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Abstract Motivated by recent works of Ahern and C̆uc̆ković on the disk, we
study the generalized zero product problem for Toeplitz operators acting on
the Bergman space of the polydisk. First, we extend the results to the polydisk.
Next, we study the generalized compact product problem. Our results are new
even on the disk. As a consequence on higher dimensional polydisks, we show
that the generalized zero and compact product properties are the same for
Toeplitz operators in a certain case.
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1 Introduction

Let D be the unit disk in the complex plane. For a fixed positive integer n, the
unit polydisk Dn is the cartesian product of n copies of D. Let Lp = Lp(Dn)
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denote the usual Lebesgue space with respect to the volume measure V = Vn
on Dn normalized to have total mass 1. The Bergman space A2 is then space of
all L2-holomorphic functions on Dn. Due to the mean value property of holo-
morphic functions, the space A2 is a closed subspace of L2, and thus is a Hilbert
space. The Bergman projection P is defined to be the Hilbert space orthogonal
projection from L2 onto A2. For a function u ∈ L∞, the Toeplitz operator Tu
with symbol u is defined by

Tuf = P(uf )

for f ∈ A2. It is clear that Tu : A2 → A2 is a bounded linear operator.
In their recent paper Ahern and C̆uc̆ković [2] studied the “generalized zero

product” problem for Toeplitz operators acting on the Bergman space of the
unit disk. Namely, they studied the problem of when the product of two Toep-
litz operators is another Toeplitz operator. More explicitly, they considered
bounded harmonic symbols u, v and bounded C2-symbol σ with bounded invari-
ant Laplacian and proved that if TuTv = Tσ , then either u is co-holomorphic or
v is holomorphic, and in either case σ = uv. More recently, Ahern [1] has shown
that, for bounded harmonic symbols u, v and L∞-symbol σ , TuTv = Tσ if and
only if either u is co-holomorphic or v is holomorphic, and σ = uv.

The results of Ahern and C̆uc̆ković ([1,2]) quite naturally suggest further
studies at least in two directions. One is to investigate the same generalized
zero product problem on higher dimensional domains and the other is to inves-
tigate the analogous “generalized compact product” problem. In this paper we
take the polydisk as our domain and study the generalized zero and compact
product problems.

Working on higher dimensional polydisks, we naturally consider plurihar-
monic symbols in place of harmonic ones. Let C2 = C2(Dn) for simplicity.
Recall that a complex-valued function u ∈ C2 is said to be pluriharmonic if
its restriction to an arbitrary complex line that intersects Dn is harmonic as
a function of single complex variable. It turns out that every pluriharmonic
function on Dn can be expressed, uniquely up to an additive constant, as the
sum of a holomorphic function and a co-holomorphic function. Note that every
pluriharmonic u satisfies

∂j∂ iu = 0, i, j = 1, 2, . . . , n

where ∂j denotes the complex partial differentiation with respect to jth variable.
See Chapt. 2 of [9] for details.

For the generalized zero product problem, our main result is Theorem 1
below. For n = 1, the theorem is just a restatement of the result of Ahern
mentioned above. While our method is basically adapted from [1], substan-
tial amount of extra work is necessary for the setting of higher dimensional
polydisks.

Theorem 1 Let u, v ∈ L∞ be pluriharmonic symbols and assume σ ∈ L∞. Then
the following statements are equivalent:
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(a) TuTv = Tσ .
(b) σ = uv and either ∂ju = 0 or ∂jv = 0 for each j.

When some additional assumptions are imposed on σ in Theorem 1, one
might be able to derive a more concrete characterization. In [2] the case of
harmonic σ is considered and it is deduced that characterization reduces to a
complete triviality. As a higher dimensional analogue, we consider n-harmonic
symbols σ . Recall that a function u ∈ C2 is called n-harmonic as in [12] if u is
harmonic in each variable separately. More explicitly, u is n-harmonic if

∂j∂ ju = 0, j = 1, 2, . . . , n.

For a more concrete description when the symbol σ is n-harmonic, see
Theorem 5. It turns out that the characterization is symmetric in u and v.
Also, our result shows that the characterization for n ≥ 2 does not reduce to
such a triviality as in [2].

We need more terminology and notation. We let C0 = C0(Dn) denote the
class of all continuous functions ψ on Dn such that ψ(a) → 0 as a → ∂Dn

where ∂Dn denotes the topological boundary of Dn. Also, we let A ⊂ L∞
denote the algebra of functions that are uniformly continuous with respect to
the pseudohyperbolic distance; see Sect. 2 for definition.

For the generalized compact product problem, our result is Theorem 2 below.
It is new even on the disk. Moreover, the case σ = uv recovers the main result
on the semi-commutator of two Toeplitz operators on the disk [16] and the
analogous result on the polydisk [4]. In case σ is n-harmonic, we also have a
symmetric characterization as in Theorem 7. Meanwhile, in case symbols are
continuous up to the boundary, the characterization for n = 1 can be much
simplified as in Corollary 3.

Theorem 2 Let u, v ∈ L∞ be pluriharmonic symbols and assume σ ∈ L∞. Then
the following two statements are equivalent:

(a) TuTv − Tσ is compact.
(b) TuTv − Tuv and Tuv−σ are both compact.

If, in addition, σ ∈ A , then the above conditions are also equivalent to

(c) TuTv − Tuv is compact and σ − uv ∈ C0.

The differences of the function theory between on the polydisks and on the
disk have shown that the theory of Toeplitz operators on the polydisks is quite
different, especially when pluriharmonic symbols are considered, from that on
the disk as is shown in [4,6,8,15]. The next theorem provides another evidence
for such differences.

Theorem 3 (n ≥ 2) Let u, v ∈ L∞ be pluriharmonic symbols and assume that
σ ∈ L∞ is an n-harmonic symbol. Then the following statements are equivalent:
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(a) TuTv = Tσ .
(b) TuTv − Tσ is compact.

Of course, one cannot expect the same on the disk. For example, take u =
v = z and σ = 1. Then, TzTz − I is compact by Theorem 2, but TzTz �= I where
I = T1 denotes the identity operator. One cannot expect the same for general
σ ∈ A , either. For example, consider the case u = v = 0. In case the symbol
σ is in addition pluriharmonic, there is a more concrete description which in
turn yields the remarkably simple characterization for zero products of Toeplitz
operators with pluriharmonic symbols (see Theorem 9 and Corollary 5).

