conditions in Theorem 3. So M is unitarily equivalent to W.
Now for each « in [0, 1], define

N = closure{q — aPpqq:q € N}.
As N is a minimal reducing subspace, each N, is a minimal reducing subspace. For o and 3 in
[0,1], and ¢q; and go in N, if
@1 — aPaqq1 = q2 — BPA G2,
then
@1 — g2 = aPpaqq1 — BPAf G-
The right hand side of the above equality is in A but the left hand side is in M. Thus ¢; equals

g2 and « equals 3. So N, does not equal Nz provided 3 does not equal a. Hence we get infinitely
many minimal reducing subspaces to complete the proof.

Theorem 32. Let ¢ be a Blaschke product of finite order N. Then either ¢(B) has infinitely
many minimal reducing subspaces or the number of nontrivial reducing subspaces of ¢(B) is less
than or equal to N.

Proof. If ¢(B) does not have infinitely many nontrivial reducing subspaces, by Theorem 31, any

two distinct reducing subspaces must be orthogonal. Let {M,; }éV:ll be the set of distinct minimal

reducing subspaces of ¢(B). Thus
@jy:lle CH.

Lemma 16 gives that the dimension of M ; N Ly is at less one. So

dimLo > dim{[®}2, M;] N Lo} > Ni.
On the other hand,

Lo = kerTy .,y NkerTy NH.
As pointed out before, the dimension of Ly equals N. Thus
N > Nj.

So the number of nontrivial minimal reducing subspaces of ¢(1B) is less than or equal to the order
N of ¢. The proof is completed.

6. PROOFS OF THEOREMS 4 AND 5

In this section we will prove Theorems 4 and 5. For the Blaschke product ¢(z) = 2> i—a with
a nonzero point « in D, for each e in the wandering subspace of a reducing subspace of ¢(B) we
will be able to calculate d? in Theorem 21 and Lg precisely. By Theorem 1, the fact that d is
orthogonal to Ly leads to some algebraic equations. By solving the algebraic equations, we will

show that ¢(B) has only two nontrivial minimal reducing subspaces.

Theorem 33. For the Blaschke product ¢(z) = 2> == with a nonzero point  in D, ¢(B) has

only two minimal reducing subspaces {Mo, Mg }.
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Proof. For a given nonzero point « in the unit disk, let ¢g(z) = 2
expansion of the finite Blaschke product ¢ is

1—|a? 1 1—|af?
,77732+ 52 k(,(z)

i—=-. The Mittag-Leffler

Po(z) =

a2
So
1-— |Oz‘2 15, 1- |o¢‘2
Hence
1—]al? 1 1 — |al?
eo(z,w) = B —p1(z,w) + @La‘ ko (2)ka(w).

a2
It is easy to see that
Lo = span{l,p1(z,w), ka(2)ka(w)}.
Theorem 25 gives
Mg = spany>o{pi(¢(2), p(w))eo}

By Theorem 27, for each minimal reducing subspace {2 not equal to My, (2 is a subspace of
M. So we need only to show that Mg is a minimal reducing subspace for ¢(B).

Assume that Mg is not a minimal reducing subspace for ¢(B). Then H is the direct sum of
three reducing subspaces of ¢(B). We may assume

Now choose a nonzero vector e; in the wandering subspace for M;, which is contained in L.
Since {e;}7_, are mutually orthogonal to each other, they form a basis for Lo. On the other hand,
those functions 1, p1(z, w) and ko (2)kq(w) are a basis for L. Thus there are some constants c¢;;
such that

e;i = cio + cip1(z, w) + cizka(2)ka(w).
First we show that neither c¢12 nor coo equals zero. Since
<€0, 1> = 60(070) = (]5()(0) =0
and
<€Oap1> = <€0,p1(2,2’)> = <60<Z70)722>
= 2(¢o,z) = 2«

we have that 1 is in Mg but p;(z,w) is not in Mg, to get that ¢ # 0 for i = 1,2.

