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Abstract

A generalized area function associated with a finite sum of finite products of Toeplitz operators
is introduced. A distribution function inequality is established for the generalized area function.
By using the distribution function inequality, we characterize when a finite sum of finite products
of Toeplitz operators on the Hardy space is a compact perturbation of a Toeplitz operator.
© 2004 Elsevier Inc. All rights reserved.

1. Introduction

Let D be the open unit disk in the complex plane and�D the unit circle.d�(w) de-
notes the normalized Lebesgue measure on the unit circle. LetL2 denote the Lebesgue
square integrable functions on the unit circle. For 1�p < ∞, and f (z) an analytic
function onD, we sayf∈Hp if

sup
r

∫
�D

|f (rei�)|pd�(ei�) = ‖f ‖pp < ∞.

H∞ denotes the set of bounded analytic functions on the unit disk.
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Let P be the Hardy projection ofL2 onto H 2. For A∈L∞, the Toeplitz operator
TA : H 2→H 2 with symbolA is defined by

TAh = P(Ah).

The Hankel operatorHA : H 2→L2�H 2 with symbolA is defined by

HAh = (I − P)(Ah).

For more details on Toeplitz operators, see[4,7,8,20,21].
The map�:A→TA, which is called the Toeplitz quantization, carriesL∞ into the

C∗-algebra of bounded operators onH 2. It is a contractive *-linear mapping[8].
However it is not multiplicative in general. On the other hand, Douglas[8] showed
that � is actually a cross-section for a *-homomorphism from the Toeplitz algebra, the
C∗-algebra generated by all bounded Toeplitz operators onH 2, onto L∞. So modulo
the commutator ideal of the Toeplitz algebra,� is multiplicative.
Studying the Toeplitz algebra has shed light on the theory of Toeplitz operators

[7,8,20]. In this paper we will study the (not closed) algebra of finite sums of finite
products of Toeplitz operators, which is dense in the Toeplitz algebra. The main question
to be considered in this paper is when a finite sum of finite products of Toeplitz
operators is a compact perturbation of a Toeplitz operator. This problem is connected
with the spectral theory of Toeplitz operators; see[4,7,8,20]. A theorem of Douglas
[8] implies that

∑L
l=1

∏Il
j=1 TAlj

can be a compact perturbation of a Toeplitz operator
only when it is a compact perturbation ofT∑L

l=1
∏Il

j=1 Alj
.

In this paper we will introduce a generalized area function associated with a finite
sum of finite products of Toeplitz operators and establish a distribution function in-
equality for the area function. By means of the key distribution function inequality we
will prove that a finite sumT of finite products of Toeplitz operators is a compact
perturbation of a Toeplitz operator if and only if

lim|z|→1
‖T − T ∗

�z
T T�z

‖ = 0. (1)

Here�z denotes the Möbius map,

�z(w) = z − w

1− zw
.

The above result is a variant of Theorem 4 in[14]. However, some crucial details are
omitted from the proof in[14], especially, details in the proof of a key distribution
function inequality.
One of our motivations is the result of Axler and the second author[2] that if an

operatorS on the Bergman space equals a finite sum of finite products of Toeplitz
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operators, thenS is compact if and only if the Berezin transform ofS vanishes on
the boundary of the unit disk. One may expect that the Berezin transform gives the
analogous characterization for a finite sum of finite products of Toeplitz operators to
be compact on the Hardy space. However, we will use examples from[12] to show
that even if an operatorT on the Hardy space equals a finite sum of finite products of
Toeplitz operators, the vanishing of the Berezin transform ofT does not have to imply
that T is compact.
Another motivation is the solution of the problem of characterizing when the product

of two Toeplitz operator on the Hardy spaceH 2 is a compact perturbation of a Toeplitz
operator, by Axler et al.[1] and Volberg [22]. Their beautiful result is thatTf Tg
is a compact perturbation of a Toeplitz operator if and only ifH∞[f̄ ]⋂H∞[g] ⊂
H∞ + C(�D); hereH∞[g] denotes the closed subalgebra ofL∞ generated byH∞
and g.
Recently, the second author[23] showed thatTf Tg is a compact perturbation of a

Toeplitz operator if and only if

lim|z|→1
‖Hf̄ kz‖2‖Hgkz‖2 = 0;

herekz denotes the normalized reproducing kernel inH 2 for point evaluation atz. This
is equivalent to

lim|z|→1
‖[Tf Tg − Tfg] − T ∗

�z
[Tf Tg − Tfg]T�z

‖ = 0.

The semicommutatorTf Tg−Tfg can be written as a product of two bounded Hankel
operators. To study a finite sum of finite products of Toeplitz operators we will decom-
pose the finite sum as a finite sum of products of two (unbounded) Hankel operators
in Section3. Clearly, a much more involved cancellation may happen in the sum of
products of two Hankel operators. We need to take care of the cancellation by intro-
ducing a generalized area integral associated with the sum in Section4. Even in some
special cases[13,15] some generalized area integral functions were introduced. Gorkin
and the second author[13] have shown that the commutator[Tf , Tg](= Tf Tg − TgTf )

of two Toeplitz operators is compact onH 2 if and only if

lim|z|→1
‖[Tf , Tg] − T ∗

�z
[Tf , Tg]T�z

‖ = 0.

Condition (1) not only unifies the results on the compactness of commutators or
semi-commutators of Toeplitz operators, but is also useful in understanding the Toeplitz
algebra. In Section7 we will give applications of our main result to the following two
questions:
Question 1. For an inner functionb, characterize the operatorsX on H 2 such that

T ∗
b XTb −X is compact.

Question 2. For an inner functionb, characterize the operatorsX on H 2 such that the
commutator[Tb,X] is compact.
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These questions are closely related to and inspired by the following Douglas
problems:
Douglas problem 1. If X is an operator onH 2 such thatT ∗

b XTb −X is compact for
every inner functionb, then isX = T� + K for some� in L∞
and compact operatorK? [7]

Douglas problem 2. If the commutator[Tb,X] is compact for eachb in H∞+C, then
is X = T� + K for some� in H∞ + C and compact operator
K? [9].

Douglas showed[9] that the solution of the first problem will give the solution of
the second problem. Douglas[9] solved the first problem in the case thatX is in the
Toeplitz algebra. Although the Douglas problem 1 remains open, Davidson[6] has
solved the second problem. Clearly, the above questions localize the Douglas problems
in some sense.
Another application of our main result is the solution of the problem of when a

Hankel operator essentially commutes with a Toeplitz operator[16].

2. Examples and maximal ideal space

In this section we will recall examples from[12] to show that the Berezin transform
does not characterize the compactness of a finite sum of finite products of Toeplitz
operators on the Hardy space. LetT be a bounded operator onH 2. The Berezin
transform ofT is defined by

T̂ (z) = 〈T kz, kz〉

for z in D. Perhaps the most important tool in the study of the Toeplitz algebra, the
norm-closed algebra of operators generated by the Toeplitz operators, is the existence
of a homomorphism, the so-called symbol mapping�, from the Toeplitz algebra toL∞
such that�(Tf ) = f for every f∈L∞. The key point here is that� is multiplicative.
The symbol mapping was discovered and exploited by Douglas[7]. Barría and Halmos
[3] showed the symbol mapping� is well defined for asymptotic Toeplitz operators.
Recently Englis[10] showed that the nontangential limit of the Berezin transform of
T equals the symbol ofT, for T in the Toeplitz algebra.
To present the examples in[12], we need to introduce the maximal ideal space of

H∞. Let M(H∞) be the set of the multiplicative linear functionals onH∞. If B is
a Douglas algebra, i.e., a subalgebra ofL∞ that containsH∞, thenM(B) can be
identified with the set of nonzero linear functionals inM(H∞) whose representing
measures (onM(L∞)) are multiplicative onB. We identify a functionf in B with its
Gelfand transform onM(B). In particular,M(H∞+C) = M(H∞)−D, and a function
f∈H∞ may be thought of as a continuous function onM(H∞).
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Examples. Let b be any interpolating Blaschke product with zeros{zn}. Choose a
sequence of positive integersln→∞ such that

∞∑
n=1

ln(1− |zn|) < ∞.