This paper is organized as follows. In Sect. 2, we briefly review basic facts
and some recent results on the Berezin transform which is the main tool for our
proofs. In Sect. 3, we prove Theorem 1 and observe its consequences. In Sect. 4,
we prove a strengthened version of Theorem 2 and observe its consequences.
Finally, in Sect. 5, we prove Theorem 3 and observe its consequences.

2 Back ground: Berezin transform

One of the main tools in the theory of Toeplitz operators is the Berezin trans-
form. We briefly review basic facts and some recent results related to the Bere-
zin transform. Throughout the section we let a ∈ Dn denote an arbitrary point,
unless otherwise specified.

Since every point evaluation is a bounded linear functional on A2, there
corresponds to every a ∈ Dn a unique function Ka ∈ A2 which has following
reproducing property:

f (a) = 〈f , Ka〉, f ∈ A2 (2.1)

where the notation 〈 , 〉 denotes the inner product in L2. The function Ka is the
well-known Bergman kernel and its explicit formula is given by

Ka(z) =
n∏

j=1

1
(1 − ajzj)2

, z ∈ Dn.

Here and elsewhere zj denotes the jth component of z. We let ka denote the
normalized kernel, namely,

ka(z) =
n∏

j=1

1 − |aj|2
(1 − ajzj)2

, z ∈ Dn. (2.2)

We let ϕa(z) = (
φa1(z1), . . . ,φan(zn)

)
where each φaj is the usual Möbius map

on D given by

φaj(zj) = aj − zj

1 − ajzj
, zj ∈ D.
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The map ϕa is an automorphism on Dn such that ϕa ◦ ϕa = id. It has real Jaco-
bian

∏n
j=1 |φ′

aj
(zj)|2, which by (2.2) is equal to |ka(z)|2, so we have the following

change of variable formula:

∫

Dn

h
(
ϕa(z)

)|ka(z)|2 dV(z) =
∫

Dn

h(w)dV(w) (2.3)

for every h ∈ L1.
Let L(A2) be the algebra of bounded linear operators on A2. Recall that the

Berezin transform of S ∈ L(A2) is the function B[S] on Dn defined by

B[S](a) = 〈Ska, ka〉.

It is easily seen that B[S] is a continuous function on Dn. It has been recently
proved by Coburn [5] that B[S] is actually Lipschitz ρ-continuous where ρ
denotes the pseudohyperbolic distance on Dn defined byρ(z, w) = max1≤j≤n |φzj

(wj)| for z, w ∈ Dn. More precisely, there is a constant Cn > 0 such that

|B[S](z)− B[S](w)| ≤ Cn||S||ρ(z, w) (2.4)

for all z, w ∈ Dn.
For u ∈ L∞, we simply let Bu = B[Tu]. Note that we have

Bu(a) = 〈uka, ka〉 =
∫

Dn

u|ka|2 dV, (2.5)

so that by (2.3)

Bu(a) =
∫

Dn

(u ◦ ϕa)dV. (2.6)

This integral representation provides some useful information. First, it allows
us to extend the notion of the Berezin transform to functions u ∈ L1. Moreover,
the mean value property yields Bu = u for n-harmonic functions u ∈ L1. In
particular, we see from (2.4) that bounded n-harmonic functions are all con-
tained in A . Next, it is easily seen from (2.6) that the Berezin transform is
automorphism invariant; B(u ◦ ϕa) = (Bu) ◦ ϕa. Finally, for u ∈ C(Dn), we have
Bu ∈ C(Dn). Moreover, if u ∈ C0, then Bu ∈ C0, because ϕa(z) → ∂Dn as
a → ∂Dn for each z ∈ Dn.

The Berezin transform turns out to provide a compactness criterion for
certain type of operators. Consider operators which are finite sums of finite
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products of Toeplitz operators with bounded symbols. Thus, such an operator
S is of the form

S =
M∑

i=1

Tui1 · · · TuiNi
(2.7)

where each uij ∈ L∞. The compactness of operators of this form is character-
ized by the boundary vanishing property of the Berezin transform as in the next
lemma. See Axler-Zheng [3] on the disk and Englis [7] on the polydisk.

Lemma 1 Let S be as in (2.7). Then S is compact if and only if B[S] ∈ C0. In
particular, if u ∈ C0, then Tu is compact.

We now introduce quite recent results about the Berezin transform. The
same notation B will be used for the Berezin transform on D and Dn. Dimen-
sions involved in B should be clear from the context. First, we need a couple
of one-variable facts describing certain ranges of the Berezin transform on D.
The following is taken from Theorem 1 of [1].

Lemma 2 Let f and g be nonconstant holomorphic functions on D and assume
that f g = Bτ for some τ ∈ L1(D). Then there are nonconstant holomorphic
polynomials p, q with deg(pq) ≤ 3 and a point b ∈ D such that f = p ◦ φb and
g = q ◦ φb. Hence pq = B(τ ◦ φb).

Moreover, we have the following.

Lemma 3 Let p and q be nonconstant holomorphic polynomials with deg(pq) ≤
3 and assume that pq = Bτ for some τ ∈ L1(D). Then τ(λ) = η(λ)+c1 log |λ|2 +
c2λ

−1 + c3(λ)
−1 for some constants ci, not all 0, and η ∈ L∞(D).

Proof The Lemma is implicit in the proof of Corollary 1 of [1]. Also, one
may directly verify the lemma by using the straightforward identities λλ =
B(1 + log |ζ |2) and λλ

2 = B(2ζ − ζ−1). �
Next, we need recent results on higher order Berezin transforms. In [14]

Suárez first introduced and studied higher order Berezin transforms for opera-
tors on the disk. Nam and Zheng [11] have recently extended such notions to
the polydisk. All the results about higher order Berezin transforms mentioned
below are taken from [11], unless otherwise specified, to which we refer for the
proofs or details and further results.

We introduce more notation first. We define a linear operator Ua on A2 by

Uaψ = (ψ ◦ ϕa)ka

for ψ ∈ A2. It follows from (2.3) that each Ua is an isometry on A2. It is
easily verified that Uaka = (ka ◦ ϕa)ka = 1. It follows that UaUa = I and thus
U−1

a = Ua. Now, being an invertible linear isometry, Ua is unitary. We set

Sa = UaSUa



Products of Bergman space Toeplitz operators 301

for S ∈ L(A2). For f , g ∈ A2, we let f ⊗ g denote the operator h �→ 〈h, g〉f on
A2. It is easily seen that f ⊗ g is a trace class operator whose trace is given by
tr [f ⊗ g] = 〈f , g〉. Using this notation, note that we have

B[S](a) = 〈Ska, ka〉 = 〈Sa1, 1〉 = tr [Sa(1 ⊗ 1)].

