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Abstract

Let B be a Douglas algebra and let B be the algebra on the disk generated by the harmonic extensions of
the functions in B. In this paper we show that B is generated by H∞(D) and the complex conjugates of the
harmonic extensions of the interpolating Blaschke products invertible in B. Every element S in the Toeplitz
algebra TB generated by Toeplitz operators (on the Bergman space) with symbols in B has a canonical
decomposition S = T

S̃
+ R for some R in the commutator ideal CTB ; and S is in CTB iff the Berezin

transform S̃ vanishes identically on the union of the maximal ideal space of the Douglas algebra B and the
set M1 of trivial Gleason parts.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let dA denote Lebesgue area measure on the open unit disk D, normalized so that the measure
of D equals 1. The Bergman space L2

a is the Hilbert space consisting of the analytic functions
on D that are also in L2(D,dA). For z ∈ D, the Bergman reproducing kernel is the function
Kz ∈ L2

a such that

h(z) = 〈h,Kz〉
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for every h ∈ L2
a . The normalized Bergman reproducing kernel kz is the function Kz/‖Kz‖2.

Here, as elsewhere in this paper, the norm ‖ ‖2 and the inner product 〈 , 〉 are taken in the
space L2(D,dA). The set of bounded linear operators on L2

a is denoted by L(L2
a).

For S ∈ L(L2
a), the Berezin transform of S is the function S̃ on D defined by

S̃(z) = 〈Skz, kz〉.
Often the behavior of the Berezin transform of an operator provides important information about
the operator.

For u ∈ L∞(D,dA), the Toeplitz operator Tu with symbol u is the operator on L2
a defined

by Tuh = P(uh); here P is the orthogonal projection from L2(D,dA) onto L2
a . Note that if

u ∈ H∞(D) (the set of bounded analytic functions on D), then Tu is just the operator of multi-
plication by u on L2

a .
The Berezin transform ũ of a function u ∈ L∞(D,dA) is defined to be the Berezin transform

of the Toeplitz operator Tu. In other words, ũ = T̃u.
For V a family of bounded harmonic functions on D, let H∞(D)[V] denote the closed sub-

algebra of L∞(D,dA) generated by H∞(D) and V . We will show that the Berezin transform
maps H∞(D)[V] into H∞(D)[V].

We let U denote the closed subalgebra of L∞(D,dA) generated by H∞(D) and the complex
conjugates of the functions in H∞(D). As is well known (see [1, Proposition 4.5]), U equals
the closed subalgebra of L∞(D,dA) generated by the set of bounded harmonic functions on D.
C. Bishop [4] has given a more geometric characterization of the functions in U .

Let |dz| denote arc length measure on the unit circle ∂D. Each function f ∈ L∞(∂D, |dz|)
extends to a bounded harmonic function f̂ on D, via the Poisson integral

f̂ (w) = 1

2π

∫
∂D

f (z)
1 − |w|2
|1 − w̄z|2 |dz|

for w ∈ D. The algebra H∞(∂D) is defined to be the set of functions f ∈ L∞(∂D, |dz|) such
that f̂ is analytic on D.

We fix, for the rest of this paper, a Douglas algebra B . Thus B is a closed subalgebra of
L∞(∂D, |dz|) containing H∞(∂D). Let IB denote the set of interpolating Blaschke products
invertible in B . The Chang–Marshall theorem [6,14] tells us that B is the closed subalgebra of
L∞(∂D, |dz|) generated by H∞(∂D) and the complex conjugates of the functions in IB .

For f ∈ H∞(∂D), we often identify f̂ with f , writing f instead of f̂ for the analytic exten-
sion of f to D. Thus IB could denote either a subset of H∞(∂D) or a subset of H∞(D); the
context will make clear which interpretation is appropriate.

Throughout this paper, B denotes the closed subalgebra of L∞(D,dA) generated by {f̂ :
f ∈ B}. Thus B ⊂ U . We will show that B is generated by H∞(D) and the set {b̄: b ∈ IB}.

For the given Douglas algebra B , the Toeplitz algebra TB is the subalgebra of L(L2
a) generated

by {Tg: g ∈ B}. Our goal in this paper is to study the Berezin transforms of the operators in TB .
Our main result describes the commutator ideal CTB (the smallest closed, two-sided ideal of TB
containing all operators of the form RS − SR, where R,S ∈ TB). Indeed, it will be shown that
S − T

S̃
is in the commutator ideal CTB for every S ∈ TB . Writing S = T

S̃
+ (S − T

S̃
), this gives

us a canonical way to express the (nondirect) sum

TB = {Tu: u ∈ B} + CTB .
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This extends the McDonald–Sundberg theorem [15]. Indeed, we obtain a new proof of the
McDonald–Sundberg theorem different from those in [15] and [18].

2. Berezin transform on algebras on the disc

In this section we will show that the Berezin transform maps the algebra H∞(D)[V] into
itself. We will need explicit formulas for the reproducing kernel and the normalized reproducing
kernel. As is well known,

Kz(w) = 1

(1 − z̄w)2
and kz(w) = 1 − |z|2

(1 − z̄w)2

for z,w ∈ D.
Analytic automorphisms of the unit disk will play a key role here. For z ∈ D, let ϕz be the

Möbius map on D defined by

ϕz(w) = z − w

1 − z̄w
.

The following formula for the Berezin transform of a product of Toeplitz operators comes
from [2, Lemma 2.7]: if u1, . . . , un ∈ L∞(D,dA), then

(Tu1 . . . Tun)˜(z) = 〈Tu1◦ϕz . . . Tun◦ϕz1,1〉

for every z ∈ D.
We will need to make extensive use of the maximal ideal space of H∞(D), which we denote

by M. We define M to be the set of multiplicative linear maps from H∞(D) onto the field of
complex numbers. With the weak-star topology, M is a compact Hausdorff space. If z is a point
in the unit disk D, then point evaluation at z is a multiplicative linear functional on H∞(D).
Thus we can think of z as an element of M and the unit disk D as a subset of M. Carleson’s
corona theorem states that D is dense in M.

