The Horn conjecture for compact selfadjoint operators H. Bercovici, W.S. Li, D. Timotin $N \times N$ complex Hermitian matrix A. eigenvalues $\Lambda(A) = \{\lambda_1(A) \ge \lambda_2(A) \ge \ldots \ge \lambda_N(A)\} \subset \mathbb{R}^N_{\downarrow}$

Question. Characterize $(\alpha, \beta, \gamma) \in (\mathbb{R}^N_{\downarrow})^3$ such that there exist Hermitian matrices A, B, and C such that $\alpha = \Lambda(A), \beta = \Lambda(B)$, and $\gamma = \Lambda(C)$ such that C = A + B. Notation:

$$\begin{split} &I = \{i_1 < i_2 < \ldots < i_r\}.\\ &I^c = \mathbb{N} \setminus I.\\ &I^c_p = \text{set consisting of the } p \text{ smallest elements of } I^c.\\ &|I| = |J| = |K| = r \end{split}$$

Theorem. (conjectured by A. Horn, proved by Klyachko, Totaro, Knutson and Tao.) Let $(\alpha, \beta, \gamma) \in (\mathbb{R}^N_{\downarrow})^3$. The following are equivalents:

- (1) There exist Hermitian $N \times N$ matrices A, B, and C = A + Bwith $\alpha = \Lambda(A)$, $\beta = \Lambda(B)$, $\gamma = \Lambda(C)$.
- (2) For every Horn triple $(I, J, K) \in T_r^N$, $1 \le r \le N-1$, the triple (α, β, γ) satisfies the Horn inequality

$$\sum_{k \in K} \gamma_k \le \sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j$$

and the trace equality

$$\sum_{i=1}^N \gamma_i = \sum_{i=1}^N \alpha_i + \sum_{i=1}^N \beta_i \,.$$

From Hermitian matrices to compact selfadjoint operators

A = compact operator $\Lambda_+(A) = \{\lambda_1(A) \ge \lambda_2(A) \ge \cdots\}$

Theorem. Let $\alpha, \beta, \gamma \in \mathbb{R}^{\mathbb{N}}_{\downarrow}$, with limit zero. The following conditions are equivalent:

- (1) There exist positive compact operators A and B such that $\Lambda_+(A) = \alpha, \ \Lambda_+(B) = \beta, \ \Lambda_+(A+B) = \gamma.$
- (2) For every Horn triple (I, J, K), and all positive integers p, q, we have the Horn inequality

$$\sum_{k \in K} \gamma_k \leq \sum_{i \in I} \alpha_i + \sum_{j \in J} \beta_j$$

and the extended reverse Horn inequality:

$$\sum_{k \in K_{p+q}^c} \gamma_k \ge \sum_{i \in I_p^c} \alpha_i + \sum_{j \in J_q^c} \beta_j.$$

'Cut and interpolate'

$$\alpha = (\alpha_1, \dots, \alpha_N) \in \mathbb{R}^N$$

$$\alpha^* = \text{ decreasing rearrangement of } \alpha.$$

$$\alpha, \alpha', \alpha'' \in \mathbb{R}^N.$$

Definition. α is between α' and α'' if $\min\{\alpha'_i, \alpha''_i\} \leq \alpha_i \leq \max\{\alpha'_i, \alpha''_i\}$.

Lemma. If α' , $\alpha'' \in \mathbb{R}^N$ are decreasing and α is between α' and α'' , then α^* is between α' and α'' .

Proposition. For $N \in \mathbb{N}$. Let α , α' , β , β' , γ , $\gamma' \in \mathbb{R}^N_{\downarrow}$, and satisfying all Horn and reverse Horn inequalities for all $r \leq N$, *i.e.* for every $(I, J, K) \in T_r^N$,

$$\sum_{k \in K} \gamma'_k \le \sum_{i \in I} \alpha'_i + \sum_{j \in J} \beta'_j$$

and

$$\sum_{k \notin K} \gamma_k'' \ge \sum_{i \notin I} \alpha_i'' + \sum_{i \notin J} \beta_j'' \,.$$

Then, there exist Hermitian $N \times N$ matrices A, B, C such that C = A + B and $\Lambda(A)$ (resp. $\Lambda(B), \Lambda(C)$) is between α' and α'' (resp. β' and β'', γ' and γ'').

5 SEAM 2008

A selfadjoint compact operator on \mathcal{H} , $Ah = \sum_{k} \mu_k(h, e_k), h \in \mathcal{H}, \{e_k\} \text{ o.n. system, } \lim_{k \to \infty} \mu_k = 0.$ $\lambda_{\pm n}$

 λ_n is the *n*-th largest non-negative term of (μ_k)

 λ_{-n} is the *n*-th smallest non-positive term of (μ_k) Denote $\Lambda_0(A)$ the sequence $\lambda_1 \ge \lambda_2 \ldots \ge \lambda_{-2} \ge \lambda_{-1}$.

6 SEAM 2008

Inserting a gap

(a technical lemma)

Lemma. Fix $(I, J, K) \in T_r^N$, $0 \le p, q, p+q \le r$ and $M \in \mathbb{N}$.

$$\begin{split} I'_{\ell} &= \begin{cases} I_{\ell} & \text{if } l \leq r-p \\ I_{\ell} + M & \text{if } \ell > r-p \end{cases} \\ J'_{\ell} &= \begin{cases} J_{\ell} & \text{if } \ell \leq r-q \\ J_{\ell} + M & \text{if } \ell > r-q \end{cases} \\ K'_{\ell} &= \begin{cases} K_{\ell} & \text{if } \ell \leq r-(p+q) \\ K_{\ell} + M & \text{if } \ell > r-(p+q) \end{cases} \end{split}$$

Then, $(I', J', K') \in T_r^{N+M}$.