Now, fix an integer m ≥ 0. Nam and Zheng [11] adopted this more insightful
formula to define the m-Berezin transform of an operator S ∈ L(A2). More
explicitly, they have given a definition as follows:

Bm[S](a) = (m + 1)n tr

⎡

⎣Sa

⎛

⎝
∑

|α|≤mn

cmα

⎛

⎝
n∏

j=1

1
αj + 1

⎞

⎠ zα

‖zα‖ ⊗ zα

‖zα‖

⎞

⎠

⎤

⎦

where || || denotes the L2-norm and cmα = (−1)|α|(m
α1

) · · · (m
αn

)
. Here, we use the

conventional multi-index notation. That is, given an n-tuple α = (α1, . . . ,αn)

of nonnegative integers, we let |α| = ∑n
j=0 αj and zα = zα1

1 · · · zαn
n . They then

deduce the formula

Bm[S](a) = (m + 1)n
∑

|α|≤mn

cmα
〈
S(zαkm

a ), zαkm
a

〉
(2.8)

where

km
a (z) =

n∏

j=1

⎛

⎝

√
1 − |aj|2

1 − ajzj

⎞

⎠
m+2

, z ∈ Dn.

It is this formula which was used by Suárez [14] for the definition of Bm on the
disk. It is now clear from (2.8) that if Sj → S in the weak operator topology of
L(A2), then Bm[Sj] → Bm[S] pointwise on Dn. Clearly, B0 = B.

For u ∈ L∞, we let Bmu = Bm[Tu] as in the case m = 0. It turns out that
there is also an integral representation for Bmu:

Bmu(a) =
∫

Dn

(u ◦ ϕa)dνm (2.9)

where dνm(z) = (m + 1)n
∏n

j=1(1 − |zj|2)m dV(z). For a positive u ∈ L∞, it is
clear from (2.6) and (2.9) that if Bu vanishes on the boundary, then so does Bmu.
With regard to such a boundary vanishing property, Nam and Zheng proved
that

B[S] ∈ C0 �⇒ Bm[S] ∈ C0, (2.10)

which is not at all clear for general S.
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It is well known that

(Tu)a = Tu◦ϕa . (2.11)

So, as is the case for m = 0, it follows from (2.9) that Bm(u ◦ ϕa) = (Bmu) ◦ ϕa,
or said differently, Bm[(Tu)a] = Bm[Tu] ◦ ϕa. More generally, the m-Berezin
transform is automorphism invariant in the sense that

Bm[Sa] = Bm[S] ◦ ϕa. (2.12)

Finally, one of the main properties of Bm is the approximate identity property
as in the following.

Lemma 4 Let S ∈ L(A2). If there is some p > 3 such that

sup
a∈Dn, m≥0

‖TBm[Sa]1‖Lp < ∞ and sup
a∈Dn, m≥0

‖T∗
Bm[Sa]1‖Lp < ∞, (2.13)

then TBmS → S as m → ∞ in the norm topology of L(A2).

3 Zero products

In this section we prove Theorem 1 and then derive Theorem 5 as a conse-
quence. Before proceeding to the proof, we recall some well known facts. The
notation H(Dn) denotes the class of all functions holomorphic on Dn.

Given 0 < p < ∞, let Hp(Dn) be the well-known Hardy space on Dn. For a
pluriharmonic function u = f + g ∈ L∞ where f , g ∈ H(Dn), it is well known
that f , g ∈ Hp(Dn) for all 0 < p < ∞ by the Lp-boundedness of the Cauchy
projection. Hence, in particular, we have f , g ∈ A2.

By the reproducing property (2.1), the Bergman projection P can be repre-
sented by

Pψ(a) =
∫

Dn

ψKa dV, a ∈ Dn

for functions ψ ∈ L2. It follows that P naturally extends via the above formula
to an integral operator from L1 into H(Dn). Moreover, we have Pf = f and

P(f ka) = f (a)ka, a ∈ Dn (3.1)

for functions f ∈ L1 ∩ H(Dn). It is well known that P : Lp → Lp ∩ H(Dn) is
bounded for 1 < p < ∞. See, for example, Theorem 4.2.3 of [17] for details on
the disk; the same proof works on Dn.

The special case σ = uv of Theorem 1 has been already noticed by many
authors (see [4,6,16]).
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Lemma 5 Let u, v ∈ L∞ be pluriharmonic symbols with u = f + g, v = h + k
for some f , g, h, k ∈ H(Dn). Then TuTv = Tuv if and only if f k is n-harmonic.

Now, we are ready to prove Theorem 1. We actually prove the following
version of Theorem 1.

Theorem 4 Let u, v ∈ L∞ be pluriharmonic symbols with u = f + g, v = h + k
for some f , g, h, k ∈ H(Dn) and assume σ ∈ L∞. Then the following statements
are equivalent:
(a) TuTv = Tσ .
(b) σ = uv and f k is n-harmonic.

Proof As is mentioned in the introduction, the theorem for n = 1 is just a
restatement of the result of Ahern(Corollary 1 of [1]). So, let n ≥ 2.

We first prove the implication (a) �⇒ (b). So, assume (a). Having n-harmo-
nicity of f k, we have Tσ = TuTv = Tuv by Lemma 5 and hence σ = uv. We
now prove n-harmonicity of f k. We need to show ∂j∂ j(f k) = 0 for each j. By
symmetry, it is sufficient to prove only for j = 1. Since u and v are bounded,
functions f , g, h and k are all in A2, as is mentioned above. Fix an arbitrary point
a ∈ Dn. By (3.1), we have

Th+kka = P[(h + k)ka] = [h + k(a)]ka.

Therefore, we have

Tf+gTh+kka = fhka + f k(a)ka + g(a) k(a)ka + P(hgka).

It follows from (2.5) that

B[TuTv](a) = 〈Tf+gTh+kka, ka〉
= f (a)h(a)+ f (a)k(a)+ g(a) k(a)+ B(hg)(a)

= B(fh + ḡk̄ + hg)(a)+ f (a)k(a).

Since TuTv = Tσ by assumption, we have B[TuTv] = B[Tσ ] = Bσ and thus

f (a)k(a) = Bψ(a), a ∈ Dn (3.2)

where ψ = σ − fh − g k − hg. Now, inserting a = (λ, 0), λ ∈ D, into (3.2), we
have

f (λ, 0)k(λ, 0) =
∫

D

(1 − |λ|2)2
|1 − λζ |4 τ(ζ )dV1(ζ ) = Bτ(λ) (3.3)

where

τ(ζ ) =
∫

Dn−1

ψ(ζ , z)dVn−1(z), ζ ∈ D.