Suppose m ∈M and z 
→ αz is a mapping of D into some topological space E. Suppose also
that β ∈ E. The notation

lim
z→m

αz = β

means (as you should expect) that for each open set X in E containing β , there is an open set Y

in M containing m such that αz ∈ X for all z ∈ Y ∩ D. Note that with this notation z is always
assumed to lie in D. We must deal with these nets rather than sequences because the topology
of M is not metrizable.

The Gelfand transform allows us to think of H∞(D) as contained in C(M), the algebra of
continuous complex-valued functions on M. By the Stone–Weierstrass theorem, the set of finite
sums of functions of the form f ḡ, with f,g ∈ H∞(D), is dense in C(M), where C(M) is
endowed with the usual supremum norm. Because D is dense in M, this supremum norm is
the same as the usual supremum norm over D. Thus we can identify C(M) with U , the closure
in L∞(D,dA) of finite sums of functions of the form f ḡ, with f,g ∈ H∞(D). In other words,
given a function u ∈ U , which we normally think of as a function on D, we can uniquely extend u
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to a continuous complex-valued function on M; this extension to M is also denoted by u. Thus
for u ∈ U and m ∈M, the expression u(m) makes sense—it is the complex number defined by

u(m) = lim
z→m

u(z).

Conversely, we will sometimes use the identification of U with C(M) to prove that a function
is in U . Specifically, if u is a continuous function on D and we can prove that u extends to a
continuous function on M, then we can conclude that u ∈ U .

For m ∈ M, let ϕm :D →M denote the Hoffman map. This is defined by setting

ϕm(w) = lim
z→m

ϕz(w)

for w ∈ D; here we are taking a limit in M. The existence of this limit, as well as many other
deep properties of ϕm, was proved by Hoffman [13]. An exposition of Hoffman’s results can also
be found in [7, Chapter X]. We shall use, without further comment, Hoffman’s result that ϕm is
a continuous mapping of D into M. Note that ϕm(0) = m.

The set ϕm(D) is called the Gleason part of m. If ϕm is constant on M (i.e., if ϕm(z) = m

for all z ∈ D), then m is called a one-point Gleason part. The subset of M consisting of all
one-point Gleason parts is denoted by M1. The set of m ∈ M that are not one-point Gleason
parts is denoted by G. Thus M is the disjoint union of M1 and G.

If u ∈ U and m ∈ M, then u ◦ ϕm makes sense as a continuous function on D, because ϕm

maps D into M and u can be thought of as a continuous function on M, as discussed above.
Proposition 3.1 of [2] states that the Berezin transform maps U to U . Thus if u ∈ U and

m ∈M, then ũ(m) makes sense.

Lemma 2.1. Suppose that u ∈ U and m ∈M. If u ◦ ϕm ∈ H∞(D), then ũ(m) = u(m).

Proof. From [2, Proposition 3.1], we have

ũ(m) =
∫
D

u ◦ ϕm dA.

If u ◦ ϕm ∈ H∞(D), then the mean value property of analytic functions implies that the integral
above equals (u ◦ ϕm)(0), which equals u(m), which gives the desired result. �

A subset E of M is called antisymmetric for H∞(D)[V] if every function in H∞(D)[V]
that is real-valued on E is constant on E. Every antisymmetric set is contained in a maxi-
mal antisymmetric set. For g ∈ C(M), the E. Bishop Antisymmetric Decomposition Theorem
says that g ∈ H∞(D)[V] if and only if g|E ∈ H∞(D)[V]|E for each maximal antisymmetric
set E for H∞(D)[V]. C. Bishop has obtained a distance formula from f ∈ L∞(D) to the alge-
bra H∞(D)[V]; see [3].

The following lemma is a slight extension of [19, Corollary 1].

Lemma 2.2. Let V be a family of bounded harmonic functions on D. Let E be an antisymmetric
set for H∞(D)[V] containing more than one point. Then u ◦ ϕm ∈ H∞(D) for every m ∈ E and
every u ∈ H∞(D)[V].
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Proof. Fix m ∈ E. First suppose v ∈ V . Because H∞(D)[v] ⊂ H∞(D)[V], we see that E

is an antisymmetric set for H∞(D)[v]. Thus E is contained in a maximal antisymmetric set
for H∞(D)[v]. Corollary 1 of [19] now implies that v ◦ ϕm ∈ H∞(D).

Because v ◦ ϕm ∈ H∞(D) for every generator v ∈ V of H∞(D)[V], a similar conclusion
holds for every u ∈ H∞(D)[V]. �

The next result shows that the Berezin transform maps H∞(D)[V] into itself. In the special
case where V is the set of all bounded harmonic functions on D, this result was proved as [2,
Proposition 3.1].

Theorem 2.3. Let V be a family of bounded harmonic functions on D. If u ∈ H∞(D)[V], then
ũ ∈ H∞(D)[V].

Proof. Let u ∈ H∞(D)[V]. Let E be a maximal antisymmetric set for H∞(D)[V]. By the
E. Bishop Antisymmetric Decomposition Theorem, to conclude that ũ is in H∞(D)[V] we need
only show that ũ|E ∈ H∞(D)[V]|E .

If E contains only one point, then clearly ũ|E ∈ H∞(D)[V]|E . Thus we can assume that E

contains more than one point. Lemma 2.2 now implies that u ◦ ϕm ∈ H∞(D) for every m ∈ E.
Lemma 2.1 then implies that ũ|E = u|E . Thus ũ|E ∈ H∞(D)[V]|E , completing the proof. �

Because B = H∞(D)[V] for V = {f̂ : f ∈ B}, the theorem above implies that the Berezin
transform maps B into B.

