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Abstract

A generalized area function associated with a finite sum of finite products of Toeplitz operators
is introduced. A distribution function inequality is established for the generalized area function.
By using the distribution function inequality, we characterize when a finite sum of finite products
of Toeplitz operators on the Hardy space is a compact perturbation of a Toeplitz operator.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let D be the open unit disk in the complex plane &hd the unit circle.do(w) de-
notes the normalized Lebesgue measure on the unit circleL{ elenote the Lebesgue
square integrable functions on the unit circle. FG€ A < oo, and f(z) an analytic
function onD, we say feH?” if

sup / fre)Pdae’) = | fII} < oo.
r JoD
H*® denotes the set of bounded analytic functions on the unit disk.
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Let P be the Hardy projection of.2 onto H2. For AcL®, the Toeplitz operator
T4 : H?— H? with symbol A is defined by

Tah = P(Ah).
The Hankel operatoH, : H>— L2Q H? with symbol A is defined by
Hsh = (I — P)(Ah).

For more details on Toeplitz operators, 4d¢€7,8,20,21]

The mapé: A— Ty, which is called the Toeplitz quantization, carri€8® into the
C*-algebra of bounded operators di?. It is a contractive *-linear mapping8].
However it is not multiplicative in general. On the other hand, Doug&sshowed
that & is actually a cross-section for a *-homomorphism from the Toeplitz algebra, the
C*-algebra generated by all bounded Toeplitz operatorgénonto L>°. So modulo
the commutator ideal of the Toeplitz algebtajs multiplicative.

Studying the Toeplitz algebra has shed light on the theory of Toeplitz operators
[7,8,20] In this paper we will study the (not closed) algebra of finite sums of finite
products of Toeplitz operators, which is dense in the Toeplitz algebra. The main question
to be considered in this paper is when a finite sum of finite products of Toeplitz
operators is a compact perturbation of a Toeplitz operator. This problem is connected
with the spectral theory of Toeplitz operators; 4d€7,8,20] A theorem of Douglas
[8] implies thatZ,L=l ]_[1;’:1 T4, can be a compact perturbation of a Toeplitz operator
only when it is a compact perturbation 6&;21 l'[j’zl Ay

In this paper we will introduce a generalized area function associated with a finite
sum of finite products of Toeplitz operators and establish a distribution function in-
equality for the area function. By means of the key distribution function inequality we
will prove that a finite sumT of finite products of Toeplitz operators is a compact

perturbation of a Toeplitz operator if and only if

lim |7 — T TTy || = 0. (1)

|z|—1
Here ¢, denotes the Mobius map,

—w

. (w) = 1

Zw’

The above result is a variant of Theorem 4[i4]. However, some crucial details are
omitted from the proof in[14], especially, details in the proof of a key distribution
function inequality.

One of our motivations is the result of Axler and the second aufpthat if an
operatorS on the Bergman space equals a finite sum of finite products of Toeplitz
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operators, therS is compact if and only if the Berezin transform &f vanishes on

the boundary of the unit disk. One may expect that the Berezin transform gives the
analogous characterization for a finite sum of finite products of Toeplitz operators to
be compact on the Hardy space. However, we will use examples ft@nto show

that even if an operatof on the Hardy space equals a finite sum of finite products of
Toeplitz operators, the vanishing of the Berezin transfornT ooes not have to imply
that T is compact.

Another motivation is the solution of the problem of characterizing when the product
of two Toeplitz operator on the Hardy spag is a compact perturbation of a Toeplitz
operator, by Axler et al[l] and Volberg[22]. Their beautiful result is tha'sT,
is a compact perturbation of a Toeplitz operator if and onlyHi*[f]( H*[g] C
H + C(0D); here H*®[g] denotes the closed subalgebra I6® generated byH*
andg.

Recently, the second auth{23] showed thatl';T, is a compact perturbation of a
Toeplitz operator if and only if

lim ||H 7k Hgk: |2 =0;
quII 7kzll2l Hgk: |2

herek, denotes the normalized reproducing kerneH® for point evaluation arz. This
is equivalent to

Nim Ty Ty = Tyg) = 75 17Ty = TyelTy, | = 0.

The semicommutatol T, — T, can be written as a product of two bounded Hankel
operators. To study a finite sum of finite products of Toeplitz operators we will decom-
pose the finite sum as a finite sum of products of two (unbounded) Hankel operators
in Section3. Clearly, a much more involved cancellation may happen in the sum of
products of two Hankel operators. We need to take care of the cancellation by intro-
ducing a generalized area integral associated with the sum in SéctBven in some
special casefl3,15] some generalized area integral functions were introduced. Gorkin
and the second auth¢t3] have shown that the commutatty, T,1(= TrT, — T, T¢)
of two Toeplitz operators is compact d@? if and only if

lim WUy T = T3 Ty, Tl Ty, | =

Condition () not only unifies the results on the compactness of commutators or
semi-commutators of Toeplitz operators, but is also useful in understanding the Toeplitz
algebra. In Sectio? we will give applications of our main result to the following two
questions:

Question 1. For an inner functionb, characterize the operatod$ on H? such that
T;XT, — X is compact.

Question 2. For an inner functiorb, characterize the operatoxson H2 such that the
commutator[7,, X] is compact.
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These questions are closely related to and inspired by the following Douglas
problems:

Douglas problem 1.1f X is an operator orf{? such that7, X T, — X is compact for
every inner functiorb, then isX = T, + K for someys in L™
and compact operatd(? [7]

Douglas problem 2. If the commutatoi{7,,, X] is compact for each in H*+C, then
is X = Ty + K for somey, in H> + C and compact operator
K? [9].

Douglas showed9] that the solution of the first problem will give the solution of
the second problem. Dougld8] solved the first problem in the case thétis in the
Toeplitz algebra. Although the Douglas problem 1 remains open, Davif&oias
solved the second problem. Clearly, the above questions localize the Douglas problems
in some sense.

Another application of our main result is the solution of the problem of when a
Hankel operator essentially commutes with a Toeplitz operdt6}.

2. Examples and maximal ideal space

In this section we will recall examples frofi2] to show that the Berezin transform
does not characterize the compactness of a finite sum of finite products of Toeplitz
operators on the Hardy space. L&tbe a bounded operator oH2. The Berezin
transform of T is defined by

T(z) = (Tky, k;)

for z in D. Perhaps the most important tool in the study of the Toeplitz algebra, the
norm-closed algebra of operators generated by the Toeplitz operators, is the existence
of a homomorphism, the so-called symbol mappindrom the Toeplitz algebra té.>°
such thate(Ty) = f for every feL*. The key point here is that is multiplicative.
The symbol mapping was discovered and exploited by DouyglasBarria and Halmos
[3] showed the symbol mapping is well defined for asymptotic Toeplitz operators.
Recently Englis[10] showed that the nontangential limit of the Berezin transform of
T equals the symbol of, for T in the Toeplitz algebra.

To present the examples [A2], we need to introduce the maximal ideal space of
H®. Let M(H®) be the set of the multiplicative linear functionals &ff°. If B is
a Douglas algebra, i.e., a subalgebraIdf that containsH*°, then M(B) can be
identified with the set of nonzero linear functionals Mi(H°) whose representing
measures (oM (L)) are multiplicative onB. We identify a functionf in B with its
Gelfand transform o (B). In particular, M(H* +C) = M(H®)— D, and a function
feH* may be thought of as a continuous function ®{H°).
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Examples. Let b be any interpolating Blaschke product with zerfig}. Choose a
sequence of positive integeks— oo such that

oo
D (L= lzal) < 00
n=1
Let
o

\Zal ( zn—2 \"
by =
! 1_[ <1_an>

n=1 n

denote the corresponding Blaschke product. It was provedl#j that for each
meM(H*>® + C),

m(b1b) = m(by)m(b).
This is equivalent to

||i|T1[l:;5(z) — b1(b@)] =0,

wherel;;l;(z) is the harmonic extension @b at z given by
b15(2)=/ bi(w)b(w)|k (w)|*da(w).
oD

Let T =T, ;— Ty T;. Clearly, T is a finite sum of finite products of Toeplitz operators.
An easy calculation gives that the Berezin transformraé

T(2)=([T}5 — Toy Tylkz. k)
—b1b(2) — b1()b(2).
Thus

lim 7(z) = 0.

lz|—>1
Sincebib = 5 is in H>, we have
Tgle = Tl;lb(Tbll; — TblTE) =1 — TbTE

is an infinite dimensional projection, and hentes not compact.
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Hoffman [17,18] has shown that for eache M (H*° + C), m has a unique extension
to L°°, which is given by

m(f)Z/ Jdy,

for feL®. HereS,, is the (closed) support of the representing measirg. A subset
S of M(L*) is called a support set if it is the (closed) support of the representing
measure for a functional i (H*® + C).