Since σ ∈ L∞ and fh, g k, hg ∈ L1(Dn), we see τ ∈ L1(D).
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Since f ∈ H2(Dn), we have f (ζ , ·) ∈ H2(Dn−1) for each ζ ∈ D by Lemma 3.3
of [4]. In particular, we have f (ζ , ·) ∈ A2(Dn−1) for each ζ ∈ D. The same is
true for g, h, k and hence (fh)(ζ , ·), (gk)(ζ , ·) are all in A1(Dn−1) for each ζ ∈ D.
Thus, an application of the mean value property yields

τ(ζ ) = τ1(ζ )− τ2(ζ )− τ3(ζ ), ζ ∈ D

where

τ1(ζ ) =
∫

Dn−1

σ(ζ , z)dVn−1(z),

τ2(ζ ) =
∫

Dn−1

h(ζ , z)g(ζ , z) dVn−1(z),

τ3(ζ ) = f (ζ , 0)h(ζ , 0)+ g(ζ , 0) k(ζ , 0).

Clearly, we have τ1 ∈ L∞(D) and τ3 is continuous on D. Note that, given a
compact subset K ⊂ D, we have

sup
ζ∈K

|h(ζ , z)g(ζ , z)| ≤ C
∫

D

|h(λ, z)g(λ, z)| dV1(λ), z ∈ Dn−1 (3.4)

for some constant C independent of z. This is easily seen by submean value
property of subharmonic functions |h(·, z)g(·, z)|. Also, note that the function
z �→ ∫

D |h(λ, z)g(λ, z)| dV1(λ) is integrable on Dn−1. Thus, by the Lebesgue
dominated convergence theorem, we see that τ2 is continuous on D. Combin-
ing all these observations together, we see that τ is essentially bounded on each
compact subset of D. So, by Lemmas 2 and 3, we conclude that either f (λ, 0) or
k(λ, 0) is a constant function of λ ∈ D. In other words,

either ∂1f (λ, 0) = 0 or ∂1k(λ, 0) = 0 (3.5)

for λ ∈ D.
Next, we consider arbitrary points. So, fix z = (z1, . . . , zn) ∈ Dn. Since

TuTv = Tσ by assumption, we have Tu◦ϕzTv◦ϕz = Tσ◦ϕz by (2.11). Thus, replac-
ing u, v and σ , respectively, by u ◦ ϕ(0,z2,...,zn), v ◦ ϕ(0,z2,...,zn) and σ ◦ ϕ(0,z2,...,zn) in
the above argument, we see from (3.5) that either

0 = ∂1(f ◦ ϕ(0,z2,...,zn))(−z1, 0) = −∂1f (z)

or

0 = ∂1(k ◦ ϕ(0,z2,...,zn))(−z1, 0) = −∂1k(z).
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Consequently, we have either ∂1f = 0 or ∂1k = 0 on Dn. In other words, we
have ∂1∂1(f k) = 0, as desired.

Next, we prove the implication (b) �⇒ (a). So, assume (b). Since f k̄ is n-har-
monic, we have TuTv = Tuv by Lemma 5. Now, since σ = uv by assumption,
we have (a). The proof is complete. �

In what follows, for J1 ⊂ J = {z1, . . . , zn}, we write H(J1) for the set of
all holomorphic functions on Dn independent of variables zj /∈ J1. In par-
ticular, H(∅) consists of all constant functions. Also, note H(J) = H(Dn).
For n-harmonic symbols σ , we have the following symmetric characterization.
For pluriharmonic symbols σ , much more turns out to hold for n ≥ 2. See
Theorem 9 below.

Theorem 5 Let u, v ∈ L∞ be pluriharmonic symbols and assume that σ ∈ L∞
is an n-harmonic symbol. Then the following statements are equivalent:

(a) TuTv = Tσ .
(b) TvTu = Tσ .
(c) σ = uv and there are sets J1, J2 ⊂ J, functions f ∈ H(J1), g ∈ H(J2),

h ∈ H(J \ J2), k ∈ H(J \ J1) such that u = f + g and v = h + k.

In case n = 1, the above is already noticed in [2]. Note that the second part of
condition (c) above reduces to trivial cases for n = 1. Namely, it simply means
that one of the following conditions holds: (i) u is constant, (ii) v is constant,
(iii) u, v are both holomorphic, (iv) u, v are both co-holomorphic. Thus, what
seems interesting here for n ≥ 2 is that there are something more in addition to
such trivial cases.

Proof As is mentioned before, the theorem is already noticed for n = 1 in [2].
So, let n ≥ 2. Note that we only need to prove the equivalence (a) ⇐⇒ (c)
by symmetry. The implication (c) �⇒ (a) follows from Theorem 4. It remains
to prove the implication (a) �⇒ (c). So, assume (a) and write u = f + g,
v = h + k for some f , g, h, k ∈ H(Dn). Then, by Theorem 4 and assumption,
σ = uv = fh + f k + hg + gk is n-harmonic. Since fh + gk is already n-harmonic
and f k is n-harmonic by Theorem 4, it follows that hg is also n-harmonic. Now,
(c) follows from n-harmonicity of f k and hg. The proof is complete. �

4 Compact products

In this section we first prove Theorem 2 and then derive Theorem 7 as a
consequence. As applications, we will observe some consequences in case sym-
bols are continuous up to the boundary. We also recall some well known facts.

We let �̃j denote n-Laplacians defined by

�̃jσ(z) = (1 − |zj|2)2∂j∂ jσ(z), z ∈ Dn, j = 1, . . . , n.
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We remark in passing that n-Laplacians commute with automorphisms. That is,
we have

�̃j(σ ◦ ϕa) = (�̃jσ) ◦ ϕa, j = 1, . . . , n

for σ ∈ C2 and a ∈ Dn. Note that u is n-harmonic if and only if u is annihilated
by all �̃j. Thus, we will say that u is boundary n-harmonic if �̃ju ∈ C0 for each j.

The following characterization of compact semi-commutators has been known
(see [4]). Also, see [16] on the disk.

Lemma 6 Let u, v ∈ L∞ be pluriharmonic symbols with u = f + g, v = h + k
for some f , g, h, k ∈ H(Dn). Then TuTv − Tuv is compact if and only if f k is
boundary n-harmonic.