For our given Douglas algebra B , let M(B) denote the maximal ideal space of B . The map
from M(B) to M defined by m 
→ m|H∞(∂D) is injective (because H∞(∂D) is a logmodular
algebra; see [5]). Thus we can think of M(B) as a subset of M.

Define MB by

MB = {
m ∈M: f̂ ◦ ϕm ∈ H∞(D) for every f ∈ B

}
.

With this notation, Lemma 2.2 implies that if E is an antisymmetric set for B containing more
than one point, then E ⊂ MB .

The next theorem states that MB is the union of the maximal ideal space of B and the one-
point Gleason parts.

Theorem 2.4. MB = M(B) ∪M1.

Proof. If m ∈ M1, then ϕm is a constant function. Thus MB ⊃ M1.
To prove that MB ⊃ M(B), recall that the Chang–Marshall theorem tells us that

M(B) =
⋂
b∈IB

{
m ∈ M:

∣∣b(m)
∣∣ = 1

}
.

Fix m ∈ M(B) and b ∈ IB . Then |m(b)| = 1 and hence the analytic function b̂ ◦ ϕm attains its
maximum absolute value on D at 0, which implies that b̂ ◦ ϕm is constant on D, which implies
that ϕm(D) ⊂ M(B). Thus if g ∈ H∞(∂D), we have

(gb̄)ˆ ◦ ϕm = (ĝ ◦ ϕm)( ˆ̄b ◦ ϕm).
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The last term above on the right is a constant function, which implies that (gb̄)ˆ ◦ ϕm ∈ H∞(D).
Functions of the form gb̄, where g ranges over H∞(∂D) and b ranges over IB , generate B , and
so we conclude that m ∈ MB . Thus MB ⊃ M(B), as desired.

We have now shown that MB ⊃ M(B) ∪M1. To prove the inclusion in the other direction,
suppose that m ∈ M but m /∈ M(B) ∪ M1. Because m /∈ M(B), there exist b ∈ IB and ε > 0
such that |b(m)| < 1 − ε. Because m /∈ M1, there is an interpolating sequence {zn} ⊂ D such
that m is in the closure of {zn} in M and

∣∣b(zn)
∣∣ < 1 − ε

for each n. Let u be the interpolating Blaschke product with zeros {zn}. By a theorem in [17],
ū ∈ H∞(∂D)[b̄], and hence ū ∈ B . However, u ◦ ϕm is not constant on D (because interpolating
Blaschke products, composed with any Hoffman map, have isolated zeros on D) and thus ū ◦
ϕm /∈ H∞(D). Thus m /∈MB . This proves that MB ⊂ M(B) ∪M1, completing the proof. �

The next lemma, which will be used in the proof of Theorem 2.6, was essentially proved as
[19, Theorem 2]. The context there is that E is a maximal antisymmetric set for H∞[f ], where
f is a bounded harmonic function on D. However, an examination of the proof of Theorem 2
of [19] shows that what is actually proved there is the following lemma. The restatement given
here holds because a connected subset of M1 can contain at most one point (because M1 is
totally disconnected, which is proved as [16, Theorem 3.4]).

Lemma 2.5. Suppose E ⊂ M is closed, connected, and contains more than one point. Then
E ∩ G is dense in E.

Gorkin and Izuchi [10] showed that there exists an inner function b (not in the little Bloch
space) such that H∞(D)[b̄] is not generated by H∞(D) and the complex conjugates of the
interpolating Blaschke products in H∞(D)[b̄]. The following theorem, which can be thought
of as a Chang–Marshall theorem for the disk, shows that this phenomenon cannot occur with
algebras generated by harmonic extensions of a Douglas algebra (and thus the Gorkin–Izuchi
algebra H∞(D)[b̄] is not equal to B for any choice of B).

Theorem 2.6. The algebra B is generated by H∞(D) and the complex conjugates of the analytic
extensions of the interpolating Blaschke products that are invertible in B . In other words, B =
H∞(D)[ĪB ].

Proof. Obviously B ⊃ H∞(D)[ĪB ].
To prove the inclusion in the other direction, fix f ∈ B . We need to show that f̂ ∈

H∞(D)[ĪB ]. Let E be a maximal antisymmetric set for H∞(D)[ĪB ]. By the E. Bishop Anti-
symmetric Decomposition Theorem, it suffices to show that f̂ |E ∈ H∞(D)[ĪB ]|E . This holds
trivially if E contains only a single point, so we will assume that E contains more than one
point.

Suppose that there exists m ∈ E such that m /∈ MB . By Theorem 2.4, m /∈ M(B) ∪M1. As
in the proof of Theorem 2.4, this implies that there exists u ∈ IB such that ū ◦ ϕm /∈ H∞(D),
which contradicts Lemma 2.2. This contradiction means that we can conclude that E ⊂ MB .
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Now by Theorem 2.4, E ∩ G is contained in M(B). By the Chang–Marshall theorem, for
each ε > 0, there are functions gj ∈ H∞(∂D) and bj ∈ IB such that∥∥∥∥∥f −

n∑
j=1

gj b̄j

∥∥∥∥∥
L∞(∂D)

< ε.

Thus for each m ∈ M(B),

ε �
∣∣∣∣∣f̂ (m) − m

(
n∑

j=1

gj b̄j

)∣∣∣∣∣ =
∣∣∣∣∣f̂ (m) −

n∑
j

gj (m)bj (m)

∣∣∣∣∣.
This implies that f̂ is approximated by functions in H∞(D)[ĪB ] on E ∩ G. By Lemma 2.5,
E ∩ G is dense in E (where the connectedness of E is shown in the discussion preceding [19,
Corollary 1]). Thus f̂ |E ∈ H∞(D)[ĪB ]|E , completing the proof. �

A special case of the theorem above occurs when B = L∞(∂D, |dz|). In this case, the theo-
rem above implies that U is equal to the closed algebra generated by H∞(D) and the complex
conjugates of all the interpolating Blaschke products. This special case also follows from a deep
theorem of Garnett and Nicolau [8] stating that the span of the interpolating Blaschke products is
dense in H∞(∂D). However, the proof given here seems to be a simpler approach in this special
case.