Let

b1 =
∞∏
n=1

|zn|
zn

(
zn − z

1− z̄nz

)ln
denote the corresponding Blaschke product. It was proved in[12] that for each
m∈M(H∞ + C),

m(b1b̄) = m(b1)m(b̄).

This is equivalent to

lim|z|→1
[b̂1b̄(z)− b1(z)b(z)] = 0,

where b̂1b̄(z) is the harmonic extension ofb1b̄ at z given by

b̂1b̄(z) =
∫

�D
b1(w)b̄(w)|kz(w)|2d�(w).

Let T = Tb1b̄−Tb1Tb̄. Clearly,T is a finite sum of finite products of Toeplitz operators.
An easy calculation gives that the Berezin transform ofT is

T̂ (z)=〈[Tb1b̄ − Tb1Tb̄]kz, kz〉
=b̂1b̄(z)− b1(z)b(z).

Thus

lim|z|→1
T̂ (z) = 0.

Sinceb1b̄ = b1
b
is in H∞, we have

Tb̄1bT = Tb̄1b(Tb1b̄ − Tb1Tb̄) = I − TbTb̄

is an infinite dimensional projection, and henceT is not compact.
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Hoffman [17,18] has shown that for eachm∈M(H∞ +C), m has a unique extension
to L∞, which is given by

m(f ) =
∫
Sm

f d�m

for f∈L∞. HereSm is the (closed) support of the representing measured�m. A subset
S of M(L∞) is called a support set if it is the (closed) support of the representing
measure for a functional inM(H∞ + C).
LetH 2(m) be the closure ofH∞ in L2(d�m). LetH

2
0 (m)={f∈H 2(m): ∫

S
f d�m=0}.

Hoffman [17, p. 289]proved thatL2(d�m) = H 2(m)⊕H 2
0 (m).

An inner function inH 2(m) is a functionq∈H∞(m) with |q| = 1 a.e. onSm. An
outer function inH 2(m) is a functiono such thatH∞o is dense inH 2(m). But Theorem
22 [19] says that every functionf in H 2(m) with f (m) �= 0 has the factorizationqo
for an inner functionq and an outer functiono.
The following lemma will be needed in Section7.

Lemma 1. If m∈M(H∞+C) and b is an inner function inH∞ not equal to a constant
on the support setSm, then 1− b is an outer function inH 2(m).

Proof. We assume thatb does not identically equal 1 on the support setSm. Let
E = {x∈Sm : b(x) �= 1}, a subset ofSm of positive measure. For 0< r < 1, the
function (1− rb)−1 is in H∞, and (1− rb)−1(1− b)→�E pointwise boundedly onSm
as r→1. Hence�E is in theH 2(m)-closure of(1− b)H∞, and also inH∞(m). Since
�m is multiplicative onH∞(m), we have

�m(E)
2 =

(∫
�E d�m

)2
=
∫

�2E d�m = �m(E),

giving �m(E) = 1 (since�m(E) �= 0). Hence the constant function 1 is in theH 2(m)-
closure of(1− b)H∞, showing thatb is outer inH 2(m). �
We thank D. Sarason for his suggesting the above proof.

3. Decomposition

Although our main concern is with bounded Toeplitz operators and Hankel opera-
tors, we will need to make use of densely defined unbounded Toeplitz operators and
Hankel operators. Given two operatorsS1 and S2 densely defined onH 2, we say that
S1 = S2 if

S1p = S2p,

for eachp in the setP of analytic polynomials.
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As in [14], in this section we will show that a finite sum of finite products of Toeplitz
operators can be written as a finite sum of products of two Toeplitz operators. The key
here is a simple and useful idea used in[14]

TA1TA2TA3 = TA1[(A2)++c1]TA3 + TA1T[(A2)−−c1]A3,

for three bounded functionsA1, A2 andA3, and a constantc1. HereA+ = P(A) and
A− = (I −P)(A). For four bounded functionsA1, A2, A3 andA4; and three constants
c1, c2 and c3, we have

TA1TA2TA3TA4=[TA1[(A2)++c1]TA3 + TA1T[(A2)−−c1]A3]TA4
=TA1[(A2)++c1][(A3)++c2]TA4 + TA1[(A2)++c1]T[(A3)−−c2]A4

+ TA1{[[(A2)−−c1]A3]++c3}TA4 + TA1T{[[(A2)−−c1]A3]−−c3}A4.

Clearly, for an integerm�2, by induction, we see that a product ofmToeplitz operators
with bounded symbols can be written in a sum of 2m−2 terms that are products of
two Toeplitz operators with (perhaps unbounded) symbols, and the decomposition is
not unique. In order to deal with a finite sum of products of two Toeplitz operators
with unbounded symbols we need to introduce systematic decompositions of the finite
products. To do so, let� = {�(l, k)} be a sequence of complex numbers. For a sequence
of functionsA1, A2, . . . , An in L∞, we inductively define

�A
0
1 = A1, �B

0
1 = A2

�A
i
2k−1 = �A

i−1
k [(�Bi−1

k )+ + �(i − 1, k)], �B
i
2k−1 = Ai+2

�B
i
2k = [(�Bi−1

k )− − �(i − 1, k)]Ai+2, �A
i
2k = �A

i−1
k ,

for k�2i−1.

Lemma 2. Let � = {�(l, k)} be a sequence of complex numbers. IfA1, A2, . . . , Am are
of functions inL∞, then �A

i
j and �B

i
j defined above are in∩∞>p>1L

p. Moreover,

TA1TA2 · · · TAm =
2m−2∑
j=1

T
�A

m−2
j

T
�B

m−2
j

and

A1A2 · · ·Am =
2m−2∑
j=1

�A
m−2
j �B

m−2
j .
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Proof. We use induction to prove the theorem. Whenn = 2, from our definition we
have

TA1TA2 = T
�A

0
1
T

�B
0
1

and

A1A2 = �A
0
1�B

0
1.

For n = m, we assume that

TA1TA2 · · · TAm =
2m−2∑
j=1

T
�A

m−2
j

T
�B

m−2
j

(2)

and

A1A2 · · ·Am =
2m−2∑
j=1

�A
m−2
j �B

m−2
j . (3)

Now

2m−1∑
j=1

�A
m−1
j �B

m−1
j =

2m−2∑
j=1

[�Am−1
2j−1�B

m−1
2j−1 + �A

m−1
2j �B

m−1
2j ]

=
2m−2∑
j=1

{
�A

m−2
j [(�Bm−2

j )+ + �(m− 2, k)]Am+1 + �A
m−2
j

×[(�Bm−2
j )− − �(m− 2, k)]�Am+1

}
=

2m−2∑
j=1

�A
m−2
j [(�Bm−2

j )+ + �(m− 2, k)] + �A
m−2
j

×[(�Bm−2
j )− − �(m− 2, k)]

 �Am+1

=

2m−2∑
j=1

�A
m−2
j [(�Bm−2

j )+ + �(m− 2, k)
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+ (�B
m−2
j )− − �(m− 2, k)]

 �Am+1

=

2m−2∑
j=1

�A
m−2
j �B

m−2
j

 �Am+1

=A1A2 · · ·AmAm+1.

The last equality follows from (3).