Our proof will rely on some auxiliary function class related to the maximal
ideal space of A . Recall that the maximal ideal space M of A is defined to be
the set of all nonzero multiplicative linear functionals on A . As is well known,
we have A ⊂ C(M) via the Gelfand transform. We will use the same notation
for a function u ∈ A and its continuous extension u on the whole M.

Identifying z ∈ Dn with the multiplicative evaluation functional f �→ f (z),
we can regard Dn as a subset of M. So, given z ∈ Dn, we can think of ϕz as a map
from Dn to M. In other words, ϕz ∈ MDn

. Equipped with product topology, the
function space MDn

is compact by Tychonoff’s theorem. Now, we let

� = (closure of Dn) \ Dn

where the closure is taken in M. Let m ∈ � be given and choose a net {zα} in Dn

such that zα → m. By compactness the net {ϕzα } in MDn
contains a convergent

subnet {ϕzαβ
}. That is, there is a function ϕ ∈ MDn

such that u ◦ ϕzαm → u ◦ ϕ
pointwise on Dn for every u ∈ A . It is noticed on the disk in [14] that such ϕ
does not depend on the net. The same continues to hold on the polydisk by the
same proof. The map ϕ will be denoted by ϕm.

The following lemma comes from [14] of the disk case. The proof is the same
as the disk case and included here for completeness.

Lemma 7 Let {zα} be a net in Dn converging to m ∈ �. Then the following
statements hold:

(a) ϕm is a continuous map from Dn into M.
(b) u ◦ ϕm ∈ A for every u ∈ A .
(c) u ◦ ϕzα → u ◦ ϕm uniformly on compact subsets of Dn for every u ∈ A .

Proof Suppose w ∈ Dn and u ∈ A . Given ε > 0 there is δ > 0 such that
|u(z) − u(z′)| < ε if ρ(z, z′) < δ. Take w′ such that ρ(w′, w) < δ. Since ρ is
automorphism invariant, we have ρ

(
ϕzα (w

′),ϕzα (w)
) = ρ(w′, w) < δ. Thus we

have
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|u ◦ ϕm(w′)− u ◦ ϕm(w)|
≤ |u ◦ ϕm(w′)− u ◦ ϕzα (w

′)|
+ |u ◦ ϕzα (w

′)− u ◦ ϕzα (w)| + |u ◦ ϕzα (w)− u ◦ ϕm(w)|
≤ |u ◦ ϕm(w′)− u ◦ ϕzα (w

′)| + |u ◦ ϕzα (w)− u ◦ ϕm(w)| + ε

for every α. Taking the limit zα → m, we have |u ◦ ϕm(w′) − u ◦ ϕm(w)| ≤ ε

when ρ(w′, w) < δ. This proves (a) and (b).
To prove (c), suppose that it is not true. Then there are u ∈ A , 0 < r < 1 and

ε > 0 such that |u ◦ ϕzα (ξα)− u ◦ ϕm(ξα)| > ε for some points ξα ∈ rDn. We can
also assume that ξα → ξ . Since (u ◦ ϕzα )(ξ) → (u ◦ ϕm)(ξ), this contradicts the
uniform ρ-continuity of u. The proof is complete. �

For u ∈ L∞ pluriharmonic(n-harmonic), Lemma 7 gives that u ◦ ϕm ∈ L∞ is
also pluriharmonic(n-harmonic) for m ∈ �. We will use, often without further
comments, these additional consequences of Lemma 7.

Proposition 1 Let u, v ∈ A and σ ∈ L∞. Assume that TuTv − Tσ is com-
pact. Then, to each m ∈ �, there corresponds a function σm ∈ L∞ such that
Tu◦ϕm Tv◦ϕm = Tσm . If, in addition, σ ∈ A , then σm = σ ◦ ϕm.

Let S be an operator of the form (2.7) with uij ∈ A . Then the proof below
actually shows that the above proposition remains true with S in place of TuTv.

Proof Let m ∈ � be given and choose a net {zα} in Dn converging to m. Lemma
7 gives that Tu◦ϕzα

Tv◦ϕzα
→ Tu◦ϕm Tv◦ϕm in the weak operator topology. Thus,

for f , g ∈ A2, we have

〈Tu◦ϕm Tv◦ϕm f , g〉 = lim
α

〈Tu◦ϕzα
Tv◦ϕzα

f , g〉. (4.1)

Let m ≥ 0 be an arbitrary integer. It follows from (4.1) and (2.8) that

Bm[Tu◦ϕm Tv◦ϕm ](z) = lim
α

Bm[Tu◦ϕzα
Tv◦ϕzα

](z), z ∈ Dn. (4.2)

Put K = TuTv − Tσ . Then K is a compact operator by assumption. Noting that

Tu◦ϕzα
Tv◦ϕzα

= Tσ◦ϕzα
+ Kzα ,

we have by (2.6) and (2.12)

Bm[Tu◦ϕzα
Tv◦ϕzα

](z) = Bm(σ ◦ ϕzα )(z)+ Bm[Kzα ](z)
=

∫

Dn

(σ ◦ ϕzα ◦ ϕz)dνm + Bm[K](φzα (z)
)

so that

∣∣Bm[Tu◦ϕzα
Tv◦ϕzα

](z)| ≤ ‖σ‖L∞ + |Bm[K](φzα (z)
)∣∣
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for each zα and z ∈ Dn. Since K is compact, we have B[K] ∈ C0 by Lemma 1 and
thus Bm[K] ∈ C0 by (2.10). Note φzα (z) → ∂Dn and thus Bm[K](φzα (z)

) → 0 as
zα → m. So, taking the limit zα → m (with m and z fixed), we therefore obtain
by (4.2)

|Bm[Tu◦ϕm Tv◦ϕm ](z)| ≤ ‖σ‖L∞ , z ∈ Dn (4.3)

and this is true for all m ≥ 0.
Now, by (4.3), we have a subsequence {mk} such that Bmk [Tu◦ϕm Tv◦ϕm ] con-

verges in the weak-star topology of L∞ to some function σm, with ‖σm‖L∞ ≤
‖σ‖L∞ , such that

〈TBmk [Tu◦ϕm Tv◦ϕm ]f , g〉 =
∫

Dn

Bmk [Tu◦ϕm Tv◦ϕm ]f ḡ dV

→
∫

Dn

σmf ḡ dV

= 〈Tσm f , g〉

for each f , g ∈ A2. Hence, on one hand, we have TBmk [Tu◦ϕm Tv◦ϕm ] → Tσm in
the weak operator topology. The estimates (2.13) with S = Tu◦ϕm Tv◦ϕm are
easily verified by (4.3), because the Bergman projection P is Lp-bounded for
1 < p < ∞. Thus, on the other hand, we see TBmk [Tu◦ϕm Tv◦ϕm ] → Tu◦ϕm Tv◦ϕm

in the norm topology by Lemma 4. So we conclude that Tu◦ϕm Tv◦ϕm = Tσm , as
desired. This completes the proof of the first part.