The next two corollaries will be used in proving Theorem 3.9.

Corollary 2.7. If u1, u2, . . . , un ∈ B, then Tu1Tu2 . . . Tun − Tu1u2...un ∈ CTB .

Proof. First suppose that n = 2. Consider initially the case where u2 = hb̄, where h,b ∈ H∞(D)

and b̄ ∈ B . Then

Tu1Tu2 − Tu1u2 = Tu1Thb̄ − Tu1hb̄

= Tu1Tb̄Th − Tb̄Tu1Th

= (Tu1Tb̄ − Tb̄Tu1)Th,

which shows that Tu1Tu2 − Tu1u2 ∈ CTB , as desired.
The proof of the corollary when n = 2 is completed by noting that an arbitrary u2 ∈ B can be

approximated by a finite sum of functions of the form hb̄, where h,b ∈ H∞(D) and b̄ ∈ B (by
Theorem 2.6, which shows that we can take b to be a finite product of interpolating Blaschke
products that are invertible in B).

Now we use induction on n. For n > 2 we have

Tu1Tu2 . . . Tun − Tu1u2...un = (Tu1Tu2 − Tu1u2)Tu3 . . . Tun

+ (Tu1u2Tu3 . . . Tun − Tu1u2u3...un).

The first term on the right-hand side of the equation above is in CTB by Corollary 2.7; the
second term on the right-hand side of the equation above comes from the n − 1 functions
u1u2, u3, . . . , un in B and thus (by an induction hypothesis) it also is in CTB . �
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The following corollary will be strengthened in the next section—see the remark before Corol-
lary 3.11.

Corollary 2.8. Suppose S ∈ TB and ε > 0. Then there exist u ∈ B and R ∈ CTB such that

‖S − Tu − R‖ < ε.

Proof. We can assume that S = Tu1Tu2 . . . Tun , where each uj ∈ B (because the set of finite sums
of operators of this form is dense in TB). Let u = u1u2 . . . un and let R = Tu1Tu2 . . . Tun − Tu.
Thus S − Tu − R = 0. The proof is completed by noting that Corollary 2.7 implies that
R ∈ CTB . �
3. Berezin transform on Toeplitz algebras

The next theorem shows that the Berezin transform maps TB into B. In the special case where
B = L∞(∂D, |dz|), this result was proved as [2, Theorem 2.11].

Theorem 3.1. If S ∈ TB , then S̃ ∈ B. Moreover, if u1, . . . , un ∈ B, then

(Tu1 . . . Tun)˜(m) = u1(m) . . . un(m),

for each m ∈ MB .

Proof. First we will prove the second part of the theorem. Suppose u1, . . . , un ∈ B. By [2, The-
orem 2.11], (Tu1 . . . Tun)˜ extends to a continuous function on M, and that the extension is given
by

(Tu1 . . . Tun)˜(m) = 〈Tu1◦ϕm . . . Tun◦ϕm1,1〉 (3.2)

for every m ∈ M.
Suppose m ∈ MB , which means that f̂ ◦ ϕm ∈ H∞(D) for each f ∈ B . This implies that

u ◦ϕm ∈ H∞(D) for each u ∈ B. Thus each Toeplitz operator Tuj ◦ϕm is simply multiplication by
uj ◦ ϕm. Hence

(Tu1 . . . Tun)˜(m) = 〈Tu1◦ϕm . . . Tun◦ϕm1,1〉
= 〈u1 ◦ ϕm . . . un ◦ ϕm,1〉
= u1

(
ϕm(0)

)
. . . un

(
ϕm(0)

)
= u1(m) . . . un(m),

where the first equality comes from Eq. (3.2) and the third equality follows from the mean value
property of analytic functions. The last equation above completes the proof of the second part of
the theorem.

Now we will show that

(Tu1 . . . Tun)˜ ∈ B.
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By the E. Bishop Antisymmetric Decomposition Theorem, it suffices to show that (Tu1 . . .

Tun)˜|E ∈ B|E for each maximal antisymmetric set E of B.
Let E be a maximal antisymmetric set for B. If E contains only one point, then our desired

conclusion trivially holds. Hence we can assume that E contains more than one point, which by
Lemma 2.2 implies that E ⊂ MB . Thus the second part of the theorem, which we have already
proved, shows that

(Tu1 . . . Tun)˜|E = (u1 . . . un)|E ∈ B|E,

completing the proof that (Tu1 . . . Tun)˜ ∈ B.
The linearity and continuity of the Berezin transform now imply that the Berezin transform

maps TB into B. �
The special case of the next corollary when B = L∞(∂D, |dz|) was proved as [2, Corol-

lary 2.15] (in that special case, MB = M1).

Corollary 3.3. If R,S ∈ TB , then

˜(RS)(m) = R̃(m)S̃(m)

for every m ∈ MB .

Proof. If R,S are each products of Toeplitz operators with symbols in B, then the desired result
follows from the theorem above. The proof is completed by recalling that sums of such operators
are dense in TB . �

Let b be the Blaschke product with zeros {zn} ⊂ D. Define

δ(b) = inf
n

∏
m �=n

|zn − zm|
|1 − z̄nzm| .

Recall that b is an interpolating Blaschke product if and only if δ(b) > 0.
The following result is the first of five lemmas that we need before getting to Theorem 3.9 and

its proof.