Note that both(�B
m−2
k )+ + �(m − 2, k) and [(�Bm−2

k )− − �(m− 2, k)] are inH 2.
Thus

T
�A

m−2
j

T[(�Bm−2
j )++�(m−2,k)] = T

�A
m−2
j [(�Bm−2

j )++�(m−2,k)],

and

T[(�Bm−2
j )−−�(m−2,k)]TAm+1 = T[(�Bm−2

j )−−�(m−2,k)]Am+1.

So by (2) we obtain

TA1TA2 · · · TAmTAm+1=
2m−2∑
j=1

T
�A

m−2
j

T
�B

m−2
j

TAm+1

=
2m−2∑
j=1

[T
�A

m−2
j

T[(�Bm−2
j )++�(m−2,k)]TAm+1

+ T
�A

m−2
j

T[(�Bm−2
j )−−�(m−2,k)]TAm+1]

=
2m−2∑
j=1

[T
�A

m−2
j [(�Bm−2

j )++�(m−2,k)]TAm+1

+ T
�A

m−2
j

T[(�Bm−2
j )−−�(m−2,k)]Am+1].

Hence we conclude

TA1TA2 · · · TAmTAm+1 =
2m−1∑
j=1

T
�A

m−1
j

T
�B

m−1
j

.

Note that∩∞>p>1L
p is an algebra, i.e., bothfg and f + g are in∩∞>p>1L

p if f
andg are in∩∞>p>1L

p. In addition,P+ andP− are bounded onLp for 1< p < ∞,
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and mapL∞ into BMO. The John-Nirenberg theorem tells us thatBMO is contained
in the intersection∩∞>p>1L

p. These imply that�A
i
j and�B

i
j are products of functions

in ∩∞>p>1L
p. So they are also in∩∞>p>1L

p. This completes the proof.�
The above lemma gives the following proposition. The decompositions ofAi are

different from those in[14].

Proposition 3. Let � = {�(l, k)} be a sequence of complex numbers.

TA1TA2 · · · TAm − TA1A2···Am =
2m−2∑
j=1

H ∗
�A

m−2
j

H
�B

m−2
j

.

Proof. By Lemma2, we have

TA1TA2 · · · TAm =
2m−2∑
j=1

T
�A

m−2
j

T
�B

m−2
j

and

A1A2 · · ·Am =
2m−2∑
j=1

�A
m−2
j �B

m−2
j .

Because

TATB − TAB = H ∗̄
A
HB,

we get

TA1TA2 · · · TAm − TA1A2···Am=
2m−2∑
j=1

[
T

�A
m−2
j

T
�B

m−2
j

− T
�A

m−2
j �B

m−2
j

]

=
2m−2∑
j=1

H ∗
�A

m−2
j

H
�B

m−2
j

.

This completes the proof.�
Although the representation of a finite product of Toeplitz operators as a sum of

products of two Toeplitz operators is not unique, it has the advantage of letting us to
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choose�(j, k). In order to establish our distribution function inequality we need to
choose those constants�(j, k) appropriately at each pointz∈D. The following lemma
tells us that we can do so.
Let A1, . . . , Am be inL∞. Given a pointz∈D, inductively define a sequence{�(l, k)}

of complex numbers

�(i − 1, k) = (�B
i−1
k )−(z).

From the definition of(�B
i−1
k )−(z), it depends on only�(j, k) for j < i − 1.

Lemma 4. Let A1, . . . , Am be in L∞. Suppose that

sup
i

‖Ai‖∞�M

for some constant M. For a fixed z in D, let �(i − 1, k) = (�B
i−1
k )−(z). Then for

1< p < ∞ there are constantsMpi , such that

max
j

max{‖�A
i−2
j ◦ �z‖p, ‖�B

i−2
j ◦ �z‖p}�Mpi.

MoreoverMpi depends on M and p, but does not depend on z.

Proof. We will prove this lemma by induction. Wheni = 2, we have

�A
0
1 = A1, �B

0
1 = A2.

For each 1< p < ∞,

‖�A
0
1 ◦ �z‖p = ‖A1 ◦ �z‖p�‖A1‖∞�M

and

‖�B
0
1 ◦ �z‖p = ‖A2 ◦ �z‖p�‖A2‖∞�M.

When i = n, for each 1< p < ∞, assume

max
j

max{‖�A
n−2
j ◦ �z‖p, ‖�B

n−2
j ◦ �z‖p}�Mpn.
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Let Np be the positive constant such that

‖P+f ‖p�Np‖f ‖p,
‖P−f ‖p�Np‖f ‖p

for f∈Lp. When i = n+ 1,

�A
n−1
2k−1 ◦ �z = �A

n−2
k ◦ �z[(�Bn−2

k )+ ◦ �z + �(n− 2, k)],
�B

n−1
2k−1 ◦ �z = An+1 ◦ �z,

�B
n−1
2k ◦ �z = [(�Bn−2

k )− ◦ �z − �(n− 2, k)]An+1 ◦ �z,

�A
n−1
2k ◦ �z = �A

n−2
k ◦ �z.

Clearly,

max
k

max{‖�A
n−1
2k ◦ �z‖p, ‖�B

n−1
2k−1 ◦ �z‖p}� max{Mpn,M}.

Note that for each functionf∈L2,

f+ ◦ �z = (f ◦ �z)+ − f−(z), f− ◦ �z = (f ◦ �z)− + f−(z).

Thus

(�B
n−2
k )+ ◦ �z = (�B

n−2
k ◦ �z)+ − (�B

n−2
k )−(z),

and

(�B
n−2
k )− ◦ �z = (�B

n−2
k ◦ �z)− + (�B

n−2
k )−(z).

By our choice, we have

�(n− 2, k) = (�B
n−2
k )−(z).

So

(�B
n−2
k )+ ◦ �z + �(n− 2, k) = (�B

n−2
k ◦ �z)+,

and

(�B
n−2
k )− ◦ �z − �(n− 2, k) = (�B

n−2
k ◦ �z)−.
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Hence we conclude

‖�A
n−1
2k−1 ◦ �z‖p=‖�A

n−2
k ◦ �z[(�Bn−2

k )+ ◦ �z + �(n− 2, k)]‖p
=‖�A

n−2
k ◦ �z(�B

n−2
k ◦ �z)+‖p

�‖�A
n−2
k ◦ �z‖2p‖(�Bn−2

k ◦ �z)+‖2p
�NpM

2
(2p)n,

and

‖�B
n−1
2k ◦ �z‖p = ‖[(�Bn−2

k )− ◦ �z − �(n− 2, k)]An+1 ◦ �z‖p

= ‖(�Bn−2
k ◦ �z)−An+1 ◦ �z‖p�‖(�Bn−2

k ◦ �z)−‖p‖An+1 ◦ �z‖∞�NpMpnM.

The last inequality follows because the Hardy projection is bounded onLp for 1<p<∞.
Letting Mp(n+1) = max{NpM

2
(2p)n,NpMpnM,Mpn,M}, we complete the proof.�

Summarily, Proposition3 suggests the first part of the following theorem and
Lemma4 gives the second part of the following theorem.

Theorem 5. Let M be a positive constant. Suppose that T is a finite sum of finite
products of Toeplitz operators, i.e., for Alj in L∞ with maxl,j ‖Alj‖∞�M,

T =
L∑
l=1

Il∏
j=1

TAlj
.

(1) For any sequence� = {�(l, j)} of complex numbers, then

T − T∑L
l=1

∏Il
j=1 Alj

=
L∑
l=1

2Il−2∑
j=1

H ∗
�A

Il−2
lj

H
�B

Il−2
lj

.