For the second part, assume σ ∈ A . Then we also have Tσ◦ϕzα
→ Tσ◦ϕm in

the weak operator topology by Lemma 7. So, for each a ∈ Dn, we have by (2.11)

(Tu◦ϕm Tv◦ϕm − Tσ◦ϕm )ka = lim
α
(Tu◦ϕzα

Tv◦ϕzα
− Tσ ◦ ϕzα )ka

= lim
α

Uzα (TuTv − Tσ )Uzαka

= 0

where the last equality holds by the weak convergence of {Uzαka} to 0 and the
compactness of TuTv −Tσ . Since {ka} spans a dense sunset of A2, it follows that
Tu◦ϕm Tv◦ϕm = Tσ◦ϕm . Accordingly, we have σm = σ ◦ ϕm by what we’ve just
proved above. The proof is complete. �

We are finally ready to prove Theorem 2. In fact we prove a strengthened
version of the theorem.

Theorem 6 Let u, v ∈ L∞ be pluriharmonic symbols with u = f +g, v = h+k for
some f , g, h, k ∈ H(Dn) and assume σ ∈ L∞. Then the following three statements
are equivalent:
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(a) TuTv − Tσ is compact.
(b) TuTv − Tuv and Tuv−σ are both compact.
(c) f k is boundary n-harmonic and B(σ − uv) ∈ C0.

If, in addition, σ ∈ A , then the above conditions are also equivalent to either one
of the following statements:

(d) Tu◦ϕm Tv◦ϕm = Tσ◦ϕm for each m ∈ �.
(e) TuTv − Tuv is compact and σ − uv ∈ C0.

Proof The equivalence (b) ⇐⇒ (c) holds by Lemmas 1 and 6. The implica-
tion (b) �⇒ (a) is trivial. We now prove the converse implication (a) �⇒ (b).
Suppose that TuTv − Tσ is compact. First we show that

lim
z→∂Dn

B[TuTv − Tuv](z) = 0, z ∈ Dn. (4.4)

Having this, we deduce from Lemma 1 that TuTv − Tuv is compact and hence
Tuv−σ is compact.

It remains to prove (4.4). Suppose not. Then there is a subnet {zα} ⊂ Dn

converging to some m ∈ � such that

lim sup
α

|B[TuTv − Tuv](zα)| > 0. (4.5)

By Proposition 1, there is a function σm ∈ L∞ such that Tu◦ϕm Tv◦ϕm = Tσm . By
Theorem 4, we have that σm = (uv)◦ϕm and thus Tu◦ϕm Tv◦ϕm = T(uv)◦ϕm . Recall
that Tu◦ϕzα

Tv◦ϕzα
− T(uv)◦ϕzα

→ Tu◦ϕm Tv◦ϕm − T(uv)◦ϕm in the weak operator
topology by Lemma 7. It follows from (2.11) and (2.12) that

0 = B[Tu◦ϕm Tv◦ϕm − T(uv)◦ϕm ](0)
= lim

α
B[Tu◦ϕzα

Tv◦ϕzα
− T(uv)◦ϕzα

](0)
= lim

α
B[(TuTv − Tuv)zα ](0)

= lim
α

B[TuTv − Tuv](zα),

which contradicts (4.5). This completes the proof of the first part of the theorem.
Next, we further assume σ ∈ A . The implications (e) �⇒ (b) �⇒ (d) hold

by Lemma 1 and Proposition 1. It remains to prove the implication (d) �⇒ (e).
So, assume (d). Fix an arbitrary m ∈ � and let {zα} be any net in Dn such that
zα → m. Since σ ∈ A , we also have σ ◦ ϕm ∈ A by Lemma 7. Now, since
Tu◦ϕm Tv◦ϕm = Tσ◦ϕm by assumption, we have σ ◦ ϕm = (uv) ◦ ϕm by Theorem
4. Note that ϕm(0) = lim ϕzα (0) = lim zα = m. Thus, we have

(σ − uv)(zα) → m(σ − uv) = (σ − uv) ◦ ϕm(0) = 0. (4.6)

Since m ∈ � is arbitrary, one may repeat a similar argument as above to con-
clude from (4.6) that σ − uv ∈ C0, as desired. Also, one may repeat the proof
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of (a) �⇒ (b) to verify that TuTv − Tuv is compact. (One may also repeat the
proof of Theorem 1.3 in [4] to derive the boundary n-harmonicity of f k.) The
proof is complete. �

Having seen Theorem 6, one may ask whether the hypothesis σ ∈ A is
essential for the second part of the theorem. The answer is yes and it is most
easily seen simply by considering the case u = v = 0 which yields the following
characterization.

Corollary 1 Let σ ∈ A . Then Tσ is compact if and only if Bσ ∈ C0 if and only
if σ ∈ C0.

The study in the direction of this corollary has been of some independent
interest. Stroethoff [13] first studied the compactness of Toeplitz operators with
symbols in A on the disk (actually on the ball) and obtained that Tσ is compact
if and only if Bσ ∈ C0. Later Axler and Zheng [3] showed that this is true for
bounded symbols on the unit disk and Englis [7] showed that this is true on the
polydisk. Let U be the C∗-algebra in L∞ generated by H∞, the space of all
bounded holomorphic functions on Dn. Clearly, U ⊂ A . For symbols in U on
D, the above corollary has been long known by McDonald and Sundberg [10].

Now, we remark yet another consequence of the above corollary and the
maximum principle.

Corollary 2 Let f , g ∈ H∞. If B(f g) ∈ C0, then either f = 0 or g = 0.

In the case of disk, it turns out that continuity up to the boundary already
implies boundary harmonicity of f k in the condition (c) of Theorem 6.

Corollary 3 Let u, v ∈ C(D) be harmonic symbols and assume σ ∈ L∞(D).
Then TuTv − Tσ is compact if and only if Tuv−σ is compact.

Proof We first recall a well-known fact that the Bergman projection P maps
C(D) into B0(D), the little Bloch space on D which consists of functions ψ ∈
H(D) such that

lim
|λ|→1

(1 − |λ|2)|ψ ′(λ)| = 0.