Lemma 3.4. Suppose m ∈M \MB . Then there exists b ∈ IB such that m(b) = 0 and δ(b) > 1
2 .

Proof. Because m /∈ MB , the Chang–Marshall theorem implies that g ◦ ϕm is not constant for
some g ∈ IB . Let λ = m(g). Because λ = (g ◦ ϕm)(0), we see that |λ| < 1. Note that m(ϕλ ◦
g) = 0, but ϕλ ◦ g does not vanish identically on the Gleason part ϕm(D). By [13, Theorem 3.3],
m(g1) = 0 for some interpolating Blaschke factor g1 of ϕλ ◦ g. By [13, Theorem 3.2], there is
a subfactor b of g1 with m(b) = 0 and δ(b) > 1

2 . Because for each g ∈ IB, each subfactor of
Blaschke product g is contained in IB , we see that b is also in IB , as desired. �

The pseudohyperbolic distance ρ(w, z) between two points w,z ∈ D is defined by

ρ(w, z) = |z − w|
.
|1 − z̄w|



76 S. Axler, D. Zheng / Journal of Functional Analysis 243 (2007) 67–86
The pseudohyperbolic disk with pseudohyperbolic center z ∈ D and pseudohyperbolic radius
r ∈ (0,1) is defined by

D(z, r) = {
w ∈ D: ρ(w, z) < r

}
.

The following lemma is just a restatement of [13, Lemmas 4.1 and 4.2].

Lemma 3.5. Let b be an interpolating Blaschke product with zeros {zn} and δ(b) > 1
2 . Then there

are constants 0 < δ1 < δ2 < 1 such that{
z ∈ D:

∣∣b(z)
∣∣ < δ1

} ⊂
⋃
n

D(zn, δ2) ⊂ {
z ∈ D:

∣∣b(z)
∣∣ < 2δ2

}
,

and for each |λ| < 3δ2, the level set Eλ = {z ∈ D: b(z) = λ} is an interpolating sequence. Fur-
thermore, δ1 and δ2 can be chosen to be less than any specific positive constant.

The next lemma provides a convenient open cover of the set where a continuous function
on M that is small on MB is bounded away from 0.

Lemma 3.6. Let u ∈ C(M) and ε > 0. If |u(m)| < ε for every m ∈ MB , then there is a finite
number of interpolating Blaschke products b1, . . . , bN ∈ IB such that δ(bn) > 1

2 for each n and

{
m ∈M:

∣∣u(m)
∣∣ � ε

} ⊂
N⋃

n=1

{
m ∈M:

∣∣bn(m)
∣∣ < δ1(bn)

}
,

where δ1(bn) is the constant in Lemma 3.5.

Proof. Suppose m ∈ M is such that |u(m)| � ε. Our hypothesis then implies that m /∈ MB .
Lemma 3.4 now implies that there exists bm ∈ IB such that bm(m) = 0 and δ(bm) > 1

2 . Let Om

denote the open set defined by Om = {τ ∈M: |bm(τ)| < δ1(bm)}, and note that m ∈ Om.
Thus {

m ∈M:
∣∣u(m)

∣∣ � ε
} ⊂

⋃
{m∈M: |u(m)|�ε}

Om.

Because the set {m ∈ M: |u(m)| � ε} is compact, there is a finite number of m1, . . . ,mN such
that |u(mn)| � ε for each n and

{
m ∈ M:

∣∣u(m)
∣∣ � ε

} ⊂
N⋃

n=1

Omn.

Letting bn = bmn , we obtain the desired result. �
Recall that a positive measure μ on the unit disk is called a Carleson measure if there is a

C > 0 such that μ({w ∈ D: |z − w| < t}) � Ct for every z ∈ ∂D and t > 0.
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Lemma 3.7. Suppose b be an interpolating Blaschke product with zeros {zn} and with δ(b) > 1
2 .

Let ϕ be a bounded smooth function on D such that supz∈D |∇ϕ(z)|(1 − |z|2) < ∞, |∇ϕ|dA is a
Carleson measure, and ϕ is supported in

⋃
n D(zn,3δ2), where δ2 is the constant in Lemma 3.5.

Then uϕ ∈ H∞(D)[b̄] for every u ∈ C(M).

Proof. The C. Bishop geometric characterization theorem [4, Theorem 1.1] implies that ϕ is
in C(M).

Let u ∈ C(M). In order to show that uϕ ∈ H∞(D)[b̄], by the E. Bishop Antisymmetric
Decomposition Theorem, it suffices to show that uϕ|E is in H∞(D)[b̄]|E for each maximal an-
tisymmetric set E of H∞(D)[b̄]. To do so, let E be a maximal antisymmetric set of H∞(D)[b̄].
Noting that b is in H∞(D), we have that E is contained in some level set Eλ = {m ∈ M:
b(m) = λ}. If |λ| < 3δ2, by Lemma 3.5, Eλ is an interpolating set for H∞(D). Thus there is
a function ψ ∈ H∞(D) such that uϕ|Eλ = ψ |Eλ and uϕ|E = ψ |E . If |λ| � 3δ2, ϕ|Eλ = 0 and
hence uϕ|E = 0. This gives that uϕ|E is in H∞(D)[b̄]|E, completing the proof. �

For a measurable set E ⊂ D, let |E| denote the normalized area of E. In other words, |E| =∫
E

1dA.

Lemma 3.8. There exists a constant c > 1 such that∫
⋃∞

n=1 D(zn,r)

|f |2 dA � cr2‖f ‖2
2

whenever f ∈ L2
a , r ∈ (0, 1

2 ), and {zn} is an interpolating sequence with

inf
n

∏
m �=n

|zn − zm|
|1 − znzm| >

1

2
.