(2) For eachz∈D we can find a sequence�z = {�(l, j)(z)} of complex numbers so
that for 1<p<∞

max
l,j

max{‖�zA
Il−2
lj ◦ �z‖p, ‖�zB

Il−2
lj ◦ �z‖p}�Mp,

for some constantMp depending only on M and p.
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4. A generalized area integral function

For a pointw of �D, let 	(w) denote the angle with vertexw and opening
/2
which is bisected by the radius tow. The set of pointsz in 	(w) satisfying|z−w| < �
will be denoted by	�(w). For h in L1(�D), define the truncated Lusin area integral
of h to be

A�(h)(w) =
[∫

	�(w)

|grad h(z)|2dA(z)
]1/2

,

where (grad h)(z) denotes the gradient of the harmonic extensionh at z = x + iy:

grad h(z) =
(

�h
�x

(z),
�h
�y

(z)

)
,

dA(z) denotes the Lebesgue measure on the unit diskD andh(z) denotes the harmonic
extension ofh at z∈D, via the Poisson integral

h(z) =
∫

�D
h(w)

(1− |z|2)
|1− wz|2d�(w).

Observe that ifh is holomorphic, A�(h)(w) equals the area of the image of
	�(w) under the mappingz→h(z), with points counted according to their
multiplicity.
Suppose thatT is a finite sum of finite products of Toeplitz operators, i.e., for some

functionsAlj in L∞,

T =
L∑
l=1

Il∏
j=1

TAlj
.

By Theorem5, for any sequence� of complex numbers, we have the representation

T − T∑L
l=1

∏Il
j=1 Alj

=
L∑
l=1

2Il−2∑
j=1

H ∗
[�AIl−2

lj ]
H

�B
Il−2
lj

.
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Let �0 be the sequence{�(l, j)} with �(l, j) = 0 for l, j. Let u andv be in the class
P of analytic polynomials on the unit disk. Define a generalized area integral by

T B�(u, v)(w)=
∫

	�(w)

∣∣∣∣∣∣
L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

u)(z))

•((grad H
�0A

Il−2
lj

v)(z))

∣∣∣∣ dA(z).
Here((grad H

�0B
Il−2
lj

u)(z))•((grad H
�0A

Il−2
lj

v)(z)) denotes the inner product of the two

complex vectors((grad H
�0B

Il−2
lj

u)(z)) and ((grad H
�0A

Il−2
lj

v)(z)).

The main result in this section is thatT B�(u, v)(w) does not depend on�0. That is,
for any sequence� of complex numbers,

T B�(u, v)(w)=
∫

	�(w)

∣∣∣∣∣∣
L∑
l=1

2Il−2∑
j=1

((grad H
�B

Il−2
lj

u)(z))

•((grad H
�A

Il−2
lj

v)(z))

∣∣∣∣ dA(z).
Note that bothH

�B
Il−2
lj

u andH
�A

Il−2
lj

v are inH 2. Thus

L∑
l=1

2Il−2∑
j=1

((grad H
�B

Il−2
lj

u)(z)) • ((grad H
�A

Il−2
lj

v)(z))

= 2
�2

�z�z̄

 L∑
l=1

2Il−2∑
j=1

((H
�B

Il−2
lj

u)(z))((H
�A

Il−2
lj

v)(z))

 . (4)

So

T B�(u, v)(w)=2
∫

	�(w)

∣∣∣∣∣∣ �2

�z�z̄

 L∑
l=1

2Il−2∑
j=1

((
H

�0B
Il−2
lj

u

)
(z)

)

× ((H
�0A

Il−2
lj

v)(z))

∣∣∣∣∣∣ dA(z). (5)

We need to introduce some notation. Forx and y two vectors inL2. x ⊗ y is the
operator of rank one defined by

(x ⊗ y)(f ) = 〈f, y〉x.
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Observe that the norm of the operatorx ⊗ y equals

‖x‖2‖y‖2.

We thank D. Sarason for suggesting the following lemma that gives a way to estimate
the norm of the operators with finite rank. Lettrace be the trace on the trace class of
operators on a Hilbert space.

Lemma 6. Let x1, . . . , xN , y1, . . . , yN be vectors in a Hilbert space, let S =∑N
i=1 xi⊗

yi . Then there is anN ×N unitary matrix U such that

S =
N∑
i=1

x̃i ⊗ ỹi (6)

and

trace SS∗ =
N∑
i=1

‖x̃i‖2‖ỹi‖2, (7)

where  x̃1
...

x̃N

 = U

 x1
...

xN

 ,

 ỹ1
...

ỹN

 = U

 y1
...

yN

 .

For the proof of the above lemma, a computation shows (6) holds for anyN × N

unitary matrixU. To get (7) one just takesU to diagonalize the Grammian matrix of
the vectorsy1, . . . , yN . The details are left to the reader.
Note that if f1, . . . , fN are inLp, U is anN ×N unitary matrix, and

 h1
...

hN

 = U

 f1
...

fN

 ,

then

‖hj‖p�N max
j

‖fi‖p

for j = 1, . . . , N . Let xi = Hfi kz and yi = Hgi kz. Applying the above lemma, we
obtain the following lemma.
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Lemma 7. Let S = ∑N
i=1 Hfi kz ⊗ Hgi kz. Then there is a unitaryN × N matrix

Uz = (aij (z))N×N such that

trace SS∗ =
N∑
i=1

‖H
f̃i
kz‖22‖Hg̃i kz‖22,

where (f̃i)T = Uz(fi)
T and (g̃i)

T = Uz(gi)
T . Moreover,

S =
N∑
i=1

H
f̃i
kz ⊗Hg̃i kz,

and if for somep∈(1,∞), there is a positive constantMp such that

max
i

max{‖fi ◦ �z‖p, ‖gi ◦ �z‖p}�Mp,

then

max
i

max{‖f̃i ◦ �z‖p, ‖g̃i ◦ �z‖p}�NMp.

Define an antiunitary operatorV on L2 by

(V h)(w) = wh(w).

The operator enjoys many nice properties such asV −1(I − P)V = P and V = V −1.
These properties easily leads to the relation

V −1HfV = H ∗
f .

To show thatT B�(u, v)(w) does not depend on�0, we need the following lemma.

Lemma 8. Let � and � be polynomials in z. Suppose that f and g are in∩p>1L
p.

Then

(1− |z|2)Hg�(z)Hf�(z) = |z|2〈[VHf kz ⊗ VHgkz]�,�〉.

Proof. For eachz∈D, f→f (z) is a bounded linear functional on[H 2]⊥, and {w̄n} is
an orthonormal basis for[H 2]⊥. Thus the reproducing kernel atz is given by

∞∑
n=1

w̄nzn = zw̄Kz̄(w̄) = zVKz.
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So

Hg�(z) = z̄〈Hg�, VKz〉

and

Hf�(z) = z̄〈Hf�, VKz〉.

This gives

Hg�(z)Hf�(z)

= |z|2〈Hg�, VKz〉〈Hf�, VKz〉
= |z|2〈�, H ∗

g V kz〉〈�, H ∗
f V kz〉

= |z|2〈[H ∗
f V kz] ⊗ [H ∗

g V kz]�,�〉
= |z|2〈[VHf kz ⊗ VHgkz]�,�〉,

to complete the proof. �
The proof of Lemma 1[23] leads to the following lemma.

Lemma 9. Suppose that f and g are in∩p>1L
p. Then the operatorH ∗

f Hg−T ∗
�z
H ∗
f HgT�z

equals

[VHf kz] ⊗ [VHgkz]

Theorem 10. For any sequence� = {�(l, j)} of complex numbers,

T B�(u, v)(w)=
∫

	�(w)

∣∣∣∣∣∣
L∑
l=1

2Il−2∑
j=1

((
grad H

�B
Il−2
lj

u

)
(z)

)

•
((

grad H
�A

Il−2
lj

v

)
(z)

)∣∣∣∣ dA(z).