See, for example, Theorem 5.2.5 of [17]. Now, let u = f + g and v = h + k
for some f , g, h, k ∈ H(D). Then, we have P(u) = f + g(0) ∈ B0(D) and thus
f ∈ B0(D). Applying the same reasoning to v, we obtain k ∈ B0(D). In particu-
lar, f k is boundary harmonic. Now, the corollary follows from Theorem 6. The
proof is complete. �

Suppose n ≥ 2 and consider a function f ∈ H(Dn) such that (1−|zj|2)∂jf ∈ C0

for each j. Fix z1, let (z2, . . . , zn) → ∂Dn−1 and then apply the maximum prin-
ciple. The result is ∂1f = 0. Similarly, ∂jf = 0 for each j and thus f is constant.
This shows that the proof of Corollary 3 does not extend to n ≥ 2. In fact,
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the corollary itself is false for n ≥ 2 if harmonicity hypothesis is replaced by
pluriharmonicity. We will see a counter-example after Theorem 8.

As another consequence, we have the following symmetric characterization
when σ is n-harmonic, as in the case of generalized zero products (Theorem 5).
Recall that bounded n-harmonic functions are all contained in A . As is seen
in Theorem 9 below, Theorem 7 can be much improved for higher dimensional
polydisks when σ is in addition pluriharmonic.

Theorem 7 Let u, v ∈ L∞ be pluriharmonic symbols with u = f + g, v = h + k
for some f , g, h, k ∈ H(Dn) and assume that σ ∈ L∞ is an n-harmonic symbol.
Then the following statements are equivalent:

(a) TuTv − Tσ is compact.
(b) TvTu − Tσ is compact.
(c) f k, hg are both boundary n-harmonic and σ − uv ∈ C0.
(d) f k, hg are both boundary n-harmonic and B(σ − uv) ∈ C0.
(e) TuTv − Tuv, TvTu − Tuv, Tuv−σ are all compact.

Proof Since u, v ∈ L∞ are pluriharmonic, so are u ◦ ϕm and v ◦ ϕm for each
m ∈ �. Similarly, since σ ∈ L∞ is n-harmonic, so is σ ◦ϕm for each m ∈ �. Thus,
the theorem follows from Theorems 6 and 5. �

In the special case where σ = 0 and each of u and v is holomorphic or
co-holomorphic, Theorem 7, together with the maximum principle, yields a
remarkably simple characterization of compact products.

Corollary 4 Let u, v ∈ H∞ ∪ H∞. Then the following statements are equivalent:

(a) TuTv = 0.
(b) TuTv is compact.
(c) Either u = 0 or v = 0.

5 The case n ≥ 2

In the theory of Toeplitz operators on higher dimensional polydisks, it has been
known that the zero and compact properties often coincide, especially when
pluriharmonic symbols are considered, as one can see from results in [4,6,8,
15]. For example, we have the following characterization of compact semi-com-
mutators (see [6] and [4]).

Lemma 8 (n ≥ 2) Let u, v ∈ L∞ be pluriharmonic symbols. Then TuTv = Tuv
if and only if TuTv − Tuv is compact.

Here, we prove Theorem 3, which is another result showing such a phenome-
non. We restate the theorem combined with Theorems 5 and 7 for convenience.

Theorem 8 (n ≥ 2) Let u, v ∈ L∞ be pluriharmonic symbols with u = f + g,
v = h + k for some f , g, h, k ∈ H(Dn) and assume that σ ∈ L∞ is an n-harmonic
symbol. Then the following statements are equivalent:
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(a) TuTv = Tσ .
(b) TvTu = Tσ .
(c) TuTv − Tσ is compact.
(d) TvTu − Tσ is compact.
(e) f k, hg are both n-harmonic and σ = uv.

Proof We already have the equivalences (a) ⇐⇒ (b) and (c) ⇐⇒ (d) by
Theorems 5 and 7. Now, since the implication (a) �⇒ (c) is trivial and the
implication (e) �⇒ (a) holds by Theorem 4, we only need to prove the impli-
cation (c) �⇒ (e). So, assume that TuTv − Tσ is compact. We then see that f k
and hg are both boundary n-harmonic by Theorem 7 and thus they are actually
n-harmonic by Lemmas 8 and 5. This yields the first part of (e). Having seen
that f k and hg are both n-harmonic, we also see that uv is n-harmonic. Now,
σ − uv is n-harmonic and vanishes on the boundary by Theorem 7. So, we have
σ = uv by the maximum principle. The proof is complete. �

The proof above depends on Lemmas 8 and 5. Here, we provide a direct
proof of the implication (c) �⇒ (e) in order to illustrate how the assumption
n ≥ 2 plays its role.

Proof (Another proof) Suppose that TuTv − Tσ is compact. We continue using
notation introduced in the proof above. Also, we introduce temporary notation
�n = � in order to avoid confusion with dimensions. By Theorems 6 and 1 we
have

∂j(u ◦ ϕm) = 0 or ∂ j(v ◦ ϕm) = 0, j = 1, . . . , n (5.1)

for each m ∈ �n. So, for the first part of (e), it is sufficient to show ∂2f = 0
under the hypothesis that ∂2(u ◦ ϕm) = 0 for each m ∈ �n.

Fix w ∈ Dn and consider the function F(λ) = ∂2f (λ, w2, . . . , wn) for λ ∈ D.
It is sufficient to show that F vanishes everywhere on D. We claim that all the
radial limits of F exist and are zero. Note that F ∈ H2(D) by Lemma 3.3 of [4].
So, using the claim, we conclude F = 0 on D, as desired.

Now, we prove the claim. Suppose not. Then there exist a point ξ ∈ ∂D and
a sequence {r�} of radii such that r� → 1 and

F(r�ξ) = ∂2f (r�ξ , w2, . . . , wn) � 0 (5.2)

as � → ∞. By compactness of M1 we may take a subsequence (still called {r�})
of {r�} such that r�ξ → m1 ∈ �1 for some m1. Now, we extend m1 to m =
(m1, 0, . . . , 0) ∈ �n in the canonical way. This means that m = lim(r�ξ , 0, . . . , 0).
Note that u ◦ ϕm(w) = u

(
φm1(w1), w2, . . . , wn

)
by Lemma 7. Also, by Lemma 7,

we have
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0 = ∂2(u ◦ ϕm)(0, w2, . . . , wn)

= lim ∂2
(
u ◦ ϕ(r�ξ ,0,...,0)

)
(0, w2, . . . , wn)

= lim(∂2f ) ◦ ϕ(r�ξ ,0,...,0)(0, w2, . . . , wn)

= lim ∂2f (r�ξ , w2, . . . , wn),

which is a contradiction to (5.2). This completes the proof of the claim. The
proof of σ = uv is the same as the proof above. The proof is complete. �

We now observe several consequences of Theorem 8. First, we give an exam-
ple demonstrating that Corollary 3, when harmonicity hypothesis is replaced
by pluriharmonicity, cannot be extended to n ≥ 2.