Next we show that e; (0, «) equals 0 for ¢ = 0, 1, 2. To do this, note that the dimension of the

wandering subspace for each M, equals 1. By Theorem 1, there are constants 3; and \; such
that

di, = d2 + Bie; + Aieo.
Thus for ¢,j > 1 and ¢ # j,
(d(e),,-7€j> = <dé — Bie; — )\i€07€j>
= (de,,e5) = Bilei, e5) — Aileo, e5) = 0.
The last equality follows from the fact that déi is orthogonal to Ly and {e;} are an orthogonal

basis for L.
By Theorem 21, we have

<d(6)1 ? e.7>

<wei(07 w)eo(z, w) - (b(w)ei (Z7 ’LU), 8j>
= (we; (0, w)ep(z, w), e;(z,w))
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Simple calculations give
(we; (0, w)ep(z,w),p1(z,w)) = (we;(0,w)ep(w,w),p1(z,w)) (by Lemma 7)
(we;(0,w)¢' (w),p1(0,w)) (by Theorem 9)
= (we;(0,w)d’ (w),w) = e;(0,0)¢'(0) = 0.

It is easy to see
<’LU61'(0, w)QO(Zv ’LU), 1> =0
These give

Noting that eg(c, @) = ¢'(a) # 0, we have c¢joe;(0,a) = 0, to get that e;(0,) = 0 for i = 1,2.
Also we have eg(0,a) = ¢o(a) = 0. Since {eg,e1,e2} forms a basis for Ly and pi(z,w) is in
Lo, p1(z,w) is a linear combination of functions eg, e; and es. Thus p(0, ) must be zero. But
p1(0,a) = a # 0. This leads to a contradiction. So Mg is a minimal reducing subspace of ¢(18)
to complete the proof

Now we are ready to prove Theorems 4 and 5.

Proof of Theorem 4. Suppose that ¢ is a Blaschke product with three zeros. As pointed
out in the first section My is unitarily equivalent to ¢(1), in the rest proof we will concern only
o(8).

First observe that for A € D and a subspace M of H, M is a reducing subspace of ¢(B) if
and only if M is a reducing subspace of ¢ o ¢(B).

If ¢(z) has a multiple critical point in the unit disk, then

p=¢xo0 2o ¢u
for two numbers A\, p € D. Thus every reducing subspace of ¢(B) is also a reducing subspace of
¢,(B)3. But ¢,,(B)? is unitarily equivalent to the direct sum of three weighted shifts and hence
it has only three minimal reducing subspaces.
If ¢ does not have any multiple critical point in the unit disk, by Bochner’s theorem [35], ¢(2)
always has a critical point ¢ in the unit disk. Let A = ¢(c). Then

QSAOQSOQSC(Z) :Zzz—dz’

for some nonzero point a € D. Let ¥(2) = ¢ 0 po ¢.(z). By Theorem 33, we conclude that ¢(B)
has only two minimal reducing subspaces. Hence ¢(1B) has only two minimal reducing subspaces.
This completes the proof.

Proof of Theorem 5. Let ¢ be a Blaschke product with three zeros.
As in the proof of Theorem 4, If ¢(z) has a multiple critical point in the unit disk, then

p=¢xo0 2o (bu

for two numbers A\, 1 € D. In this case, the Riemann surface of ¢! o ¢ over D has the same
number of connected components as the one of 2730 22 over I does. But the latter one has three
connected components and My has the only three nontrivial minimal reducing subspaces. Thus
the number of nontrivial minimal reducing subspaces of M equals the number of connected
components of the Riemann surface of ¢! o ¢ over D.

If ¢ does not have any multiple critical point in the unit disk, as in the proof of of Theorem
4, ¢(z) always has a critical point ¢ in the unit disk. Let A = ¢(c). Then

pro¢ode(z) =P(2),

zZ—a
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where ¢)(z) = 22 2=~ for some nonzero point a € D. By the example in [24], except for the trivial
branch z, nontrivial branches of ) ~! 01/ are all continuations of one another. Thus the Riemann
surface of 9~ 09 over D has only two connected components. So does the Riemann surface of
¢~ 1o ¢ over D. By Theorem 33, the number of nontrivial minimal reducing subspaces of My
equals the number of connected components of the Riemann surface of ¢~ o ¢ over . This
completes the proof.
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