Let H2(m) be the closure ot/ in L?(dp,,). Let HZ(m)={feH?(m): [ f du,,=0}.

Hoffman [17, p. 289]proved thatZ2(dp,,) = H?(m) & HZ(m).

An inner function in H2(m) is a functionge H*®(m) with |¢| = 1 a.e. onS,,. An
outer function inH2(m) is a functiono such thatd o is dense inH2(m). But Theorem
22 [19] says that every functiofiin H?(m) with f(m) # 0 has the factorizatiomjo
for an inner functiong and an outer functior.

The following lemma will be needed in Sectigh

Lemma 1. If meM(H*+C) and b is an inner function i * not equal to a constant
on the support ses,,, then1 — b is an outer function inH?(m).

Proof. We assume thab does not identically equal 1 on the support $gt. Let
E = {x€S,, : b(x) # 1}, a subset ofS,, of positive measure. For & r < 1, the
function (1—rb)~1is in H*, and (1—rb) (1 —b)—y pointwise boundedly o1$,,
asr—1. Hencey is in the H?(m)-closure of(1—b)H, and also inH>®(m). Since
U, is multiplicative on H*°(m), we have

2
lum(E)z = </ XE dﬂm) = /XZE dlum = l’lm(E)’

giving u,,(E) = 1 (sinceu,, (E) # 0). Hence the constant function 1 is in tig?(m)-
closure of (1 — b)H>, showing thatb is outer in H2(m). [

We thank D. Sarason for his suggesting the above proof.

3. Decomposition
Although our main concern is with bounded Toeplitz operators and Hankel opera-
tors, we will need to make use of densely defined unbounded Toeplitz operators and
Hankel operators. Given two operatass and S, densely defined o/, we say that
S1= 952 if
S1p = S2p,

for eachp in the setP of analytic polynomials.
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As in [14], in this section we will show that a finite sum of finite products of Toeplitz
operators can be written as a finite sum of products of two Toeplitz operators. The key
here is a simple and useful idea used[i4]

TayTaTag = Tas((Ap)++c11Tas + Tay Ti(az) - —c1)Ass

for three bounded functiond1, A and A3z, and a constant;. Here Ay = P(A) and
A_ = (I — P)(A). For four bounded functiond, A, A3 and A4; and three constants
c1, ¢2 and c3, we have

TayTay TasTas=Tas1(A2) s +e11 Tas + Tas Ticap) - —c11431T A,
=T 41[(A2) 1 +c1ll(Az)++c21 TAg T TA1[(A2) s +c11TT(A3) - —c21A4

+ TAr{i1(A2)-—c11Asl+c3) TAs + Tay Ti[[(A2) - —c11A3) - —c3}Ag-

Clearly, for an integem > 2, by induction, we see that a productrofToeplitz operators

with bounded symbols can be written in a sum &f 2 terms that are products of
two Toeplitz operators with (perhaps unbounded) symbols, and the decomposition is
not unique. In order to deal with a finite sum of products of two Toeplitz operators
with unbounded symbols we need to introduce systematic decompositions of the finite
products. To do so, lét = {A(/, k)} be a sequence of complex numbers. For a sequence

of functions A1, Ay, ..., A, in L°°, we inductively define
;_Ag = A1, ,1310 = A
Ay = ATTGB D + A = L), 1By g = Airz
iBy = (GBI H- — i — 1L 0]Ais2, Ay = AT
for k<2i—1,
Lemma 2. Let A = {A(/, k)} be a sequence of complex numbersAif A,, ..., A,, are

of functions inL®°, then ,«»A; and ,1B§ defined above are imy- -1 L”. Moreovey

2m—2
TasTay - Ta, = Y T pn-2T, g2
=1

and

2»172

-2 -2

A1Ap- Ay = Z lA’;? /lB;n .
j=1
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Proof. We use induction to prove the theorem. When= 2, from our definition we
have

TaiTar =T, 49T, 59
and
A14p = ;A BY.

For n = m, we assume that

om=2
TAlTAz ‘e TAm = Z T/Ar,n ZTZBT—Z (2)
j=1 ' '
and
om—2
A]_AZ"'Am = Z ;LA;.H_Z)'B;”_Z. (3)
=1
Now
om—1 om=2
D ATTUB] =) LG BTy + A By
j=1 j=1
2/11—2
=2 {7216 D+ dm = 2,01 A1 + 5472
j=1

X [GB] D)= = 2m = 2.0 Ansa
om—2

=1 D JATTPLGBY T 4 Am — 2,01+ AT
j=1

x [(BT ™2 = Am = 2,01 ¢ 1Am11
2m—2

=1 JATPGB ) 4 Am — 2, k)
j=1
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+ QBT TA - = Am = 2,011 jAns1

2m72
-2 -2
=1 GATTHBITP A
j=1
=A1A2- - ApApsa.

The last equality follows from3).

Note that both(; B)" %), + A(m — 2,k) and [(;B"~?)_ — A(m — 2, k)] are in H2.
Thus

L2118 im—2.001 = T, 47210872 4 2m-2.401°
and
T Ta =

[GB] )= m=24)1" Ant1 = LGB ) —dm =201 An+1”

So by @) we obtain

om—2

TasTar+ TanTap=) T, 2T pn2Tais
j=1

2m—2

= Z [T}LA’}I_Z T[(iB;."_z)Jr-i-iL(m—Z,k)] TAm+l
j=1

a2 T2 —sm-2.401 TAmid]

2m72

=D U7 pr 21,522 sm—2.0 TAmn
j=1
T 2Ty, =2 jn—2401A1 )"

Hence we conclude

2/;1—1
TAlTAz e TAm TAm+1 = Z T;‘A;."_lT;VB;"_l'
j=1

Note thatN. ,~1L? is an algebra, i.e., botfg and f + g are iNNuos po1 LP if f
andg are iNNeo>p=1 L”. In addition, P, and P_ are bounded oiL.” for 1 < p < oo,
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and mapL® into BM O. The John-Nirenberg theorem tells us tiEO is contained
in the intersectioMqo> p~1 L. These imply thaf A’ andlB; are products of functions
in Noosp>1LP. So they are also iMys p-1 L7. Tﬁlis completes the proof.[]

The above lemma gives the following proposition. The decompositiond;oére
different from those in14].

Proposition 3. Let A = {A(l, k)} be a sequence of complex numbers

2m—2
_ *
Ta,Ta, - Ta, — TaiAp-A,, = Z H=——_H B’ —2.
j=1

Am=2"" mn
/.Aj

Proof. By Lemmaz2, we have

2!1172
TayTa, -+ Ta, = Z T;VA;V’ZT;VB;WZ
=1

and

2m72

-2 -2
AtAz--- Ay =Y JATT2 BT
j=1

Because
TaTp — Tap = H;Hp,

we get

om=2

TAl TA2 s TAm - TAlAZ"'Am: Z I:T;NA;(LfZT;B;an - 7"/"‘477223;‘7172]
j=1 '

om— 2

_ k
= Z HWHZB"”_Z .
j=r

This completes the proof.[]

Although the representation of a finite product of Toeplitz operators as a sum of
products of two Toeplitz operators is not unique, it has the advantage of letting us to
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choosel(j, k). In order to establish our distribution function inequality we need to
choose those constanisj, k) appropriately at each pointe D. The following lemma
tells us that we can do so.

Let Ay, ..., A,y be in L%, Given a pointze D, inductively define a sequenége(/, k)}
of complex numbers

Mi—1k) =GB H_(2).

From the definition of(iB,’;*l),(z), it depends on onlyi(j, k) for j <i — 1.

Lemma 4. Let A1, ..., A, be in L*°. Suppose that

Supl| A [loo <M
1

for some constant M. For a fixed z in, et A — 1,k) = (AB,i_l)_(z). Then for
1 < p < oo there are constantd/,;, such that

i—2 j—2
mjaxmax{llm;- 0 ¢ llp 1285770 ¢ llp} <Mpi.