Extended Horn inequalities

Proposition. Fix compact self-adjoint operators A, B, C on $\mathcal{H}, C \leq A + B, (I, J, K) \in T_r^N, 0 \leq p, q, p + q \leq r$. Then the sequences $\alpha = \Lambda_0(A), \beta = \lambda_0(B), \gamma = \Lambda_0(C)$ satisfy the inequalities

$$\sum_{\ell=1}^{r-(p+q)} \gamma_{K_{\ell}} + \sum_{\ell=r-(p+q)+1}^{r} \gamma_{K_{\ell}-N-1}$$

$$\leq \sum_{\ell=1}^{r-p} \alpha_{I_{\ell}} + \sum_{\ell=r-p+1}^{r} \alpha_{I_{\ell}-N-1} + \sum_{\ell=1}^{r-q} \beta_{J_{\ell}} + \sum_{\ell=e-q+1}^{r} \beta_{J_{\ell}-N-1}$$

Proof. Choose a projection P whose range contains all the eigenvectors of A, B, C corresponding with $\alpha_{\pm n}$, $\beta_{\pm n}$, $\gamma_{\pm n}$, $n \leq N$, rank of P equals N + M. Apply Lemma.

$$C_{\downarrow 0\uparrow}$$

$$\alpha = (\alpha_1 \ge \alpha_2 \ge \ldots \ge \alpha_n \ge \ldots \ge \alpha_{-n} \ge \ldots \ge \alpha_{-1})$$

$$\lim_{n \to \infty} \alpha_{\pm n} = 0.$$

$$\alpha = (\alpha_{\pm n})$$

$$\overline{\alpha} = (-\alpha_{-1} \ge -\alpha_{-2} \ge \ldots \ge -\alpha_{+2} \ge -\alpha_{+1})$$

Theorem. Consider sequences $\alpha', \alpha'', \beta', \beta'', \gamma', \gamma'' \in C_{\downarrow 0\uparrow}$. Assume both $(\alpha', \beta', \gamma')$, $(\alpha'', \beta'', \gamma'')$ satisfy all the extended Horn inequality. Then there exist compact self-adjoint operators A, B, C such that C = A + B,

 $\Lambda_0(A)$ is between α' and α'' $\Lambda_0(B)$ is between β' and β'' $\Lambda_0(C)$ is between γ' and γ'' .

Corollary. (Horn conjecture for compact self-adjoint operators). Let α , β , $\gamma \in C_{\downarrow 0\uparrow}$. The following are equivalent: (i) There exist compact self-adjoint operators A, B, C such that C = A + B, $\Lambda_0(A) = \alpha$, $\Lambda_0(B) = \beta$, $\Lambda_0(C) = \gamma$. (ii) (α, β, γ) and $(\overline{\alpha}, \overline{\beta}, \overline{\gamma})$ satisfy all the extended Horn inequalities.

Partially specified eigenvalues

Under what conditions we can find operators A, B, C, C = A + B, such that $\Lambda_0(A), \Lambda_0(B)$, and $\Lambda_0(C)$ are only partially specified.

Matrix Case:

 $\alpha \in \mathbb{R}^N_{\downarrow}$, with $\alpha_{i_1} \ge \alpha_{i_2} \ge \dots \alpha_{i_p}$ are specified.

$$\alpha_i^{\min} = \begin{cases} \alpha_{i_1} & \text{if } i \leq i_1 \\ -\infty & \text{if } i_p < i \leq N \\ \alpha_{i_{j+1}} & \text{if } i_j < i \leq i_{j+1} \end{cases}$$
$$\alpha_i^{\max} = \begin{cases} +\infty & \text{if } i < i_1 \\ \alpha_{i_p} & \text{if } i_p \leq i \leq N \\ \alpha_{i_j} & \text{if } i_j \leq i < i_{j+1} \end{cases}$$

 $\beta \in \mathbb{R}^N_{\downarrow}$ agrees with α on the specified indices iff $\alpha^{\min} \leq \beta \leq \alpha^{\max}$. Write $\beta \supset \alpha$.

Proposition. $N \in \mathbb{N}$, partially specified decreasing vectors α , $\beta, \gamma \in \mathbb{R}^N_{\downarrow}$. TFAE: (i) $\exists A, B, C$ Hermitian such that C = A + B, $\Lambda(A) \supset \alpha$, $\Lambda(B) \supset \beta, \Lambda(C) \supset \gamma$; (ii) $\forall (I, J, K) \in T_r^N, r \leq N$,

$$\sum_{k \in K} \gamma_k^{\min} \le \sum_{i \in I} \alpha_i^{\max} + \sum_{j \in J} \beta_j^{\max}$$

and

$$\sum_{k \notin K} \gamma_k \max \ge \sum_{i \notin I} \alpha_i^{\min} + \sum_{j \notin J} \beta_j^{\min}$$

Theorem. Let α , β , $\gamma \in C_{\downarrow 0\uparrow}$ be partially specified. TFAE (i) \exists compact self-adjoint operators A, B, C with C = A + Band $\Lambda_0(A) \supset \alpha$, $\Lambda_0(B) \supset \beta$, $\Lambda_0(C) \supset (\gamma)$; (ii) both $(\alpha^{\max}, \beta^{\max}, \gamma^{\min})$ and $(\overline{\alpha^{\min}}, \overline{\beta^{\min}}, \overline{\gamma^{\max}})$ satisfy all the Horn inequalities.