Proof. Suppose {zn} is an interpolating sequence satisfying the inequality above, and suppose
r ∈ (0, 1

2 ). Let Q denote a typical Carleson square

Q = {
seiθ : 1 − h < s < 1 and θ0 < θ < θ0 + h

}
and let T (Q) denote the half of Q away from ∂D:

T (Q) =
{
seiθ : 1 − h < s < 1 − h

2
and θ0 < θ < θ0 + h

}
.

First we show that the number of points in T (Q) ∩ {zn} is less than 100. To do this, suppose
that zj , zk ∈ T (Q). Then

|1 − zkzj | � 1 − |zk|2 + |zk||zk − zj |
�

(
1 + |zk|

)
h + 3

2
h

<
7
h.
2
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Thus this gives

1 − |zj |2 <
49h2(1 − |zj |2)

4|1 − zkzj |2 = 49h2

4(1 − |zk|2)
(1 − |zk|2)(1 − |zj |2)

|1 − zkzj |2 .

So

∑
zj ∈T (Q)

(
1 − |zj |2

)
<

49h2

4(1 − |zk|2)
∑

zj ∈T (Q)

(1 − |zk|2)(1 − |zj |2)
|1 − zkzj |2

= 49h2

4(1 − |zk|2)
∑

zj ∈T (Q)

(
1 −

∣∣∣∣ zk − zj

1 − zkzj

∣∣∣∣2)

<
49h

3

∑
zj ∈T (Q)

(
1 −

∣∣∣∣ zk − zj

1 − zkzj

∣∣∣∣2)

<
49h

3

[
1 + 2

∑
zj ∈T (Q),j �=k

log
1

| zk−zj

1−zkzj
|

]

= 49h

3

[
1 + 2 log

( ∏
j �=k

∣∣∣∣ zk − zj

1 − zkzj

∣∣∣∣)−1]

<
49h

3
(1 + log 4) < 39h.

Here the third line follows from the inequality 1 − |zk|2 � 3h
4 , and the fourth line follows from

the inequality 1 − |z|2 < 2 log 1
|z| for 0 < |z| < 1. Because 1 − |zj |2 � 3h

4 for each zj in T (Q),

letting N be the number of points in T (Q) ∩ {zn} we have 3h
4 N < 39h. Therefore N is less

than 100.
On the other hand,

∣∣D(z, r)
∣∣ � r2(1 − |z|2)

1 − r2

for any z in T (Q). Thus ∣∣D(z, r)
∣∣ � 32r2

∣∣T (Q)
∣∣,

and therefore ∣∣∣∣∣
[ ∞⋃

n=1

D(zn, r)

]
∩ T (Q)

∣∣∣∣∣ � 105r2
∣∣T (Q)

∣∣.
But each Carleson square Q is

⋃∞
k=1 T (Qk) for a family of Carleson squares Qk with disjoint

interior. Hence
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∣∣∣∣∣
[ ∞⋃

n=1

D(zn, r)

]
∩ Q

∣∣∣∣∣ =
∞∑

k=1

∣∣∣∣∣
[ ∞⋃

n=1

D(zn, r)

]
∩ T (Qk)

∣∣∣∣∣
�

∞∑
k=1

105r2
∣∣T (Qk)

∣∣ = 105r2
∣∣T (Q)

∣∣.
By the theorem (unnumbered) in [12], we conclude that there exists a constant c (independent of
everything) such that ∫

⋃∞
n=1 D(zn,r)

|f |2 dA � cr2‖f ‖2
2,

for all f ∈ L2
a , as desired. �

Suppose Rn ⊂ Pn ⊂ D(zn, r). If for fixed constants 0 < δ < 1 and C > 0 we have |(Pn \Rn)◦
ϕzn | � Cδ2 for all n, then making the change of variable z = ϕzn(w) in the area formula

|Pn \ Rn| =
∫

Pn\Rn

dA(z)

gives

|Pn \ Rn| =
∫

(Pn\Rn)◦ϕzn

∣∣ϕ′
zn

(w)
∣∣2

dA(w)

� (1 − |zn|2)2

(1 − r)4

∫
(Pn\Rn)◦ϕzn

dA(w)

= (1 − |zn|2)2

(1 − r)4

∣∣(Pn \ Rn) ◦ ϕzn

∣∣
� Cδ2(1 − |zn|2)2

(1 − r)4
.

For a Carleson square Q, if zn is in T (Q), then

∣∣T (Q)
∣∣ >

1

32

(
1 − |zn|2

)2
.

Hence

|Pn \ Rn| � 32Cδ2
∣∣T (Q)

∣∣.
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From the proof above of Lemma 3.8 we see that∫
⋃∞

n=1 Pn\Rn

|f |2 dA � cCδ2‖f ‖2
2.

We will use the remark above in the proof of the following theorem.

Theorem 3.9. Suppose S ∈ TB . Then S is in the commutator ideal CTB if and only if S̃|MB
= 0.

Proof. The commutator ideal CTB is the closure of the set of finite sums of operators of the
form S1(S2S3 − S3S2)S4, where S1, S2, S3, S4 ∈ TB . By Corollary 3.3, each such operator has a
Berezin transform that vanishes on MB . Thus if S ∈ CTB , then S̃|MB

= 0, proving one direction
of the theorem.

To prove the other direction, suppose S̃|MB
= 0. Let ε > 0. It suffices to show that

dist(S,CTB ) < 6ε.
By Corollary 2.8 there exist u ∈ B and R ∈ CTB such that

‖S − Tu − R‖ < ε.

Thus |S̃ − ũ − R̃| < ε on MB . However S̃|MB
= 0 by hypothesis, and R̃|MB

= 0 by the other
direction of this theorem. Hence |ũ| < ε on MB . But ũ = u on MB (by Lemma 2.1 and the
definition of MB ). So we have |u| < ε on MB .