Moreover M,,; depends on M and,but does not depend on z
Proof. We will prove this lemma by induction. Wheih= 2, we have
,AS = A1, ;BY = Ay
For each 1< p < oo,
1,490 .1, = 1A10 ¢l <l Atlloo <M
and
1B 0 d.ll, = 1420 §,ll , <l A2lloo < M.
Wheni = n, for each 1< p < oo, assume

-2 -2
mjaxmax{luA'} o d llp 1B} "0 ¢ llp}<Mpn.



12 K. Guo, D. Zheng/Journal of Functional Analysis 218 (2005) 1-53

Let N, be the positive constant such that

1P+ fllp <Npllfllp,
I1P—fllp <Npllfilp

for feL?. Wheni =n + 1,
IR0 = 1AL 20 GoGBL )y 0 bt An = 2.0
).Bg]:_l o ¢z = Aﬂ+l o ¢z?
JBi Yo ¢, =1( AB;;l—Z)_ o, — /l(zn —2,0)]Ans10 ¢,
JAy o d, = A 0,
Clearly,

maxmax{ll;A”‘ o ¢l ps 12Ba 0 b1l p} < max(Mp,, M.

Note that for each functiorfeL?,
frod.=(fod)r — [-(2), f-od.=(fod)-+ [-(2).

Thus

GB 40 ¢, = GBI 2o d)r — GBITH-(),
and

GBI D0, = GBI 2o ) + (B D)-(2).
By our choice, we have

Mn =2,k =GB ().

So

GB{ D409, +4n—2.k) = (B 20 ),
and

B! _o¢, —in—2.k) = (Bl 2o0,)_.
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Hence we conclude

I,A% Y 0 bl =147 20 ¢ (GBI 240, + An— 2,01,
=[I;A 20 . (B %0 ¢4l
<1 AT 20 l2pl GBY 20 d) s ll2p

2
SNpMGp

and
1B o d-llp = NGB )= 0 ¢ — An = 2,01 Ant10 .l

=GB %0 d)-Anr10 ¢l <IGBE 20 d)-llplAnt1o d,llo <NpMpu M.

The last inequality follows because the Hardy projection is boundebofor 1< p<oco.
Letting M, (,41) = max{NpM(zzp)n, NpM,,M, Mp,, M}, we complete the proof. ]

Summarily, Proposition3 suggests the first part of the following theorem and
Lemma4 gives the second part of the following theorem.

Theorem 5. Let M be a positive constant. Suppose that T is a finite sum of finite
products of Toeplitz operatars.e., for A;; in L* with max ; [|Ajjllec <M,

I

L
T = Z ]_[ Tay,-
=1 j

=1
(1) For any sequencé = {/A(l, j)} of complex numberghen

L 2h-2

T—-T—, = E E H* __H 2.
I . n-2"",p!
it [l Ay =1 =1 ;'Aljl. 1By

(2) For eachzeD we can find a sequence = {i(l, j)(z)} of complex nhumbers so
that for 1<p<oo

-2 -2
maxmax{|;. Afi o gl I, B 0 d:lp) <My,

for some constand,, depending only on M and.p
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4. A generalized area integral function

For a pointw of 0D, let I'(w) denote the angle with vertew and openingr/2
which is bisected by the radius . The set of pointz in I'(w) satisfying|z —w| < ¢
will be denoted byI',(w). For h in L1(0D), define the truncated Lusin area integral
of h to be

12
A(h)(w) = |:/ |grad h(z)IZdA(Z)i| ,
Ie(w)

where (grad h)(z) denotes the gradient of the harmonic extendioat z = x + iy:

Oh oh
grad h(z) = (a(z), 5(2)) ,

dA(z) denotes the Lebesgue measure on the unit Disind 4 (z) denotes the harmonic
extension ofh at ze D, via the Poisson integral

2
h(z)=/ h(w)wda(w).
oD

11— wz|?

Observe that ifh is holomorphic, A;(h)(w) equals the area of the image of
I';(w) under the mappingz—h(z), with points counted according to their
multiplicity.

Suppose thal is a finite sum of finite products of Toeplitz operators, i.e., for some
functions A;; in L°°,

I

T = Ta

L
1j*
=1 j=1

By Theoremb, for any sequence of complex numbers, we have the representation

L 21[72
T—T. ) => > H* H -
Yo T Ay 1=2,"",B)

=1 j:]- [ZAIj 1 ~
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Let 1o be the sequencgl(l, j)} with A(l, j) =0 for [, j. Letu andv be in the class
‘P of analytic polynomials on the unit disk. Define a generalized area integral by

L 2li=2

D D ((grad H, yi-ou)(2)
1j

=1 j=1

7 B:(u, v)(w)= f

o((grad H——5— o ZU)(Z))‘dA(Z)

0 1j

Here ((grad H Bz, —2u)(z))e((grad H——5— e —v)(z)) denotes the inner product of the two
/~ 0 1
complex vectors((gradH Bl- —2u)(2)) and ((grad H——=v)(2)).

/0 1j /”0 1j
The main result in this section is thatB,(u, v)(w) does not depend ofy. That is,
for any sequencé of complex numbers,

L 2li—2

Z((gradH 1-210)(2)

=1 j=1

7 Be(u, v)(w)= /

I'.(w)

*((grad H—= zv)(z))‘ dA().

A l]

Note that bothH ;-2u and H — v are in H2. Thus

4 lj A 1j
L 2h-2

> D (gradH 1-210)(2) @ (grad H-—_5=50)(2))

=1 j=1 1A

52 L 2h-2
=2 Z Z((H 1-2) () (H—7=50) (2)) (4)
i

2 ]1

So

2][—2

2[E5 ()

=1 j=1

7 Bat, v) (w)=2 /

I:(w)

X (H—7=2v)(2) ||dA (). ®)

40 4;j

L 1

We need to introduce some notation. Boandy two vectors inL?. x ® y is the
operator of rank one defined by

x @) = (fy)x
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Observe that the norm of the operatoR y equals

Ixll2llyll2-

We thank D. Sarason for suggesting the following lemma that gives a way to estimate
the norm of the operators with finite rank. Lieace be the trace on the trace class of
operators on a Hilbert space.

Lemma 6. Letxs,...,xn, y1,..., yn be vectors in a Hilbert spacéet S = Z,N:l xXi®
y;. Then there is anV x N unitary matrix U such that

N
S = Z Xi ® yi (6)
i=1
and
N
trace S8* =Y [|% 11215112, )
i=1
where
X1 X1 Vi y1
E = U ] = U :
XN XN N YN

For the proof of the above lemma, a computation sho@yshplds for anyN x N
unitary matrixU. To get {7) one just takesJ to diagonalize the Grammian matrix of

the vectorsy, ..., yy. The details are left to the reader.
Note that if f1,..., fy are inL”, U is an N x N unitary matrix, and
ha Ji
s l=vl o ]
hn N
then

hjllp <N mjaX”fi”p

for j =1,...,N. Let x; = Hpk, and y; = Hgk,. Applying the above lemma, we
obtain the following lemma.
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Lemma 7. Let S = YN, Hpk, ® Hgk,. Then there is a unitaryN x N matrix
U, = (a;j(z))nxn such that

N
trace SS* = Z ”Hﬂkz”%”Hg,-kz”%’
i=1

where (/)T = U.(f;)T and (§)" = U.(g;)". Moreover
N
S = Z Hk; ® Hg ks,

i=1

and if for somepe(1, co), there is a positive constam¥,, such that
max max{|| f; o G_llp. ligi o P llp} <Mp,
then

max max([|fi o ¢l p. 18 © b llp} <N M.

Define an antiunitary operatdf on L? by
(Vh)(w) = wh(w).

The operator enjoys many nice properties suctvad(l — P)V =P andV = VL.
These properties easily leads to the relation

V'H;V = H}.
To show thaty B;(u, v)(w) does not depend ofp, we need the following lemma.

Lemma 8. Let ¢ and ¢ be polynomials in z. Suppose that f and g arenip.1 L”.
Then

(1— 219 Hep()H Y (2) = |zI2([V H pk, ® V Hgk 1, ).