Proof. Let

T =
L∑
l=1

Il∏
j=1

TAlj
.
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By Theorem5, for any sequence� = {�(l, j)} of complex numbers, we have the
following representation:

T − T∑L
l=1

∏Il
j=1 Alj

=
L∑
l=1

2Il−2∑
j=1

H ∗
[�AIl−2

lj ]
H

�B
Il−2
lj

.

Note that for each�∈D,

T ∗
��
T∑L

l=1
∏Il

j=1 Alj
T��

= T∑L
l=1

∏Il
j=1 Alj

.

Thus for each�∈D,

T − T ∗
��
T T��

=
L∑
l=1

2Il−2∑
j=1

H ∗
[�AIl−2

lj ]
H

�B
Il−2
lj

− T ∗
��

 L∑
l=1

2Il−2∑
j=1

H ∗
[�AIl−2

lj ]
H

�B
Il−2
lj

 T��
. (8)

By Lemma9, we get

L∑
l=1

2Il−2∑
j=1

H ∗
[�AIl−2

lj ]
H

�B
Il−2
lj

− T ∗
��

 L∑
l=1

2Il−2∑
j=1

H ∗
[�AIl−2

lj ]
H

�B
Il−2
lj

 T��

=
L∑
l=1

2Il−2∑
j=1

[VH[�AIl−2
lj ]k�] ⊗ [VH

�B
Il−2
lj

k�]. (9)

By Lemma8, we have

(1− |�|2)
L∑
l=1

2Il−2∑
j=1

(
H

�B
Il−2
lj

u

)
(�)(H

�A
Il−2
lj

v)(�)

= |�|2
〈 L∑

l=1

2Il−2∑
j=1

(VH
�B

Il−2
lj

k�)⊗ (VH
�A

Il−2
lj

k�)

 u, v

〉
. (10)

Combining (9) with (10) gives

(1− |�|2)
L∑
l=1

2Il−2∑
j=1

(H
�B

Il−2
lj

u)(�)(H
�A

Il−2
lj

v)(�)
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= |�|2
〈 L∑

l=1

2Il−2∑
j=1

H ∗
[�AIl−2

lj ]
H

�B
Il−2
lj

− T ∗
��

×
 L∑
l=1

2Il−2∑
j=1

H ∗
[�AIl−2

lj ]
H

�B
Il−2
lj

 T��

 u, v

〉

= |�|2〈[T − T ∗
��
T T��

]u, v〉.

The last equality follows from (8). Clearly, the last term does not involve�. Hence we
conclude that

�2

����̄

 L∑
l=1

2Il−2∑
j=1

(H
�B

Il−2
lj

u)(�)(H
�A

Il−2
lj

v)(�)


does not depend on the choice of�. That is,

�2

����̄

 L∑
l=1

2Il−2∑
j=1

(H
�B

Il−2
lj

u)(�)(H
�A

Il−2
lj

v)(�)


= �2

����̄

 L∑
l=1

2Il−2∑
j=1

(H
�0B

Il−2
lj

u)(�)(H
�0A

Il−2
lj

v)(�)

 .

Hence (5) gives that

T B�(u, v)(w)

= 2
∫

	�(w)

∣∣∣∣∣∣ �2

����̄

 L∑
l=1

2Il−2∑
j=1

(H
�0B

Il−2
lj

u)(�)(H
�0A

Il−2
lj

v)(�)

∣∣∣∣∣∣ dA(�)
= 2

∫
	�(w)

∣∣∣∣∣∣ �2

����̄

 L∑
l=1

2Il−2∑
j=1

(H
�B

Il−2
lj

u)(�)(H
�A

Il−2
lj

v)(�)

∣∣∣∣∣∣ dA(�)
=
∫

	�(w)

∣∣∣∣∣∣
L∑
l=1

2Il−2∑
j=1

((grad H
�B

Il−2
lj

u)(�)) • ((grad H
�A

Il−2
lj

v)(�))

∣∣∣∣∣∣ dA(�).
The last equality follows from (4). This completes the proof.�
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5. A distribution function inequality

In this section we will establish a distribution function inequality for the generalized
area integral introduced in Section4. The distribution function inequality involves the
Lusin area integral and the Hardy–Littlewood maximal function. The idea to use dis-
tribution function inequalities in the theory of Toeplitz operators and Hankel operators
first appeared in[1]. Chang[5] also used a distribution function inequality to study
the commutator of the Szegö projection and multiplication operators.
Write |I | for the length of an arcI. The Hardy–Littlewood maximal function ofh is

Mh(ei�) = sup
ei�∈I

1

|I |
∫
I

|h(ei�)|d�(ei�)

for h integrable on the unit circle�D. The Hardy–Littlewood maximal theorem
([11, Theorem 4.3]) states that for 1< p�∞,

‖Mh‖p�Np‖h‖p

for h∈Lp whereNp is a constant depending only onp. For r > 1, let


rh(e
i�) = [M|h|r (ei�)]1/r .

Then

‖
rh‖p�N
1
r
p
r

‖h‖p,

for p > r.
For z∈D, we let Iz denote the closed subarc of�D with center z

|z| and length

�(z) = 1− |z|. The Lebesgue measure of a subsetE of �D will be denoted by|E|.
Recall the area integral functionA�(h)(w) for a functionh in L1:

A�(h)(w) =
[∫

	�(w)

|grad h(z)|2dA(z)
]1/2

,

whereh(z) denotes the harmonic extension ofh at z∈D.
The following distribution function inequality was established in[23].

5.1. The distribution function inequality

Let f and g be inL2, and � and � in the Hardy spaceH 2. Fix s > 2. Then
there are numbersp, r∈(1,2) with 1

s
+ 1

r
= 1

p
, such that for |z| > 1/2 and a > 0
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sufficiently large,

∣∣∣∣{w∈Iz : A2�(z)(Hf�)(w)A2�(z)(Hg�)(w)

< a2‖f− ◦ �z − f−(z)‖s‖g− ◦ �z − g−(z)‖s

× inf
w∈Iz


r (�)(w) inf
w∈Iz


r (�)(w)
}∣∣∣∣ �Ca|Iz|.

Moreover, the constantCa = 1− C′a−p and C′ is a constant depending only on s.
For eachf in L2, write f = f+ + f−. Given z in D, an easy calculation gives

Hf kz = [f− − f−(z)]kz.

Thus by a change of variable, we have

‖Hf kz‖2 = ‖[f− − f−(z)]kz‖2 = ‖f− ◦ �z − f−(z)‖2.

If f is in ∩p>1L
p, by the Cauchy–Schwarz inequality, fors > 2, we have

‖f ‖ss =
∫

�D
|f (w)|sd�(w)

�
[∫

�D
|f (w)|2d�(w)

]1/2 [∫
�D

|f (w)|2s−2d�(w)
]1/2

,

to get

‖f− ◦ �z − f−(z)‖s �‖f− ◦ �z − f−(z)‖1/s2 ‖f− ◦ �z − f−(z)‖(s−1)/s2s−2 .

The above distribution function inequality implies the following form, which will be
needed later on.