We are going to show that

dist(Tu,CTB ) � 5ε,

which will then imply that dist(S,CTB ) < 6ε, as desired.
By Lemma 3.6, there are a finite number of interpolating Blaschke products b1, . . . , bN ∈ IB

such that

{
m ∈M:

∣∣u(m)
∣∣ � 3ε

} ⊂
N⋃

n=1

{
m ∈ M:

∣∣bn(m)
∣∣ < δ1(bn)

}
.

By Lemma 3.5, there are interpolating sequences {zn,k}∞n=1 for all 1 � k � N such that for the
interpolating Blaschke products bk with zeros {zn,k}∞n=1, δ(bk) > 1

2 and

{
z ∈ D:

∣∣u(z)
∣∣ � 3ε

} ⊂
N⋃

k=1

∞⋃
n=1

D
(
zn,k, δ2(bk)

)
.

For any two functions f and g in L2
a ,∣∣∣∣∫

D

(Tuf )ḡ dA −
∫

⋃N ⋃∞ D(z ,δ (b ))

uf ḡ dA

∣∣∣∣ � 3ε‖f ‖2‖g‖2.
k=1 n=1 n,k 2 k
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Now write

N⋃
k=1

∞⋃
n=1

D
(
zn,k, δ2(bk)

) =
N⋃

k=1

∞⋃
n=1

Rn,k

with Rn,k ⊂ D(zn,k, δ2(bk)) and |Rn,k ∩ Rm,l | = 0 for n �= m or k �= l.
Letting 0 < δ < min{δ2(bk): k = 1, . . . ,N}, we are going to construct functions ψn,k such

that ψn,k = 1 on Rn,k , ψn,k = 0 on D \ R′
n,k , 0 � ψn,k � 1, and

∣∣∇ψn,k(z)
∣∣ � C

1 − |z|2 ,

where

R′
n,k = ϕzn,k

({
z ∈ D: dist

(
z,ϕzn,k

(Rn,k)
)
< δ

})
and ϕz denotes the Möbius transformation taking z to 0. To start this construction, let Un,k =
ϕzn,k

(Rn,k). Then Un,k is a subset of D(0, δ2(bk)). We can find a function fn,k to satisfy fn,k = 1
on Un,k and fn,k(z) = 0 if dist(z,Un,k) � δ, 0 � fn,k � 1, and |∇fn,k(z)| � Cδ .

Define functions ψn,k = fn,k ◦ ϕzn,k
. The chain rule gives

∇ψn,k(z) =
(

∂fn,k

∂z
◦ ϕzn,k

ϕ′
zn,k

(z),
∂fn,k

∂z̄
◦ ϕzn,k

ϕ′
zn,k

(z)

)
.

For each z ∈ D(zn,k, δ2(bk)(1 + δ)), we have (1 − |z|2)|ϕ′
zn,k

(z)| = 1 − |ϕzn,k
(z)|2; thus

∣∣ϕ′
zn,k

(z)
∣∣ � 1

1 − |z|2 .

This gives

∣∣∇ψn,k(z)
∣∣ � C

1 − |z|2 .

Thus the functions ψn,k satisfy the properties desired as above.
Let ψk = ∑∞

n=1 ψn,k . Since those ψn,k have disjoint supports,

|∇ψk| � Cδ

1 − |z|2

and

|∇ψk|dA � Cδ

1 − |z|2 χ⋃∞
n=1 D(zn,k,δ2(bk)(1+δ)) dA

� Cδ

2
χ⋃∞

n=1 D(zn,k,3δ2(bk))
dA.
1 − |z|
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By [9, Proposition 1], |∇ψk|dA is a Carleson measure. By Lemma 3.7, those functions ψk

are in B. For any integers l, we have∣∣∣∣ ∫
⋃∞

n=1 Rn,k

uf ḡ dA −
∫
D

ψl
kuf ḡ dA

∣∣∣∣ � ‖u‖∞
( ∫

⋃∞
n=1 R′

n,k\Rn,k

|f |2 dA

)1/2

‖g‖2.

If we choose δ sufficiently close to 0 such that∣∣{z: dist(z,Un,k) < δ
} \ Un,k

∣∣ � δ2(bk)
2δ1/2,

then by the remark after the proof of Lemma 3.8, we have∫
⋃∞

n=1[R′
n,k\Rn,k]

|f |2 dA � cδ2(bk)
2δ1/2‖f ‖2

2;

here c is the constant in Lemma 3.8. Thus∣∣∣∣ ∫
⋃∞

n=1 Rn,k

uf ḡ dA −
∫
D

ψl
kuf ḡ dA

∣∣∣∣ � c‖u‖∞δ2(bk)δ
1/4‖f ‖2‖g‖2.

Now we observe that Tψl
ku

− TuT
l
ψk

is in the commutator ideal CTB (by Corollary 2.7). Let

Ak,l = Tψl
ku

− TuT
l
ψk

. The estimate above gives

∣∣∣∣ ∫
⋃∞

n=1 Rn,k

uf ḡ dA −
∫
D

(Ak,lf )ḡ dA

∣∣∣∣
� c‖u‖∞δ2(bk)δ

1/4‖f ‖2‖g‖2 +
∣∣∣∣ ∫
D

(
TuT

l
ψk

f
)
ḡ dA

∣∣∣∣
� c‖u‖∞

[
δ2(bk)δ

1/4 + ∥∥T l
ψk

∥∥]‖f ‖2‖g‖2.

Applying the inequality above for all k yields∣∣∣∣∣
∫
D

(Tuf )ḡ dA −
∫
D

(
N∑

k=1

Ak,lf

)
ḡ dA

∣∣∣∣∣
�

[
3ε + c‖u‖∞

(
δ1/4

N∑
k=1

δ2(bk) +
N∑

k=1

‖Tψk
‖l

)]
‖f ‖2‖g‖2.