Proof. For eachzeD, f— f(z) is a bounded linear functional orif2]+, and {w"} is
an orthonormal basis forH2]*. Thus the reproducing kernel atis given by

(o8]
w"?" = zwK:(w) = zVK,.
n=1
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So

Hep(z) = Z(Hg ¢, VK2)
and

Hpy(z) = Z(Hp, VK).
This gives

Hyp(2)Hph(z)
= |z|*(Hy, VK )(Hph, VK;)
= |z/(¢, Hy Vi) (), H} V)
= 12 A([H} V] ® [H VK. )
= [2/X([VHsk. ® V Hek 1. ).

to complete the proof. [J

The proof of Lemma 123] leads to the following lemma.

Lemma 9. Suppose that f and g are in,.; L?. Then the operatoH;Hg—T(Z'H;HgT(,,,
equals )

[VH¢k, ] ® [V Hgk;]

Theorem 10. For any sequencé = {4(l, j)} of complex numbers

L 2h-2

> % ((eraa t ) )

=1 j=1 /

° ((grad H—AI12U> (Z)) ‘ dA(z).
2415

7 Be(u, v)(w)=
I'.(w)

Proof. Let
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By Theoremb5, for any sequencel = {A(l, j)} of complex numbers, we have the
following representation:

L 22

TZ/ 11_[, 1A Z Z H* "

T —

Note that for eachjeD,

T; T T,
by Yl H§’=1 Ay o = Zl 1 1_[ -1 Ay

Thus for eachyeD,

*
T — T¢,,TT¢17
L 2h-2 L 2h-2
- Z H -2 H~BI?_2 - Tf;, Z Z H= -2 H.B’(‘Z T(i)yf (8
=1 j=1 [/:Alj 127 ! =1 j=1 [;-Alj 1 A7

L 2][—2 L 2][—2
H* H ,2—T;} H* H ,2|T,
; j=1 [’A/Il 2] }”Bl]! ¢’7 ; j=1 [AAlIJl'iz] ABI][ ’
L 2[[*2
=> (VH - izk) © VH pi-2ky]. 9)
=1 j=1 “
By Lemmas8, we have
L 2h-2
A—1n> Z( e zu) () (H—7=z0) (1)
=1 j=1 Ay
L 202
= |,7|2< > Z(VH - ~2ky) ® (VH—g=5ky) | u, v> (10)
=1 j=1 Ay

Combining 9) with (10) gives

L 22

A=Y Y *H, i1-210) (D (H—7=20) (1)

=1 j=1 Ay
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=1 j=1 l/

L 2h=2
AR T e | o)
I=1 j=1 Ajj B

_ 2 %
= (T = T TTy, 1, v).

- |n|2<{i Xt T

The last equality follows from8). Clearly, the last term does not involve Hence we
conclude that

=1 j=1 Ay

62 L 2h-2
P > Z(H -2 (D (H-_7=70) )

does not depend on the choice hdfThat is,

2 L 202
o DD H -2 (D H-_7=z0) )

=1 j=1 / 1/
62 L 2h—2 -
- onon 12; JZ;(H B/’ 2“)(71)(1'1’/0 11], 7V) (1)
Hence B) gives that
7 Be(u, v)(w)
2 [& -
= 2/‘“:(1”) W ; 2:: ) 11 2u)(’1)(H/0Al,JI s0)(17) || dA(n)
2 [& -
- Z/H(w) ondi ; 2 ) =000 || A
L 2h-2
:/ Z Z((gradH - 2u) (1)) @ ((grad H—g=v) ()| dAG).
I';(w) =1 j=1 A 1j

The last equality follows from4). This completes the proof.(J
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5. A distribution function inequality
In this section we will establish a distribution function inequality for the generalized
area integral introduced in Sectigh The distribution function inequality involves the
Lusin area integral and the Hardy-Littlewood maximal function. The idea to use dis-
tribution function inequalities in the theory of Toeplitz operators and Hankel operators
first appeared irf1]. Chang[5] also used a distribution function inequality to study

the commutator of the Szegd projection and multiplication operators.
Write |I| for the length of an art¢. The Hardy-Littlewood maximal function df is

. 1
Mh'%) = sup —
eiver M1

/ lh(e'?)|da(e'?)
1

for h integrable on the unit circleoD. The Hardy-Littlewood maximal theorem
([11, Theorem 4.3] states that for k p<oo,

IMhll, <Nplihllp
for heL? where N, is a constant depending only qn Forr > 1, let
Arh(e'y = [M|h|" (e 1Y
Then
1
IArhllp < Npllhallp,

for p > r.
For zeD, we let I, denote the closed subarc & with centeré and length

0(z) = 1— |z|. The Lebesgue measure of a subBedf D will be denoted by|E]|.
Recall the area integral functioa,(h)(w) for a functionh in L1:

1/2
Ag(h)(w) = [/ lgrad h(Z)IZdA(Z)} ,
Ie(w)

whereh(z) denotes the harmonic extension lofat zeD.
The following distribution function inequality was established[23].

5.1. The distribution function inequality

Let f and g be inL?, and ¢ and y in the Hardy spaceH?. Fix s > 2. Then
there are numberyp, re(L,2) with 1+ 1 = %, such that for|z| > 1/2 and a > 0
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sufficiently large

Hwelz D Ags(oy (Hpd) (W) Agg o) (Hoh) (w)
<d®|food, — f-@lslg-o ¢, — g—(lls

x inf A, (¢)(w) inf Ar(l//)(w)H 2 Call-|.
wel, wel,

Moreover, the constantC, = 1 — C’a=? and C’ is a constant depending only on s
For eachf in L2, write f = f, + f_. Givenz in D, an easy calculation gives

kaz =[f- — [~ (@)]k.
Thus by a change of variable, we have
[Hrk:ll2 = Ilf- — f~@]k:ll2 =l f- 0 ¢, — f-(Dll2.

If fisinN,.1L7?, by the Cauchy—Schwarz inequality, for> 2, we have

1f1 = f f(w)Fdo(w)
oD

1/2 1/2
< [ / ) If(w)lzdo'(w)} [ f ) If(w)lz“zda(w)} ,

to get

1f-od, — f-@Is<If-o0d, — F-@IF /-0 b, — f- @IS 5.

The above distribution function inequality implies the following form, which will be
needed later on.

Let f and g be inL?, and ¢ and y in the Hardy spaceH?. Suppose that for some
s > 2 there is a constaniV/y;_» such that

supmax|l f- o ¢, — f-(D)ll2s—2, lIg— 0 ¢, — g—(2)ll2s—2} < M2s—2.

zeD
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Then there are numberp, re(1,2) with 2 + 1 = % such that for|z| > 1/2 and
a > 0 sufficiently large

Hwelz D Agsy (Hy ) (w) Agsy (Hgr) (w)

25—

2
< My, ll| Hyk 2l Hek 121 inf A (§)(w) inf Ar(w)(uoH
> CalL|. (12)

Moreover, the constantC, =1 — C’a=? and C’ is a constant depending only on s
The following distribution function inequality is the main result in this section and
is the key to the proof of Theorem2.

Theorem 11.Let M be a positive constant. Suppose that T is a finite sum of finite
products of Toeplitz operatars.e., for A;; in L™ with max ; [|Ajjlleo <M,

I

L
T= Z 1_[ Tay;-
=1

=1

Let u and v be inP. Let z be a point in D such thgt| > 1/2. Then for anys > 2,
for a > 0 sufficiently large and(z) = 1 — |z],

‘ {WEIZ D17 Bosr) (u, v)(w)

2 1s 2 ,265=1)/s | -
<a“|T — T$ZTT¢Z|| /SMZYV_2 s |:u|}r€n; A,(u)(w):|

y [im; Ar<v><w>m > ClLl,

where C, depends only on s and, #im, .o C, =1, and * + 1 = % for some p and
rin (1,2) and My,_» is the constant in Theoref depending only on M and. s

Proof. Assume that

I

L
7= T] Ta;-
=1 j

=1

Let L(T) denote the integeE,L:1 I;. Fix s > 2. Choose two numbers4 p <r <2

such that% + % = %. Fix a pointzeD. Let S, =T — T;ZTTd)Z.
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Since for some positive constat,

max | Ayjlloc < M.,
»J

for suchz, by Theorem5, we can choosé. = {A(l, j)(z)} so that

and

-2 -2
max max(l|;A;;" " o ¢_llas—2, B8]}~ 0 §_ll2s—2} < M2s—2,
.

where M,_» is the constant in Theorers, depending only on £2— 2 and M.
Let E be the subset of, such that