Let f and g be inL2, and � and � in the Hardy spaceH 2. Suppose that for some
s > 2 there is a constantM2s−2 such that

sup
z∈D

max{‖f− ◦ �z − f−(z)‖2s−2, ‖g− ◦ �z − g−(z)‖2s−2}�M2s−2.
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Then there are numbersp, r∈(1,2) with 1
s

+ 1
r

= 1
p
, such that for |z| > 1/2 and

a > 0 sufficiently large,∣∣∣∣{w∈Iz : A2�(z)(Hf�)(w)A2�(z)(Hg�)(w)

< a2M
2s−2
s

2s−2[‖Hf kz‖2‖Hgkz‖2]1/s inf
w∈Iz


r (�)(w) inf
w∈Iz


r (�)(w)
}∣∣∣∣

�Ca|Iz|. (11)

Moreover, the constantCa = 1− C′a−p and C′ is a constant depending only on s.
The following distribution function inequality is the main result in this section and

is the key to the proof of Theorem12.

Theorem 11. Let M be a positive constant. Suppose that T is a finite sum of finite
products of Toeplitz operators, i.e., for Alj in L∞ with maxl,j ‖Alj‖∞�M,

T =
L∑
l=1

Il∏
j=1

TAlj
.

Let u and v be inP. Let z be a point in D such that|z| > 1/2. Then for anys > 2,
for a > 0 sufficiently large and�(z) = 1− |z|,∣∣∣∣{w∈Iz : T B2�(z)(u, v)(w)

< a2‖T − T ∗
�z
T T�z

‖1/sM2(s−1)/s
2s−2

[
inf
w∈Iz


r (u)(w)

]
×
[
inf
w∈Iz


r (v)(w)

]}∣∣∣∣ �Ca|Iz|,

whereCa depends only on s and a, lima→∞ Ca = 1, and 1
s

+ 1
r

= 1
p

for some p and
r in (1,2) and M2s−2 is the constant in Theorem5 depending only on M and s.

Proof. Assume that

T =
L∑
l=1

Il∏
j=1

TAlj
.

Let L(T ) denote the integer
∑L

l=1 Il . Fix s > 2. Choose two numbers 1< p < r < 2
such that1

s
+ 1

r
= 1

p
. Fix a point z∈D. Let Sz = T − T ∗

�z
T T�z

.
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Since for some positive constantM,

max
l,j

‖Alj‖∞�M,

for suchz, by Theorem5, we can choose� = {�(l, j)(z)} so that

T − T∑L
l=1

∏Il
j=1 Alj

=
L∑
l=1

2Il−2∑
j=1

H ∗
�A

Il−2
lj

H
�B

Il−2
lj

,

and

max
l,j

max{‖�A
Il−2
lj ◦ �z‖2s−2, ‖�B

Il−2
lj ◦ �z‖2s−2}�M2s−2,

whereM2s−2 is the constant in Theorem5, depending only on 2s − 2 andM.
Let E be the subset ofIz such that

T B2�(z)(u, v)(w)�a2M
2(s−1)/s
2s−2 ‖Sz‖1/s

[
inf
w∈Iz


r (u)(w)

] [
inf
w∈Iz

[
r (v)(w)

]
.

To complete the proof, we need only to prove that

|E|�Ca|Iz| (12)

for some positive constantCa depending only ona, s andL(T ) and satisfying

lim
a→∞ Ca = 1. (13)

Because

T ∗
�z
T∑L

l=1
∏Il

j=1 Alj
T�z

= T∑L
l=1

∏Il
j=1 Alj

,

we have

Sz =
L∑
l=1

2Il−2∑
j=1

H ∗
�A

Il−2
lj

H
�B

Il−2
lj

− T ∗
�z

 L∑
l=1

2Il−2∑
j=1

H ∗
�A

Il−2
lj

H
�B

Il−2
lj

 T�z
.
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Lemma9 gives

Sz =
L∑
l=1

2Il−2∑
j=1

[VH
�A

Il−2
lj

kz] ⊗ [VH
�B

Il−2
lj

kz].

By Lemma7, there are functions{�fi}Ji=1 in the space spanned by{�AIl−2
lj }L,2Il−2l=1,j=1

and {�gi}Ji=1 in the space spanned by{�BIl−2
lj }L,2Il−2l=1,j=1 such that

Sz =
J∑
i=1

[VH�fi kz] ⊗ [VH�gi kz],

and

trace(SzS
∗
z ) =

J∑
i=1

‖H�fi kz‖22‖H�gi kz‖22. (14)

Lemma7 also gives thatJ =∑L
l=1 2Il−2. Thus

J �2L(T ). (15)

By Lemma8, we obtain

(1− |�|2)
L∑
l=1

2Il−2∑
j=1

(H
�B

Il−2
lj

u)(�)(H
�A

Il−2
lj

v)(�)

= |�|2
〈 L∑

l=1

2Il−2∑
j=1

(VH
�B

Il−2
lj

k�)⊗ (VH
�A

Il−2
lj

k�)

 u, v

〉
= |�|2〈S�u, v〉

= |�|2
〈[

J∑
i=1

(VH�fi k�)⊗ (VH�gi k�)

]
u, v

〉

= (1− |�|2)
J∑
i=1

[H�gi u(�)][H�fi v(�)]. (16)
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Thus Theorem10 gives

T B2�(z)(u, v)(w)=
∫

	2�(z)(w)

∣∣∣∣∣∣
 L∑
l=1

2Il−2∑
j=1

(grad H
�B

Il−2
lj

u)(�)

•(grad(H
�A

Il−2
lj

v)(�)

∣∣∣∣∣∣ dA(�)
=2
∫

	2�(z)(w)

∣∣∣∣∣∣ �2

����̄

 L∑
l=1

2Il−2∑
j=1

(H
�B

Il−2
lj

u)(�)

× (H
�A

Il−2
lj

v)(�)

∣∣∣∣∣∣ dA(�)
(by (4))

=2
∫

	2�(z)(w)

∣∣∣∣∣ �2

����̄

[
J∑
i=1

(H�gi u)(�)(H�fi v)(�)

]∣∣∣∣∣ dA(�)
(by (16))

=
∫

	2�(z)(w)

∣∣∣∣∣
J∑
i=1

(grad(H�gi u)(�)) • (grad(H�fi v)(�))

∣∣∣∣∣ dA(�).
The last equality also follows from (4).
Let Ei be the subset ofIz such that

A2�(z)(H�fi v)(w)A2�(z)(H�gi u)(w)

�a2
(JM2s−2)(2s−2)/s

J 1+(2s−2)/s [‖H�fi kz‖2‖H�gi kz‖2]1/s

×
[
inf
w∈Iz


r (u)(w)

] [
inf
w∈Iz


r (v)(w)

]
.

Note that Lemma7 gives, for s > 2,

max
i

max{‖�fi ◦ �z‖2s−2, ‖�gi ◦ �z‖2s−2}�JM2s−2.

The distribution function inequality (11) gives

|Ei |�(1− a−pJ
p
2+ p(s−1)

s C′)|Iz|. (17)
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The Cauchy–Schwarz inequality gives

T B2�(z)(u, v)(w)=
∫

	2�(z)(w)

∣∣∣∣∣
J∑
i=1

((grad H�gi u)(�)) • ((grad H�fi v)(�))

∣∣∣∣∣ dA(�)
�

J∑
i=1

∫
	2�(z)(w)

|((grad H�gi u)(�)) • ((grad H�fi v)(�))|dA(�)

�
J∑
i=1

[∫
	2�(z)(w)

|(grad H�gi u)(�)|2dA(�)
]1/2

×
[∫

	2�(z)(w)

|(grad H�fi v)(�)|2dA(�)
]1/2

�
J∑
i=1

A2�(z)(H�fi v)(w)A2�(z)(H�gi u)(w).

