The Horn conjecture for compact selfadjoint operators

 H. Bercovici, W.S. Li, D. Timotin$N \times N$ complex Hermitian matrix A. eigenvalues $\Lambda(A)=\left\{\lambda_{1}(A) \geq \lambda_{2}(A) \geq \ldots \geq \lambda_{N}(A)\right\} \subset \mathbb{R}_{\downarrow}^{N}$

Question. Characterize $(\alpha, \beta, \gamma) \in\left(\mathbb{R}_{\downarrow}^{N}\right)^{3}$ such that there exist Hermitian matrices A, B, and C such that $\alpha=\Lambda(A), \beta=$ $\Lambda(B)$, and $\gamma=\Lambda(C)$ such that $C=A+B$.

Notation:
$I=\left\{i_{1}<i_{2}<\ldots<i_{r}\right\}$.
$I^{c}=\mathbb{N} \backslash I$.
$I_{p}^{c}=$ set consisting of the p smallest elements of I^{c}.
$|I|=|J|=|K|=r$

Theorem. (conjectured by A. Horn, proved by Klyachko, Totaro, Knutson and Tao.)
Let $(\alpha, \beta, \gamma) \in\left(\mathbb{R}_{\downarrow}^{N}\right)^{3}$. The following are equivalents:
(1) There exist Hermitian $N \times N$ matrices A, B, and $C=A+B$ with $\alpha=\Lambda(A), \beta=\Lambda(B), \gamma=\Lambda(C)$.
(2) For every Horn triple $(I, J, K) \in T_{r}^{N}, 1 \leq r \leq N-1$, the triple (α, β, γ) satisfies the Horn inequality

$$
\sum_{k \in K} \gamma_{k} \leq \sum_{i \in I} \alpha_{i}+\sum_{j \in J} \beta_{j}
$$

and the trace equality

$$
\sum_{i=1}^{N} \gamma_{i}=\sum_{i=1}^{N} \alpha_{i}+\sum_{i=1}^{N} \beta_{i}
$$

From Hermitian matrices to compact selfadjoint operators
$A=$ compact operator
$\Lambda_{+}(A)=\left\{\lambda_{1}(A) \geq \lambda_{2}(A) \geq \cdots\right\}$
Theorem. Let $\alpha, \beta, \gamma \in \mathbb{R}_{\downarrow}^{\mathbb{N}}$, with limit zero. The following conditions are equivalent:
(1) There exist positive compact operators A and B such that $\Lambda_{+}(A)=\alpha, \Lambda_{+}(B)=\beta, \Lambda_{+}(A+B)=\gamma$.
(2) For every Horn triple (I, J, K), and all positive integers p, q, we have the Horn inequality

$$
\sum_{k \in K} \gamma_{k} \leq \sum_{i \in I} \alpha_{i}+\sum_{j \in J} \beta_{j}
$$

and the extended reverse Horn inequality:

$$
\sum_{k \in K_{p+q}^{c}} \gamma_{k} \geq \sum_{i \in I_{p}^{c}} \alpha_{i}+\sum_{j \in J_{q}^{c}} \beta_{j} .
$$

'Cut and interpolate'
$\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{R}^{N}$
$\alpha^{*}=$ decreasing rearrangement of α.
$\alpha, \alpha^{\prime}, \alpha^{\prime \prime} \in \mathbb{R}^{N}$.

Definition. α is between α^{\prime} and $\alpha^{\prime \prime}$ if $\min \left\{\alpha_{i}^{\prime}, \alpha_{i}^{\prime \prime}\right\} \leq \alpha_{i} \leq$ $\max \left\{\alpha_{i}^{\prime}, \alpha_{i}^{\prime \prime}\right\}$.

Lemma. If $\alpha^{\prime}, \alpha^{\prime \prime} \in \mathbb{R}^{N}$ are decreasing and α is between α^{\prime} and $\alpha^{\prime \prime}$, then α^{*} is between α^{\prime} and $\alpha^{\prime \prime}$.