7 Basie) (0, v) (w) <M 0 15211 [ inf Ar(u)(w)} [ Liur;f,_[Ar(w(w)] :

To complete the proof, we need only to prove that
|E|>Call| (12)
for some positive constart, depending only ora, s and L(7) and satisfying

lim C, =1 (13)

a— 00

Because

Ty

TFT. =T ,
b Y Ty 4y~ % = TXEL T, 4y

we have

N

20—

L L
_ * ok *
S, = Z HﬁHzBZIJFZ T¢Z 12; 2; HWHZBl?fz Ty .
J = = A

~.
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Lemma9 gives
2l — 2

L
:Z H— =2k @ [VH llzk]
=1 j:l g I/

By Lemma?, there are functlon$ﬂfl}f 1 in the space spanned byA

and {;¢;};_, in the space spanned KyB)! 4k ilj _, such that

J

S =Y IVH, ;k]® [V H,g k],
i=1

and

trace(S:ST) = Y ||H, k- |15l H,g;k: 13-
i=1

Lemma7 also gives that/ = Y/, 2/~2. Thus

J <2,
By Lemmas, we obtain
L 2h—2
A=Y ), 120 D H-=20) (1)
=1 j=1 24

2[1—2

25

o L—2,L2h—2
iz 1,j=1

(14)

(15)

L
= |1,’|2< Z Z(VH 1[ Zkyl)® (VH 1[ ZkVI) u, U> = |1/I|2<S11M,U>

| =1 j=1 A

= nl?

J
> (VH,;ky) ® (VHzgl.k")] u, v>
Li=1

/\
1

J
= (L= 1n®) Y _[H,qunI[H, ;v(p].
i=1

(16)
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Thus TheorenllO gives

7 Bos) (u, v)(w)=

I25(z) (w) =1 j=1

L 2h-2
|:Z Z(gradH 1, —2u)(n)

-(grad(HWw(n)} dA(n)

iy
2 /
Ty (w)

x (va)(n)} dA®)

247

B 2h— -2

62
Gnan

Mh

(H)LBlljg—zu)(ﬂ)

N
II

N
~.

j=1

(by (4))

dA(n)

a2 J
i {;(Hkg,w(n)(fa f,.v><n>}

(by (16))

2 /
Ty (w)
/an(z)(w)

The last equality also follows fromd).
Let E; be the subset of, such that

Z(gmd(hcgl w)()) » (grad(H, 1,v)(n))
i=1

dA().

A25(2) (H, f;0) (W) As (o) (H, g;u) (w)

o (J M) &=2)/s

Xxa W[”Hmkz”Z”Hzgikz||2]1/S

X |:inf Ar(u)(w)i| |:inf Ar(v)(w)i|.
wel; wel;
Note that Lemma/ gives, fors > 2,
maxmax{|l; fi o ¢:llzs-2 l:8i © d:llzs—2} < I Mas—2

The distribution function inequalityl() gives

)4 (s—

Ei|>1—a "I 5 O
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The Cauchy—Schwarz inequality gives

7 Basie) (1, ) (w) = /F N Z((grad H,qu) () » ((grad H, ;,v)(7)| dA()
20(z) (W) | ;=1
J
< f |(grad H,gu)(1) » ((grad H, ;,v)()|dAy)
i—1 Y P20 (w)

; 172
<3 [ | iraan g,u)<n>|2dA<n)]
I35 (w)

l
12
x [ / \(grad H, ;v)(n) IZdA(n)]
o5 (w)

<D Agsioy (H, 1,0) (W) Ags (o (H, g 1) (w).

Thus forw in the intersectiom;_, E;, we have

J
7 Bos) (u, v)(w) < Z Ags(o) (H, ,0) (W) Ags () (H, o) (w)
i=1
(ZY 2)/v
) Z — 7 LIH, ke 2 H g ke 212

X |: inf /lr(u)(w)] [ inf Ar(v)(u)):|
wel; wel;

M(Zv 2)/s {

- Z[HH;“f,.kz||%||H;~gikz||§11/<2‘>}

i=1
X |: inf Ar(u)(w)] [ inf Ar(v)(w)]
wel; wel;
M(Zs 22)/5 1/(2s)
< W {;[”Hzﬁkz||%||H;~gikz||§]}
X |: im; Ar(u)(w)] [ im; Ar(v)(w)]

(by the Holder inequality
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21y (25=2)/s
a"Mp o

= W[trace(szsj)]l/(%)
X[inf A’(”)(w)] [inf Ar(v)(w)}
wel, wel.
(by (14)

<aMgZ P s [ing Ar<u><w>} [infl Ar<v><w>] .
wel, wel,

4

(18)

The last inequality follows from thas,S¥ is a finite rank operator of rank at modt
and

trace(S;S1) < JNS.SEI = JIIS:II%.
So (18) gives
N_,E CE.
SinceE1UE> C I,
|E1N E| = |E1| + |E2| — |[E1U E2| Z | Eq| + |E2| — |12,

By induction, we get

J

Ny Eil> {Zw] — (J = DILI.

i=1

Thus @7) gives

_ P pGs=1
Ny Eil>A—a PJ 2t 0L

So

ps

—1)
E|>1—aPJ"5+5 o)L

By (15) we have

E[> (1 —a=P2LMA5+2 oy
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Letting C, = (1 — a—P2LMA+5+2 0y \we obtain 12) and (L3) to complete the
proof. [

Remark. The above proof shows that the const&ht depends also on the “length”
L(T) of T. We thank the referee for pointing out the fact. Also the consMnin
Theorem1l may be chosen as max||4;;ll« that is finite. So Theorer1 holds only

for a finite sumT of finite products of Toeplitz operators. Certainly, we would like that
Theorem11 holds forT in the Toeplitz algebra. But it remains open.

6. Finite sums of finite products of Toeplitz operators

In this section, using the key distribution function inequality in the previous section,
we will prove the main result in this paper about a finite sum of finite products of
Toeplitz operators.

Theorem 12. A finite sum T of finite products of Toeplitz operators is a compact
perturbation of a Toeplitz operator if and only if

lim |T —T; TTy | =0. 19
lim |7 =73 TTy,| (19)

Proof. Supposel’ = T4 + K whereK is a compact operator oH? andA is a function
in L°°. Note that

Ta =T} TaTy,.
An easy calculation gives
T — T;;TT</’z =K — T(;ZKTgb:-
By Lemma 2[23],

lim ||K — T KTy || =0.

lz|—1
Thus

lim |7 —Tj TTy || = 0.

lz|—>1
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Conversely, suppose thatis a finite sum of finite products of Toeplitz operators
and

lim |T —T; TTy | =0. 20
Jim T~ T3 7Ty, | (20)

We need to prove thaf is a compact perturbation of a Toeplitz operators. We may
assume that

L I
T= Z Tayy
=1 j=1
where A;; are in L and satisfy

[Ajlloc <M,

it M =max ;|A;lloo-
Let Ao be the sequencgi(l, j)} of complex numbers satisfying(/, j) = 0, for i, j.
By Theoremb5, we have the following representation:

L 22
T —-T. H* _2.
Sy T, Ay Z Z Al B ?

=1 j=1 ‘o™ /0

Now let u andv be two functions inP. In order to estimate the distance of the

operator7T — Zz 1H, oy to the set of compact operators we consider the inner
product,
(r TZIL 1 H? 1 AU]M’ vi
L 21,—2
= <Z ' H* i ZH/:OB[I,FZM U>
1=1 j=1 %%
L 2][—2
- ; j:1<H’"’°B’I/72u7 I-I/‘-OAII/FZU>

Since H__;-2u is orthogonal toH?, we see that
20P1j

H 31,7214(0) =0

40 71j
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By the Littlewood—Paley formula[11, Lemma 3.1}, we have

(T = ZI 11_[] 1A1,]u’ v)
L 202
-y 3 / (grad H,_y1-20(2)
=1 j=1

o((grad H—5=v)(2)) log ﬂdA(z)

0 1j

L 22

f > D ((gradH 2@

=1 j=1

o((grad H——= e —v)(2)) log ﬁdA(Z)

2041j
For each 12 < R < 1, denote

L 202

Wr= / > Z((gradH RLCY

lzI>R ;21 =1

*((grad H—5=v)(2)) log |—dA(Z)

/O 1j |

and

L 22
f Z Y ((grad H i-2u)(2)
<R3 o Z0°71j

*((grad H—5=v)(2)) log —|dA(Z)

0 1j |

Thus Q1) gives

(IT - Ju, v) = Wg + Zg.