Thus forw in the intersection∩J
i=1Ei , we have

T B2�(z)(u, v)(w)�
J∑
i=1

A2�(z)(H�fi v)(w)A2�(z)(H�gi u)(w)

�
J∑
i=1

a2M
(2s−2)/s
2s−2
J

[‖H�fi kz‖22‖H�gi kz‖22]1/(2s)

×
[
inf
w∈Iz


r (u)(w)

] [
inf
w∈Iz


r (v)(w)

]

= a2M
(2s−2)/s
2s−2
J

{
J∑
i=1

[‖H�fi kz‖22‖H�gi kz‖22]1/(2s)
}

×
[
inf
w∈Iz


r (u)(w)

] [
inf
w∈Iz


r (v)(w)

]

�
a2M

(2s−2)/s
2s−2

J 1/(2s)

{
J∑
i=1

[‖H�fi kz‖22‖H�gi kz‖22]
}1/(2s)

×
[
inf
w∈Iz


r (u)(w)

] [
inf
w∈Iz


r (v)(w)

]
(by the Ḧolder inequality)
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�
a2M

(2s−2)/s
2s−2

J 1/(2s)
[trace(SzS∗

z )]1/(2s)

×
[
inf
w∈Iz


r (u)(w)

] [
inf
w∈Iz


r (v)(w)

]
(by (14))

�a2M
(2s−2)/s
2s−2 ‖Sz‖1/s

[
inf
w∈Iz


r (u)(w)

] [
inf
w∈Iz


r (v)(w)

]
.

(18)

The last inequality follows from thatSzS∗
z is a finite rank operator of rank at mostJ

and

trace(SzS
∗
z )�J‖SzS∗

z ‖ = J‖Sz‖2.

So (18) gives

∩J
i=1Ei ⊂ E.

SinceE1 ∪ E2 ⊂ Iz,

|E1 ∩ E2| = |E1| + |E2| − |E1 ∪ E2|� |E1| + |E2| − |Iz|,

By induction, we get

| ∩J
i=1 Ei |�

[
J∑
i=1

|Ei |
]

− (J − 1)|Iz|.

Thus (17) gives

| ∩J
i=1 Ei |�(1− a−pJ 1+

p
2+ p(s−1)

s C′)|Iz|.

So

|E|�(1− a−pJ 1+
p
2+ p(s−1)

s C′)|Iz|.

By (15) we have

|E|�(1− a−p2L(T )(1+
p
2+ p(s−1)

s
)C′)|Iz|.
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Letting Ca = (1− a−p2L(T )(1+
p
2+ p(s−1)

s
)C′), we obtain (12) and (13) to complete the

proof. �

Remark. The above proof shows that the constantCa depends also on the “length”
L(T ) of T. We thank the referee for pointing out the fact. Also the constantM in
Theorem11 may be chosen as maxl,j ‖Alj‖∞ that is finite. So Theorem11 holds only
for a finite sumT of finite products of Toeplitz operators. Certainly, we would like that
Theorem11 holds forT in the Toeplitz algebra. But it remains open.

6. Finite sums of finite products of Toeplitz operators

In this section, using the key distribution function inequality in the previous section,
we will prove the main result in this paper about a finite sum of finite products of
Toeplitz operators.

Theorem 12. A finite sum T of finite products of Toeplitz operators is a compact
perturbation of a Toeplitz operator if and only if

lim|z|→1
‖T − T ∗

�z
T T�z

‖ = 0. (19)

Proof. SupposeT = TA+K whereK is a compact operator onH 2 andA is a function
in L∞. Note that

TA = T ∗
�z
TAT�z

.

An easy calculation gives

T − T ∗
�z
T T�z

= K − T ∗
�z
KT�z

.

By Lemma 2[23],

lim|z|→1
‖K − T ∗

�z
KT�z

‖ = 0.

Thus

lim|z|→1
‖T − T ∗

�z
T T�z

‖ = 0.
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Conversely, suppose thatT is a finite sum of finite products of Toeplitz operators
and

lim|z|→1
‖T − T ∗

�z
T T�z

‖ = 0. (20)

We need to prove thatT is a compact perturbation of a Toeplitz operators. We may
assume that

T =
L∑
l=1

Il∏
j=1

TAlj
,

whereAlj are inL∞ and satisfy

‖Alj‖∞�M,

if M = maxl,j ‖Alj‖∞.
Let �0 be the sequence{�(l, j)} of complex numbers satisfying�(l, j) = 0, for l, j .

By Theorem5, we have the following representation:

T − T∑L
l=1

∏Il
j=1 Alj

=
L∑
l=1

2Il−2∑
j=1

H ∗
�0A

Il−2
lj

H
�0B

Il−2
lj

.

Now let u and v be two functions inP. In order to estimate the distance of the
operatorT − T∑L

l=1
∏Il

j=1 Alj
to the set of compact operators we consider the inner

product,

〈[T − T∑L
l=1

∏Il
j=1 Alj

]u, v〉

=
〈

L∑
l=1

2Il−2∑
j=1

H ∗
�0A

Il−2
lj

H
�0B

Il−2
lj

u, v

〉

=
L∑
l=1

2Il−2∑
j=1

〈H
�0B

Il−2
lj

u,H
�0A

Il−2
lj

v〉.

SinceH
�0B

Il−2
lj

u is orthogonal toH 2, we see that

H
�0B

Il−2
lj

u(0) = 0.
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By the Littlewood–Paley formula ([11, Lemma 3.1]), we have

〈[T − T∑L
l=1

∏Il
j=1 Alj

]u, v〉

=
L∑
l=1

2Il−2∑
j=1

∫
D

((grad H
�0B

Il−2
lj

u)(z))

•((grad H
�0A

Il−2
lj

v)(z)) log
1

|z|dA(z)

=
∫
D

L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

u)(z))

•((grad H
�0A

Il−2
lj

v)(z)) log
1

|z|dA(z). (21)

For each 1/2< R < 1, denote

WR=
∫

|z|>R

L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

)u(z))

•((grad H
�0A

Il−2
lj

v)(z)) log
1

|z| dA(z)

and

ZR=
∫

|z|�R

L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

u)(z))

•((grad H
�0A

Il−2
lj

v)(z)) log
1

|z| dA(z).

Thus (21) gives

〈[T − T∑L
l=1

∏Il
j=1 Alj

]u, v〉 = WR + ZR. (22)

First we show that there is a compact operatorKR such that

ZR = 〈KRu, v〉. (23)
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Note that

L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

u)(z)) • ((grad H
�0A

Il−2
lj

v)(z))

= 2
�2

�z�z̄

 L∑
l=1

2Il−2∑
j=1

(H
�0B

Il−2
lj

u)(z)(H
�0A

Il−2
lj

v)(z)

 .

From the proof of Theorem10, we know that

L∑
l=1

2Il−2∑
j=1

(H
�0B

Il−2
lj

u)(z)(H
�0A

Il−2
lj

v)(z)

= |z|2
(1− |z|2) 〈[T − T ∗

�z
T T�z

]u, v〉.

Thus

L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

u)(z)) • ((grad H
�0A

Il−2
lj

v)(z))

= 2
�2

�z�z̄

[ |z|2
(1− |z|2) 〈[T − T ∗

�z
T T�z

]u, v〉
]
.

So

ZR=
∫

{|z|�R}
2

�2

�z�z̄

[ |z|2
(1− |z|2) 〈[T − T ∗

�z
T T�z

]u, v〉
]
log

1

|z| dA(z)

=
〈∫

{|z|�R}
2

�2

�z�z̄

[ |z|2
(1− |z|2) [T − T ∗

�z
T T�z

]
]
log

1

|z| dA(z)u, v
〉
.

Let

KR =
∫

{|z|�R}
2

�2

�z�z̄

[ |z|2
(1− |z|2) [T − T ∗

�z
T T�z

]
]
log

1

|z| dA(z).