Example Let n = 2 for simplicity. Consider functions

u(z1, z2) = (1 − z1)(1 − z2)+ (1 − z1)(1 − z2),

v(z1, z2) = (1 + z1)(1 + z2)+ (1 + z1)(1 + z2),

σ(z1, z2) = (1 − z2
1)(1 − z2

2)+ (1 − z2
1)(1 − z2

2)+ 2(z1 − z1)(z2 − z2).

Clearly, u, v are pluriharmonic on D2 and σ is 2-harmonic. A straightforward
calculation yields

uv − σ = 2(1 − |z1|2)(1 − |z2|2)

so that uv−σ ∈ C0. Thus, Tuv−σ is compact. However, TuTv−Tσ is not compact
by Theorem 8.

Next, recall that the condition (e) of Theorem 8 goes back to the condition
(c) of Theorem 5. For pluriharmonic σ , we have a more concrete description as
in the next theorem.

Theorem 9 (n ≥ 2) Let u, v, σ ∈ L∞ be pluriharmonic symbols. Then the fol-
lowing statements are equivalent:

(a) TuTv = Tσ .
(b) TvTu = Tσ .
(c) TuTv − Tσ is compact.
(d) TvTu − Tσ is compact.
(e) σ = uv and one of the following conditions holds;

(i) u is constant.
(ii) v is constant.

(iii) u, v ∈ H∞.
(iv) u, v ∈ H∞.
(v) There are constants α,β, a set J1 ⊂ J and functions f ∈ H(J1),

g ∈ H(J \ J1) such that u = f + g and v = α(f − g)+ β.

Proof By symmetry and Theorem 8 we only need to prove the equivalence
(a) ⇐⇒ (e). Note that the implication (e) �⇒ (a) follows from Theorem 4.
Thus, it remains to prove the implication (a) �⇒ (e).
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Assume (a) and let u = f + g, v = h + k for some f , g, h, k ∈ H(Dn). By
Theorem 5 we have f ∈ H(J1), g ∈ H(J \ J2), h ∈ H(J2), k ∈ H(J \ J1) for some
J1, J2 ⊂ J. To avoid trivial cases, we may further assume that functions f , g, h,
k are all nonconstant. Moreover, σ = uv is pluriharmonic. Thus, since fh + gk
is already pluriharmonic, we see that f k + hg is also pluriharmonic so that, for
any indices i and j, we have (∂if )(∂jk) �= 0 if and only if (∂ih)(∂jg) �= 0. So, we
may take J1 = J2. We may further assume J1 = {z1, . . . , zr} for simplicity. Now,
let 1 ≤ i ≤ r and r + 1 ≤ j ≤ n. Then, we have

∂if (z)∂jk(w) = −∂ih(z)∂jg(w) (5.3)

for all z ∈ Dr, w ∈ Dn−r. Since f , g, h, k are all nonconstant, this yields indices i0,
j0 and points z0, w0 such that ∂i0 f (z0), ∂j0g(w0), ∂i0h(z0), ∂j0k(w0) are all nonzero.
Now, putting

α = −
{
∂j0 k(w0)

∂j0 g(w0)

}
= ∂i0h(z0)

∂i0f (z0)
,

we see from (5.3) that

∂ih = α∂if , ∂jk = −α(∂jg)

for all 1 ≤ i ≤ r and r + 1 ≤ j ≤ n. It follows that h − αf and k + αg are both
constant. Note that we may assume h = αf by modifying h if necessary. So, we
conclude (e), as desired. The proof is complete. �

Theorem 9 has some immediate consequences which might be of some inde-
pendent interest. We consider three special cases, as is done in [2]. First, taking
σ = 0 in Theorem 9, we see that the zero and compact product properties are
the same for Toeplitz operators with bounded pluriharmonic symbols on higher
dimensional polydisks.

Corollary 5 (n ≥ 2) Let u, v ∈ L∞ be pluriharmonic symbols. Then the follow-
ing statements are equivalent:

(a) TuTv = 0.
(b) TuTv is compact.
(c) Either u = 0 or v = 0.

Next, consider the case σ = 1 in Theorem 9 and suppose that condition (v) of
(e) in Theorem 9 holds with α �= 0. Then, we have uv = αf 2 +βf −αg2 +βg = 1
and thus both αf 2 + βf and αg2 − βg are constant. Now, since αf 2 + βf is
constant, we have 0 = ∂j[αf 2 + βf ] = (∂jf )(2αf + β) and thus either ∂jf = 0
or 2αf + β = 0 for each j. It follows that f is constant. Similarly, g is also con-
stant. So, u and v are both constant. Thus, we see that a Toeplitz operator with
bounded pluriharmonic symbol can have an (essential) inverse of the same type
only in the obvious cases, as in the following corollary.
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Corollary 6 (n ≥ 2) Let u, v ∈ L∞ be pluriharmonic symbols. Then the follow-
ing statements are equivalent:

(a) TuTv = I.
(b) TvTu = I.
(c) TuTv − I is compact.
(d) TvTu − I is compact.
(e) uv = 1 and either u, v ∈ H∞ or u, v ∈ H∞.

As is pointed out in the introduction, the fact that TzTz − I is compact shows
that Theorem 3 cannot be extended to n = 1. The same example shows that
Corollary 6 cannot be extended to n = 1. Next, take nonzero functions u, v
harmonic on D and continuous on D such that they, when restricted to ∂D, are
supported on disjoint sets. Then, TuTv is compact, because uv = 0 on ∂D. This
shows that Corollary 5 cannot be extended to n = 1, either.

Finally, by taking u = v = σ in Theorem 9, one can see that there is no
nontrivial (essentially) idempotent Toeplitz operator with bounded plurihar-
monic symbol, as in the following corollary. The equivalence (a) ⇐⇒ (c) in the
following corollary still holds for n = 1, as is noticed in [2].

Corollary 7 (n ≥ 2) Let u ∈ L∞ be a pluriharmonic symbol. Then the following
statements are equivalent:

(a) T2
u = Tu.

(b) T2
u − Tu is compact.

(c) Either u = 0 or u = 1.

When the symbols are confined to those that are continuous up to the boundary,
the above corollary remains true for n = 1 by Corollary 3.
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