This implies ∥∥∥∥∥Tu −
N∑

Ak,l

∥∥∥∥∥ �
[

3ε + c‖u‖∞

(
δ1/4

N∑
δ2(bk) +

N∑
‖Tψk

‖l

)]

k=1 k=1 k=1
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and since
∑N

k=1 Ak,l ∈ CTB for each l, this shows that

dist(Tu,CTB ) � 5ε

if δ and l are chosen such that

c‖u‖∞δ1/4
N∑

k=1

δ2(bk) � ε

and

c‖u‖∞
N∑

k=1

‖Tψk
‖l � ε.

Noting that ψk is supported on
⋃∞

n=1 D(zn,k,3δ2(bk)), by Lemma 3.8 we have

‖Tψk
‖ � 3c1/2δ2(bk) < 1,

for suitably chosen interpolating sequence {zn,k}∞n=1 for k = 1, . . . ,N . This completes the
proof. �

We now present a series of corollaries that follow from the last theorem.

Corollary 3.10. If u ∈ C(M) vanishes on MB , then Tu ∈ CTB .

Proof. This follows from Theorem 3.9 and Lemma 2.1. �
Given an operator S ∈ TB , the following corollary tells us that there is a canonical choice of u

(namely the Berezin transform of S) such that S can be written in the form S = Tu + R with
u ∈ B and R ∈ CTB .

Corollary 3.11. If S ∈ TB , then S − T
S̃

∈ CTB .

Proof. Suppose S ∈ TB . Then by Theorem 3.1, S̃ ∈ B. If m ∈ MB , then using Theorem 3.1
(with n = 1) we get

(S − T
S̃
)˜(m) = S̃(m) − S̃(m) = 0.

In other words, (S − T
S̃
)˜|MB

= 0. Thus Theorem 3.9 implies that S − T
S̃

∈ CTB , completing the
proof. �

The next result provides a useful short exact sequence.

Corollary 3.12. A function u ∈ B is identically 0 on MB if and only if Tu ∈ CTB . Thus

0 → {u ∈ B: u|MB
= 0} → B → TB/CTB → 0
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is an exact sequence, where the first map above is the trivial map taking 0 to 0, the second map
is the inclusion, the third map takes u ∈ B to Tu + CTB , and the fourth map takes everything to 0.

Proof. Suppose u ∈ B. By Theorem 3.9, Tu ∈ CTB if and only if ũ|MB
= 0. But Theorem 3.1

shows that ũ|MB
= u|MB

. Thus u is identically 0 on MB if and only if Tu ∈ CTB , completing
the proof of the first part of the corollary.

The second part of the corollary now follows easily from the first part of the corollary. �
The next corollary shows that inclusions work in the expected fashion.

Corollary 3.13. Let A be a subalgebra of C(M) generated by harmonic functions. If TA is a
subalgebra of TB , then A is a subalgebra of B.

Proof. Let u be a harmonic function in A. It suffices to show that u ∈ B. Since TA is a subalgebra
of TB , Corollary 3.12 shows that there is a function v in B such that

Tu − Tv ∈ CTB .

Thus Tu−v is in CTB . So

(ũ − ṽ)|MB
= 0.

Note that ṽ|MB
= v|MB

and ũ = u. Hence

(u − v)|MB
= 0.

In order to show that u ∈ B, by the E. Bishop Antisymmetric Decomposition Theorem, it suffices
to show that u|E is in B|E for each maximal antisymmetric set E of B. To show this, let E be
a maximal antisymmetric set of B. Suppose that there exists m ∈ E such that m /∈ MB . By
Theorem 2.4, m /∈ M(B) ∪ M1. As in the proof of Theorem 2.4, this implies that there exists
u ∈ IB such that ū ◦ ϕm /∈ H∞(D), which contradicts Lemma 2.2. This contradiction means that
we can conclude that E ⊂ MB . Thus u|E = v|E ∈ B|E , completing the proof. �

The next corollary shows that TB and B are determined by B .

Corollary 3.14. Suppose B1 and B2 are Douglas algebras, with corresponding algebras on the
disk B1 and B2 generated by {f̂ : f ∈ B1} and {f̂ : f ∈ B2}, respectively. Then the following are
equivalent:

(a) B1 = B2;
(b) B1 = B2;
(c) TB1 = TB2 .

Proof. Clearly (a) implies (b) and (b) implies (c). Corollary 3.13 shows that (c) implies (b). Thus
to complete the proof we only need to show that (b) implies (a).
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Suppose that (b) holds; in other words, suppose that B1 = B2. The definition of MBj
implies

that for j = 1,2 we have

MBj
= {

m ∈M: u ◦ ϕm ∈ H∞(D) for every u ∈ Bj

}
.

Thus MB1 = MB2 . Theorem 2.4 now implies that

M(B1) ∩ G = M(B2) ∩ G.

To complete the proof we need only to show that

M(B1) ∩M1 = M(B2) ∩M1.

This result, along with the result from the previous paragraph, would show that M(B1) =
M(B2), which by the Chang–Marshall theorem would imply our desired result that B1 = B2.

We will show that

M(B1) ∩M1 ⊂ M(B2) ∩M1,

which by the symmetry between B1 and B2 will give the desired result. To prove the inclusion
above, let m ∈ M(B1) ∩ M1. If m ∈ M(L∞(∂D, |dz|)), then we also have m ∈ M(B2) and
we have nothing further to prove. Thus we can assume that m /∈ M(L∞(∂D, |dz|)). By [11,
Corollary 3.2], this implies that m lies in the closure of the set V defined by

V = {x ∈M: suppx ⊂ suppm} ∩ G,

where suppx denotes the smallest closed subset of M(L∞(∂D, |dz|)) on which a representing
measure for x is supported. Clearly V is contained in M(B1)∩G, which we have already shown
equals M(B2) ∩ G. Because M(B2) is closed, this implies that m ∈ M(B2), completing the
proof. �
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