T.
Y 1]_[, 1 Auj

First we show that there is a compact operakgy such that

Zr = (Kgu, v).

31

(21)

(22)

(23)
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Note that
L 2h=2
> D ((gradH g 20(@) @ (grad H—50)(2)
=1 j=1 b 0%

62 L 202
=2-— Z Z(H g2 QH— 7))
j=1

0 1/

From the proof of TheoremO, we know that

L 2h-2
2. D.H i @H 50
=1 j=1 b iy
= L([T—T* TTy Ju, v)
a—1zP SRR
Thus
L 2][—2
> (grad H pi20(@) @ (grad H—350)()
=1 j=1 %0 oAy
2
d |z|2 ]
=2— | ———-AT-T;TT, , .
020z [(1—|z|2)<[ 0. T To . v)
So
2
0 2|2 } 1
Zr= 2— | ——(T-T;FTT, , log —dA
¥ /{ZI<R} 0207 [(1—IZI2)<[ 0. T To > v) gIzl ©
2
0 2|2 } 1
= 2—— | ——[T-T;TTy 1|log —dADu,v).
</{z|<R} 0202 [(l—lzlz) g0 102 |09 1] ©
Let

com 2T oo dans
oo {lzI< R} 0707 (1—|z|2) b0 1o, H .

BecauseT is a finite sum of finite products of Toeplitz operators and the integral is
taken over the compact subgét| < R} of the unit diskD, Ky is an integral operator
with kernel in L2(D x D,dAdA). Thus it is a compact operator al2. This gives
(23).
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For anyt > 0, recall thatl';(w) is the cone atw truncated at height and the
generalized area integral is given by

L 2h-2

7 Be(u, v)(w)= > D ((gradH a2 E)

F(w)lljl

*(grad H—=v)(2))

0 1j

dA(z2).

Note that 7 B(u,v)(w) is increasing withz. We define the “Stopping time”
T(w) by

T(w)=supit > 0: 7B (u, v)(w)

<MY a® sup IT = T TTy 1M 14, () )[4, (v)(w)]

[z|>R

Here M»;_» is the constant in Theoretl anda is sufficiently large so thaf, > % for
the constanC, in Theoreml1l ForzeD, letd(z) =1

— |z|. The distribution function
inequality (Theoremll) gives that for eachieD,

Hwel, : t(w) 226(2)} 2 CalL|.

Let E, = {wel; : t(w)>2|]}. Let y,(z) be the characteristic function of the
truncated cond +(,, (w). Now, for weE., write z = r¢/? and note that(w) > 3 (1—|z|).
We have

rel?

. . , 1-—
<l — ¥ 160 — )< (L= Jz) + Z'Z')<r(w>.

Therefore, forweE,, we have thatel ;) (w) and thaty,,(z) =1 on E,. So

f Yw@do(w) 2 |E;| 2 Co|I;| = Ca(1 = |2]). (24)
oD
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Fubini's theorem gives

L 2h-2

Co [ 130 S terad i@ o (grad H— o)) (L~ 2DdAG)

lzI>R |21 i=1 204

L 2li—2

/| - / Tw(@ |2 D (grad H, yy-2n)()

=1 j=1

o((grad H—5= zv)(Z))‘dG(w)dA(Z)

40
(by (24))

L 2li—2

[ [ 1Y Y radn a0
1j

I(u)(w) =1 j=1

o((grad H—5= zv)(Z))‘dA(Z)dG(w)

40 %;j

_ f B . v)(w)do(w)

< [ M3 a? sup T = T TTy 114, () ()14, () (w)]d o (w)
oD lz|>R
26— 1)fs ;2 1s
<My, a? sup IT — T TTy 1414, )21 A (v) 2]
|z|]>R
2(s 1)/s

<N2 a® sup |IT — T TTy Y [ullzllv]l2.

|z]>R

The last inequality follows from that

1
[|Arull2< N llull2
. 2
since — > 1. Note that
r

1
log —<1- |z
|z]
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for 1/2<|z| < 1. Thus we obtain

2
2(s=1)/s ~—1psr :
WIS Mp """ €N a® sup |IT = Tj TTy || ullzv]l

r |z|>R
so 22) and @3) give

2
2(s—1 —1ar7 s
IT =Ty — KrlIl <My """ CINga? sup T — 15 TTy ||

=1 H;l=1 Ayj r lz|>R
becauseP is dense inH2. Therefore 20) implies

lim ||T —
R—1

T. — Kg| =0.
ZIL=1 njlzl Alj I

We conclude thatl” — T,

is compact. This completes the proof]
ZIL=1 H§’=1 Ayj P P P

7. Two applications

In this section we will completely answer Questions 1 and X i a finite sum of
finite products of Toeplitz operators. First let the operafgrwith symbol AcL? be
densely defined ofiH2]+, by

Sah = P_(Ah).
For two functionsF and G, an easy calculation gives
Hgp =TcHp + HGSr. (25)
and

SaHG = Hag (26)

if Aisin H2.
For a functionf on the unit diskD andmeM(H* + C), we say

lim f(z)=0
Z—m
if for every net{z,} C D converging tom,

lim £ (z) = 0.
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Let 7 be the Toeplitz algebra, generated by Toeplitz operators with symbdi§®in
Theorem 4 in[7] implies that there exists a symbol map frgmto L>°, and for an
operator in7, its symbol is zero if and only if the operator is in the commutator ideal
of T

The following theorem answers Question 1 for a finite sum of finite products of
Toeplitz operators.
Theorem 13. Suppose that X is a finite sum of finite products of Toeplitz operators on

H? and b is an inner function. Thef XT, — X is compact if and only if for each
meM(H*™ 4 C) with |b(m)| < 1,

. - B
lim |1X — T} XTy || = 0.

Theorem13 implies the following theorem, which gives the answer to Question 2
for a finite sum of finite products of Toeplitz operators.

Theorem 14. Suppose that X is a finite sum of finite products of Toeplitz operators on
H? and b is an inner function. Thef, X — X7, is compact if and only if there are
FeL® and an operatorX; in the commutator ideal of such thatX = T + X1 and

for eachmeM (H* + C) with |b(m)| < 1,

. - B
lim 11Xy =75 XaTy || =0,
and

lim [|Hrk;|2 =0.
Z—m

Proof. Assume that

Let

M = max| Ay .
»J
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Then M < oo. Theoremb implies that for eachie D, there is a sequence of complex
numbers such that

L 211—2
X=Tey o , =99 H0H (27)
. 2 =4
2z [Tj=1 Ay i Al’j’. iz By

and

-2 I-2
max max(||;, A;; o d_lla, 12, B); " 0 d_lla} < Ma.

for some positive constan¥/y.

Lgt F = Zle ]_[5’:1 Ajj and X1 = X — Tr. By Theorem 4 in[8], the symbol of
X1 is zero.

Suppose thaf, X — X7}, is compact. We need to show that for each M (H*° +C)
with |b(m)| < 1,

lim || X1 — T(Z X1Ty, | =0, (28)
—m Z <

and
lim | Hpk.|l> = 0. (29)
Z—m

SinceT;T, =1 and T;TrT, = Tr, we obtain that
T;XTy — X = Ty[XTp, — Tp X ]
is compact and hence
Ty XaTy — X1 =TH[X = TflTy, — [X = Trl =T XT, — X

is also compact.
By Theorem13, for eachmeM (H*> + C) with |b(m)| < 1,

lim || X1 — T(;; XaTy Il = 0. (30)
I—m Z <

We obtain £8).
To prove(29), first we show that Conditio(80) implies that7, X1— X1T} is compact
This result will be also used at the end of this proof
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Let Z = T, X1 — X1Tp. Since Tp X1 — X17T) is a finite sum of finite products of

Toeplitz operators, to prove thatis compact, by Theoreri2 we need only to show
that

lim |Z—-T}; ZT, || = 0.
lim 1Z ~ 73 2Ty, |

By the Corona theorem, this is equivalent to the requirement that formeadii( H> +
),

. - B
z“mm 1Z—T5 2Ty || = 0. (31)
Since

1Z = T) ZTy || = | X1 — T XaTy_+ T; (X2 — T XaTy 175

Z

SIX1 = Tg XaTy I+ 1Ty I1Xe — T X1 T 1175l

<2|X1 =T X1y,
for eachmeM (H®* + C) satisfying |b(m)| < 1, by @0), we have
zIme lz — T$ZZT¢Z | =0.