Proposition. For $N \in \mathbb{N}$. Let $\alpha, \alpha^{\prime}, \beta$, $\beta^{\prime}, \gamma, \gamma^{\prime} \in \mathbb{R}_{\downarrow}^{N}$, and satisfying all Horn and reverse Horn inequalities for all $r \leq N$, i.e. for every $(I, J, K) \in T_{r}^{N}$,

$$
\sum_{k \in K} \gamma_{k}^{\prime} \leq \sum_{i \in I} \alpha_{i}^{\prime}+\sum_{j \in J} \beta_{j}^{\prime}
$$

and

$$
\sum_{k \notin K} \gamma_{k}^{\prime \prime} \geq \sum_{i \notin I} \alpha_{i}^{\prime \prime}+\sum_{i \notin J} \beta_{j}^{\prime \prime}
$$

Then, there exist Hermitian $N \times N$ matrices A, B, C such that $C=A+B$ and $\Lambda(A)($ resp. $\Lambda(B), \Lambda(C))$ is between α^{\prime} and $\alpha^{\prime \prime}$ (resp. β^{\prime} and $\beta^{\prime \prime}, \gamma^{\prime}$ and $\gamma^{\prime \prime}$).

Denote $\Lambda_{0}(A)$ the sequence $\lambda_{1} \geq \lambda_{2} \ldots \geq \lambda_{-2} \geq \lambda_{-1}$.

Inserting a gap

(a technical lemma)

Lemma. $\quad \operatorname{Fix}(I, J, K) \in T_{r}^{N}, 0 \leq p, q, p+q \leq r$ and $M \in \mathbb{N}$.

$$
\begin{aligned}
I_{\ell}^{\prime} & = \begin{cases}I_{\ell} & \text { if } l \leq r-p \\
I_{\ell}+M & \text { if } \ell>r-p\end{cases} \\
J_{\ell}^{\prime} & = \begin{cases}J_{\ell} & \text { if } \ell \leq r-q \\
J_{\ell}+M & \text { if } \ell>r-q\end{cases} \\
K_{\ell}^{\prime} & = \begin{cases}K_{\ell} & \text { if } \ell \leq r-(p+q) \\
K_{\ell}+M & \text { if } \ell>r-(p+q)\end{cases}
\end{aligned}
$$

Then, $\left(I^{\prime}, J^{\prime}, K^{\prime}\right) \in T_{r}^{N+M}$.

Extended Horn inequalities

Proposition. Fix compact self-adjoint operators A, B, C on $\mathcal{H}, C \leq A+B,(I, J, K) \in T_{r}^{N}, 0 \leq p, q, p+q \leq r$. Then the sequences $\alpha=\Lambda_{0}(A), \beta=\lambda_{0}(B), \gamma=\Lambda_{0}(C)$ satisfy the inequalities

$$
\begin{aligned}
& \sum_{\ell=1}^{r-(p+q)} \gamma_{K_{\ell}}+\sum_{\ell=r-(p+q)+1}^{r} \gamma_{K_{\ell}-N-1} \\
& \quad \leq \sum_{\ell=1}^{r-p} \alpha_{I_{\ell}}+\sum_{\ell=r-p+1}^{r} \alpha_{I_{\ell}-N-1}+\sum_{\ell=1}^{r-q} \beta_{J_{\ell}}+\sum_{\ell=e-q+1}^{r} \beta_{J_{\ell}-N-1}
\end{aligned}
$$

Proof. Choose a projection P whose range contains all the eigenvectors of A, B, C corresponding with $\alpha_{ \pm n}, \beta_{ \pm n}, \gamma_{ \pm n}$, $n \leq N$, rank of P equals $N+M$. Apply Lemma.
$C_{\downarrow 0 \uparrow}$
$\alpha=\left(\alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n} \geq \ldots \geq \alpha_{-n} \geq \ldots \geq \alpha_{-1}\right)$
$\lim _{n \rightarrow \infty} \alpha_{ \pm n}=0$.
$\alpha=\left(\alpha_{ \pm n}\right)$
$\bar{\alpha}=\left(-\alpha_{-1} \geq-\alpha_{-2} \geq \ldots \geq-\alpha_{+2} \geq-\alpha_{+1}\right)$

Theorem. Consider sequences $\alpha^{\prime}, \alpha^{\prime \prime}, \beta^{\prime}, \beta^{\prime \prime}, \gamma^{\prime}, \gamma^{\prime \prime} \in$ $C_{\downarrow 0 \uparrow}$. Assume both $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right),\left(\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}\right)$ satisfy all the extended Horn inequality. Then there exist compact self-adjoint operators A, B, C such that $C=A+B$,
$\Lambda_{0}(A)$ is between α^{\prime} and $\alpha^{\prime \prime}$
$\Lambda_{0}(B)$ is between β^{\prime} and $\beta^{\prime \prime}$
$\Lambda_{0}(C)$ is between γ^{\prime} and $\gamma^{\prime \prime}$.

Corollary. (Horn conjecture for compact self-adjoint operators). Let $\alpha, \beta, \gamma \in C_{\downarrow 0 \uparrow}$. The following are equivalent:
(i) There exist compact self-adjoint operators A, B, C such that $C=A+B, \Lambda_{0}(A)=\alpha, \Lambda_{0}(B)=\beta, \Lambda_{0}(C)=\gamma$.
(ii) (α, β, γ) and $(\bar{\alpha}, \bar{\beta}, \bar{\gamma})$ satisfy all the extended Horn inequalities.

Partially specified eigenvalues

Under what conditions we can find operators
$A, B, C, C=A+B$, such that $\Lambda_{0}(A), \Lambda_{0}(B)$, and $\Lambda_{0}(C)$ are only partially specified.

Matrix Case:
$\alpha \in \mathbb{R}_{\downarrow}^{N}$, with $\alpha_{i_{1}} \geq \alpha_{i_{2}} \geq \ldots \alpha_{i_{p}}$ are specified.
$\alpha_{i}^{\min }= \begin{cases}\alpha_{i_{1}} & \text { if } i \leq i_{1} \\ -\infty & \text { if } i_{p}<i \leq N \\ \alpha_{i_{j+1}} & \text { if } i_{j}<i \leq i_{j+1}\end{cases}$
$\alpha_{i}^{\max }= \begin{cases}+\infty & \text { if } i<i_{1} \\ \alpha_{i_{p}} & \text { if } i_{p} \leq i \leq N \\ \alpha_{i_{j}} & \text { if } i_{j} \leq i<i_{j+1}\end{cases}$
$\beta \in \mathbb{R}_{\downarrow}^{N}$ agrees with α on the specified indices iff $\alpha^{\min } \leq \beta \leq$ $\alpha^{\max }$. Write $\beta \supset \alpha$.

Proposition. $N \in \mathbb{N}$, partially specified decreasing vectors α, $\beta, \gamma \in \mathbb{R}_{\downarrow}^{N} . T F A E:$
(i) $\exists A, B, C$ Hermitian such that $C=A+B, \Lambda(A) \supset \alpha$, $\Lambda(B) \supset \beta, \Lambda(C) \supset \gamma ;$
(ii) $\forall(I, J, K) \in T_{r}^{N}, r \leq N$,

$$
\sum_{k \in K} \gamma_{k}^{\min } \leq \sum_{i \in I} \alpha_{i}^{\max }+\sum_{j \in J} \beta_{j}^{\max }
$$

and

$$
\sum_{k \notin K} \gamma_{k} \max \geq \sum_{i \notin I} \alpha_{i}^{\min }+\sum_{j \notin J} \beta_{j}^{\min }
$$

Theorem. Let $\alpha, \beta, \gamma \in C_{\downarrow 0 \uparrow}$ be partially specified. TFAE (i) \exists compact self-adjoint operators A, B, C with $C=A+B$ and $\Lambda_{0}(A) \supset \alpha, \Lambda_{0}(B) \supset \beta, \Lambda_{0}(C) \supset(\gamma)$;
(ii) both $\left(\alpha^{\max }, \beta^{\max }, \gamma^{\min }\right)$ and $\left(\overline{\alpha^{\min }}, \overline{\beta^{\min }}, \overline{\gamma^{\max }}\right)$ satisfy all the Horn inequalities.