So we need only to prove3l) for meM(H® + C) satisfying |b(m)| = 1. In this
case,b is constant on the support set wf Thus

lim / b — b(2)|*|k-|?de = 0.
z—m
Making a change of variable gives
Zliinm [bo¢, —b@)a=0.

By (27), we have

L
Xl = Z Hi* 11.72H BI[*Z. (32)
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-2

Let G be either&Al]j’. or 12811;_2. Then,

Ty o)V HGk 2 = U2 Tpog —b(2) V Hoog Lll2
= 1Tbogp,~b(z)V HGop, L2 = IP[(b o ¢, — b(2))V Hgop 1ll12
<lbo ¢, —b(@)VHgoep Ul2< b0 ¢, — b(@D)llallV Hgop Llla
<lbo ¢, —b@lal+ NG o d_lla
<L+ Na)Mallbo ¢, — b(2)|a.

Here N4 is the norm of the Hardy projectioR on L*, and U, is a unitary operator
defined onL? by

Uh =ho k.
Similarly, we also have
1Th—b(o)V HGk:ll2< (1 + Na)Mallb o ¢, — b(z)l|a.
Those give
z”_[nm maxX{[| T,V Hckzll2, | To—b(z) V Hek: |12} = 0. (33)

For eachzeD, (32) gives

L 2h—2r
z=y" %" TyH*5H g2 = B H B,,_zT,,]

=1 j=1L A i iy Tl
L 21/72 -
* k
:Z Tb—b(z)HﬁH; B2~ HﬁHl B’g—ZTb—b(z) .
=1 j=1L Ay 2 Ay al
Thus
*
Z TqszTd)z
L 2[1—2
_ * * *
= [Ty—p) H- II*ZH)L g2~ Tqbz Tp—p) H- 1[72Hi BI?72T¢z]
=1 j—1 izAlj z Plj izAlj z Plj

* *
N [H_ﬁHAz BlI/ 2 Tb_b(z) - T¢Z H%H"z Blljl . Tb_b(Z) Td)z] ‘
’ j

2z Az
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To prove B1) it suffices to show that for each j,

im || Tp—pn HE——H —T51 H* _H T =0, 34

—m || b—b(z) ZZAIIFZ 22311,[ b. b—b(z) /MZAU ) i»szI,{ 2 ¢Z|| ( )
and

lim | HX—— H n—2Tp_ —TrH*_H 2T T, =0. 35

< ” »z“]j izBl/( b=h@ d)z /1;“11/['72 "szl/! bbe) QbZH ( )

Since To—b) Ty, = Ty To—b(2), by Lemma9, we have

* *k *
H7H27 Blig—ZTb_b(Z) - T¢z HkiH;.z Blljgszb_b(Z) Ty,

-2
28 A iz Alj

hl]

![VH*A k 1®[VH e 2kz]} Th—b(z)

4z 01j

= WH gk @ 1T}y VH ookl

7z lj

Thus @B3) implies 35). Using two well-known identities (see, e.g., (1.2) and Lemma
5 in [16]),

T5 To-be) = To-v TG, = Hy—pesHg,

and

H; = —Vk, ® ke,

S

by Lemma9 again, we have

Tp—py H —— sH —TF Tp_pn HE—— sH 2T,
@ AL By 0T O AL By 0

= (To-boVH— 7= G k@ VH ! j-2k:] + H- b()HaszA/’l*ZH,;B,[/FZT‘bZ
j iz A ol

= [Tp—p)VH—7= e —k]®[VH BI;*Zkz]‘i‘[VHmkz]

iz lj

®[(H%wa Bﬁszqu)*kZ].
; ]

2z

Thus @3) implies (34). Therefore, we conclude

. - _
lim |1z -7} 27 || = 0.
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Hence by Theoremi2, Z = T, X; — X1T} is compact.
Noting that

TyTr — TrTy = Tp[X — X1]1 — [X — X11Tp = Tp X — XT) — Z
we have thatl, Tr — TrT), is compact. Since
TyTp — TpTy = TpTp — Tpp = HEHF,
by the main result if23] we obtain

J‘&”E o¢, —b@|2lF-o¢, — F_(z)]2=0.

Because

lim llpo ¢ = b@lllz = fim (1= b@AY2 = @ = bem )2 > 0,

for eachmeM (H®*® + C) with |b(m)| < 1, the above limit gives

lim [|[F_o¢, — F_(2)|2=0.

Z—m

Thus we get

lim |[Hpk:ll2 = lim |[F-o¢, — F-(2)2=0,
Z—m Z—m

we get @9), as desired.
Conversely, suppose that there areL° and an operatoX; in the commutator
ideal of 7 such thatX = Tr + X; and for eachmeM (H®* + C) with |b(m)| < 1,

lim || X1 — T(;)k XaTy |l = 0, (36)
—m 4 <
and
lim |[Hpk;ll2 = 0. (37)
—m

We need to show thdf, X — X7} is compact. Since

Ty X — XTp = Tp X1 — X1Tp + TpTr — TrTp,
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it suffices to show that botli, X1 — X17, and T,Tr — Tr T, are compact. In the proof
of (29 we have shown that ConditiorB§)((30)) implies thatZ = T, X1 — X17} is
compact. Also for eaclme M (H* + C) satisfying |b(m)| = 1,

lim || Hzk:|l2 = lim (1— |b(z)|)"? =0,
z—>m z—>m
and hence 37) gives that for eacltme M (H*> + C),

lim || Hpk:ll2ll Hr k- ]|2 = O.
Z—m

Thus by the main result ifi23] again, 7,Tr — Tr T, is compact. This completes the
proof. O

To prove Theoreml3 we need the following lemmas:

Lemma 15. Let {g;} be functions inL2. Suppose that for a fixege D, {VHg_/kZ};\’:1
are linearly independent. Let

A= (([VHg,-kz]’ [VHg‘,-kzD)NxNa
and
B, = ({IV Hg k1, [V Hy ok 1) nxn -

If ¢ is an eigenvalue of the matrix;le, then|c|<1.

Proof. Letting (x1,...,xy)” be the eigenvector for the eigenvalaeof A;lBZ, we
have
X1 X1
cA; =B,
XN XN
Taking inner product of(x1, ..., xy)” with both sides of the above vector equations
we obtain

|V Hew k.|I? = (VSpHen ks, V Hen k

D=1 Xj8j Dj=1%j8j j=1%j8j ¢
= (I; VH«n~ k,, VHnN k).
(75 j—1Xj8j ¢ J=1%j8j )
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The Cauchy-Schwarz inequality gives

lellV Hy-y k2 <N T5 IV Hyo ke |12,

j=1%j8j j=1%j8j

Thus |c| <1 becausd|T;|| <1 and ||V Hy-w 1x~g~k1”2 # 0.
j=14j8]

Lemma 16. Suppose that A is & x N matrix with eigenvaluesc;| <1 and for some

positive constaniVy,

sup || fj o llp<Ma.
zeD,j

If for meM(H*> + C) with |b(m)| < 1,

VHpk, V H g pk,
lim : —A : =0,
e : :
V Hpyk, V H gy pk; 2
then
VHygk,
lim : =0.
Z—m *
VHyk, 2

Proof. By the Jordan theory there is a unitary mattixsuch that

c1t 0 O--. 0 0
g1 ¢c2 0 - 0 0
U* AU — e31 €32 ¢c3--- O 0
EN1EN2 © 1 ENN-1CN
Let
VHflkz VHygk,
. — U* .

VHf'NkZ VHpyk,
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We get

V Hpk, VHflhk
U* : — U*AUU*

VHpgyk, VHhok
c1 0 0

VH;k, €21 €2 0 0 0 VHj k.

_ . €31 €32 €3 - 0 0 .

VH k. Coen o VH

N1 éN2 - © ENN-1CN

The first equality in the above vector equation gives

lim ||VH;

Im IVHE q_gpkall2=0.

Making a change of variable yields

lim (1 - P)lfio¢.(1—citbod)lll2 =0

(38)

Since|c1| <1 andb is not constant on the support setrof by Lemmal, (1— c¢1b)
is an outer function on the support setraf For anye > 0, there is a functiorpe H*®

such that
/S Ip(L—é1b) — 12 dp,, <e.
For sucheg, there is also a neighborho&l of m such that forze W N D,
‘/ |p(1—é1b) — 112 dp,, — /S Ip(1 = é1b) — 12|k, |?do| < e.
Making a change of variable we obtain
/ [pod,(1—cibo¢,) — 1%de < 2.

Fort = %, the Holder inequality gives

1L = P)(fiog.lpo¢.(L—crbod,) — 1Dl
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<Cl(fiog,lpog,(L—crbo,) — 1D,
<Cillfro ¢, ll@nenlpod.(L—cibod,) — 1l
=Cillifro¢.llallpod,(L—cibod,) —1l2

<CIM431/2.
Thus
I = P)f1o¢,ll SCMae"? + |1 — P)[fr0 ¢, (pod,)(L— b o d )]l
<CMag? + |IpllsollX = P)(fio ¢p,(L—Eb o))l

The last inequality follows from

(1= P)fiog.(pod)L—cibo¢,)]
= Hfop (pop)(L—C1b0 @)
= Spop H(L=c1bo ¢,). (by (26))

So
lim (1= P)f1o ¢l <CiMae?.
Z—m

Hence we get

Jim 1A= P)fro ¢l =0.

This implies
Jim IVHpkllz = im (1= P)f1o¢.ll2=0
because
1A= P)f1od l2<IL— P)fro¢ I~ P)frod.lla
1/2

<Mal(L—P)frod.l;

The second equality in3@) yields

lim ||VHJ;

am 2(1-G2b)

k, + 821VH]zlkz||2 =0.
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Hence

lim |VH;

z—>m f2(l—c‘2b)kz l2=0.

Repeating the above argument gives
z@wwﬂﬁ@hza
By induction we conclude that
I|_r)nm ”VHfjkz”Z =0,
for all j. Therefore

VHpk, VHpk:
lim : = lim ||U : =0.

Z—m ° Z—m N
VHk: )], VH k)],

Now we are ready to prove Theoreb3.

Proof of Theorem 13.Assume that

I

X = TAlj'

L
=1 j=1
Let

M = max(| Ay [lco-
.J

Theorem5 implies that for eaclze D, there is a sequence of complex numbers such

that X — T, is a finite sum of products of two Hankel operators:
2 [T A

N
*
Y H 4 H g
k=1
and

max max||,, filla, I, gk lla} < Ma.
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LetY = T;XT, — X. ThenY is also a finite sum of finite products of Toeplitz operators
and

N N
Y= Z Hg;vsz Hp, g — Z Hzt e
k=1 ' k=1
Suppose that for eachhe M(H*® + C) with |b(m)| < 1,
. - .
zlﬂ;nm IX = Tj XTy | =0.
In order to prove tha¥ is compact, by Theoremi2 we need only to show

. . B
lim [[Y =T} YTy || = 0.

lz|—
This is equivalent to requirement that for eaele M (H*° + C),
. - .
z'inm IY =T YTy || = 0. (39)
Because

1Y =T YTy | =IT5LX — Ty YTy 1Ty — [X — Ty XTy 1]
SITGIX = T YTy [ Tpll + 11X = Ty XTy, |

<20X — T(ZZXT@II,
for m satisfying |b(m)| < 1, we get
. - .
Jm IY =T, YTy || = 0.
For m satisfying that|b(m)| = 1, b is constant on the support set wf Thus
lim 160 ¢. — b(m)|4 = lim f b(w) — b(m)|* k- (w)[*de(w) = 0.
—m —m
Let f be either,_fx or ;_gr. Then

sup|l f o ¢, lla< My.
zeD
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Thus we have

| H ok, —b(m)H k2= H ¢ Tp—bm)k: |2

=[A=P)f o (bo¢ —bm)ll2

<lf o (bod, —b(m))l2
Slfo¢ llallbog, —bim)la
SMal|(bo ¢, —b(m))|a4.

This implies
lim ||Hppk, — b(m)H rk;|l2 = O.
Z—m

By Lemma9, we have

K

Y — T</> YTy = <Z{[VH fibk 1 @ [VH, gpk:]1—[VH, rk:]1®[VH, gk:]}

k=1
Thus @0) gives
N

lim

—m

k=1 k=1

On the other hand, we have

N
D IVH, fibomks] ® [V H,_gbimyk:]
k=1

N
= bm)? Y [VH, ;k]®[VH, k]
k=1

= Z[VH;_kakz] ® [VH;,ngkZ]'

This leads to

N N
lim

Z—m

k=1

Z [VH, ppk:1®[VH, 8kbk 1= Z[VH;LZ,f'/{kZ] ® [VHZng

N
Z[VH/:kaka] ® [VH;Nzgkka] - Z[VH;.kab(M)kz] ® [VH).ngb(m)kZ]

k]

=0.

(40)
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Therefore we obtain
lim |Y —T; YT,
Jim |y — 75 YTy |
N

N
Y IVH, jiok:) ® [VH, guk:] = Y [VH, k] ® [VH, g k]
k=1 k=1

= |lim
Z—m

= 0.

This completes the proof of30).
Conversely suppose thatis compact. By Theorem2, we have

lim ||Y =T; YT, || =0.
Ay =15, T

Thus
N N
|im1 SIVH, skl @ [VH, gpk:]— Y [VH, k] ®[VH, gk:]||=0.
=1z =1
Note that
N
X — T;;ZXT(/)Z = Z[VH/.{fka] ®[VH,_ gkl
k=1

It suffices to show that for eache M (H*° + C) with |b(m)| < 1,

=0.

|z|—>1

N
Z[VH;_szkz] ® [VH,_gk:]
k=1

Let §;, = Z;v:l[VH/lzfij] ® [VH,_g;k]. By Lemma 7, we may assume that
{VH, ¢k:)_, are orthogonal and

N
trace(S;S¥) =Y |\VH, sk |51V H,_ k-5
j=1

Since

IS 11> <trace(S,S¥) < NS, |12,
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it is sufficient to show that
Zli_r)nm trace(S,S¥) = 0.
Now we may assume that
Jim IVH, ¢ k|l5=cj #0
for j<N1<N and
Jim IVH, ¢ kI3 =0,
for j > Ni. Note thatHsyk, = HyTpk, = SpHyk;. Thus
I H ok ll2 < ISoI1| H gk |2,
so
Z”_fj]n IVH, g;pkzll2=0,

for j > Nj. This gives

N1
i ||V H, ke © 1V Hygyoked = [V E, 1] © 1V H, g k| =0
J:
Let
N1
R, = Z[VH;‘:fjbkz] QIVH, gjvk:1—[VH, j;k:1Q[VH, ¢;k:].
j=1
Let
AZ = (<[VH;ng;kz]a [Vngg_/kZD)leNla
and

BZ = (([VH;vzgikz], [VH;.ZgjbkzD)leNl-
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Then

VH, f1kz VH, ppk: R.VH, ¢k
= A;'B, ; +At :

Z

VHZZ lekz VH}‘: lebkz R, VH/inglkZ

By Lemma 15, the absolute values of the eigenvalues of the maﬂj)&BZ are less
than or equal to 1. Moreover

VH).Z.flkZ VH}.zflka
lim : —A'B, : =0.
VH/:ZlekZ VH/;Z lebkz 2

By Lemmal16 we conclude that

VH, flkz
lim : =0.
Z—m N

14 H/lz le kZ 2

This implies
lim trace(S,;S¥) =0,
z—>m e

to complete the proof. [J

8. Block Toeplitz operators

Let L2(C") be the space of”-valued Lebesgue square integrable functions on the
unit circle. The Hardy spacé/2(C") is the Hilbert space consisting af”-valued
analytic functions orD that are also in.2(C"). Let L%, denote the space df,, -
valued essentially bounded Lebesgue measurable functions on the unit circignd
denote the space dff,,-valued essentially bounded analytic functions in the disk.

Let P be the projection ofL.?(C") onto H?(C"). For FeL%,, the block Toeplitz

operatorTx : H2(C")— H2(C") with symbol F is defined by
Trph = P(Fh).

The main result in Sectio® extends to block Toeplitz operators. That is, a finite
sum T of finite products of block Toeplitz operators is a compact perturbation of a
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block Toeplitz operator if and only if

lim |7 — 75 TTa,|| = 0.

lz|—>

Here @, denotes the functionliag{¢,, ..., ¢ }eH,. This result also extends the

nxn*

main results in[15] on block Toeplitz operators.
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