BecauseT is a finite sum of finite products of Toeplitz operators and the integral is
taken over the compact subset{|z|�R} of the unit diskD, KR is an integral operator
with kernel in L2(D × D, dAdA). Thus it is a compact operator onH 2. This gives
(23).
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For any � > 0, recall that	�(w) is the cone atw truncated at height� and the
generalized area integral is given by

T B�(u, v)(w)=
∫

	�(w)

∣∣∣∣∣∣
L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

u)(z))

•((grad H
�0A

Il−2
lj

v)(z))

∣∣∣∣ dA(z).
Note that T B�(u, v)(w) is increasing with �. We define the “Stopping time”

�(w) by

�(w)=sup

{
� > 0 : T B�(u, v)(w)

�M
2(s−1)/s
2s−2 a2 sup

|z|>R
‖T − T ∗

�z
T T�z

‖1/s[
r (u)(w)][
r (v)(w)]
}
.

HereM2s−2 is the constant in Theorem11 anda is sufficiently large so thatCa� 1
2, for

the constantCa in Theorem11. For z∈D, let �(z) = 1− |z|. The distribution function
inequality (Theorem11) gives that for eachz∈D,

|{w∈Iz : �(w)�2�(z)}|�Ca|Iz|.

Let Ez = {w∈Iz : �(w)�2|Iz|}. Let �w(z) be the characteristic function of the
truncated cone	�(w)(w). Now, forw∈Ez, write z = tei� and note that�(w)� 3

2(1−|z|).
We have

|t ei � − w|� |t ei � − ei �| + |ei � − w|�(1− |z|)+ (1− |z|)
2

��(w).

Therefore, forw∈Ez, we have thatz∈	�(w)(w) and that�w(z) = 1 on Ez. So,

∫
�D

�w(z)d�(w)� |Ez|�Ca|Iz| = Ca(1− |z|). (24)
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Fubini’s theorem gives

Ca

∫
|z|>R

∣∣∣∣∣∣
L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

u)(z)) • ((grad H
�0A

Il−2
lj

v)(z))

∣∣∣∣∣∣ (1− |z|)dA(z)

�
∫

|z|>R

∫
�D

�w(z)

∣∣∣∣∣∣
L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

u)(z))

•((grad H
�0A

Il−2
lj

v)(z))

∣∣∣∣ d�(w)dA(z)

(by (24))

=
∫

�D

∫
	�(w)(w)

∣∣∣∣∣∣
L∑
l=1

2Il−2∑
j=1

((grad H
�0B

Il−2
lj

u)(z))

•((grad H
�0A

Il−2
lj

v)(z))

∣∣∣∣ dA(z)d�(w)

=
∫

�D
T B�(w)(u, v)(w)d�(w)

�
∫

�D
M

2(s−1)/s
2s−2 a2 sup

|z|>R
‖T − T ∗

�z
T T�z

‖1/s[
r (u)(w)][
r (v)(w)]d�(w)

�M
2(s−1)/s
2s−2 a2 sup

|z|>R
‖T − T ∗

�z
T T�z

‖1/s[‖
r (u)‖2][‖
r (v)‖2]

�N
2
r
2
r

M
2(s−1)/s
2s−2 a2 sup

|z|>R
‖T − T ∗

�z
T T�z

‖1/s‖u‖2‖v‖2.

The last inequality follows from that

||
ru||2�N
1
r
2
r

||u||2

since
2

r
> 1. Note that

log
1

|z| �1− |z|
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for 1/2� |z| < 1. Thus we obtain

|WR|�M
2(s−1)/s
2s−1 C−1

a N
2
r
2
r

a2 sup
|z|>R

‖T − T ∗
�z
T T�z

‖1/s‖u‖2‖v‖2,

so (22) and (23) give

‖T − T∑L
l=1

∏Il
j=1 Alj

−KR‖�M
2(s−1)/s
2s−1 C−1

a N
2
r
2
r

a2 sup
|z|>R

‖T − T ∗
�z
T T�z

‖1/s,

becauseP is dense inH 2. Therefore (20) implies

lim
R→1

‖T − T∑L
l=1

∏Il
j=1 Alj

−KR‖ = 0.

We conclude thatT − T∑L
l=1

∏Il
j=1 Alj

is compact. This completes the proof.�

7. Two applications

In this section we will completely answer Questions 1 and 2 ifX is a finite sum of
finite products of Toeplitz operators. First let the operatorSA with symbol A∈L2 be
densely defined on[H 2]⊥, by

SAh = P−(Ah).

For two functionsF andG, an easy calculation gives

H ∗̄
GF̄

= TGH
∗̄
F

+H ∗̄
G
SF , (25)

and

SAHG = HAG (26)

if A is in H 2.
For a functionf on the unit diskD andm∈M(H∞ + C), we say

lim
z→m

f (z) = 0

if for every net {z�} ⊂ D converging tom,

lim
z�→m

f (z�) = 0.
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Let T be the Toeplitz algebra, generated by Toeplitz operators with symbols inL∞.
Theorem 4 in[7] implies that there exists a symbol map fromT to L∞, and for an
operator inT, its symbol is zero if and only if the operator is in the commutator ideal
of T.
The following theorem answers Question 1 for a finite sum of finite products of

Toeplitz operators.

Theorem 13. Suppose that X is a finite sum of finite products of Toeplitz operators on
H 2 and b is an inner function. ThenT ∗

b XTb − X is compact if and only if for each
m∈M(H∞ + C) with |b(m)| < 1,

lim
z→m

‖X − T ∗
�z
XT�z

‖ = 0.

Theorem13 implies the following theorem, which gives the answer to Question 2
for a finite sum of finite products of Toeplitz operators.

Theorem 14. Suppose that X is a finite sum of finite products of Toeplitz operators on
H 2 and b is an inner function. ThenTbX − XTb is compact if and only if there are
F∈L∞ and an operatorX1 in the commutator ideal ofT such thatX = TF +X1 and
for eachm∈M(H∞ + C) with |b(m)| < 1,

lim
z→m

‖X1 − T ∗
�z
X1T�z

‖ = 0,

and

lim
z→m

‖HFkz‖2 = 0.

Proof. Assume that

X =
L∑
l=1

Il∏
j=1

TAlj
.

Let

M = max
l,j

‖Alj‖∞.
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ThenM < ∞. Theorem5 implies that for eachz∈D, there is a sequence�z of complex
numbers such that

X − T∑L
l=1

∏Il
j=1 Alj

=
L∑
l=1

2Il−2∑
j=1

H ∗
�zA

Il−2
lj

H
�zB

Il−2
lj

, (27)

and

max
l,j

max{‖�zA
Il−2
lj ◦ �z‖4, ‖�zB

Il−2
lj ◦ �z‖4}�M4.

for some positive constantM4.
Let F = ∑L

l=1
∏Il

j=1 Alj andX1 = X − TF . By Theorem 4 in[8], the symbol of
X1 is zero.
Suppose thatTbX−XTb is compact. We need to show that for eachm∈M(H∞ +C)

with |b(m)| < 1,

lim
z→m

‖X1 − T ∗
�z
X1T�z

‖ = 0, (28)

and

lim
z→m

‖HFkz‖2 = 0. (29)

SinceTb̄Tb = I and Tb̄TF Tb = TF , we obtain that

Tb̄XTb −X = Tb̄[XTb − TbX]

is compact and hence

Tb̄X1Tb −X1 = Tb̄[X − TF ]Tb − [X − TF ] = Tb̄XTb −X

is also compact.
By Theorem13, for eachm∈M(H∞ + C) with |b(m)| < 1,

lim
z→m

‖X1 − T ∗
�z
X1T�z

‖ = 0. (30)

We obtain (28).
To prove(29), first we show that Condition(30) implies thatTbX1−X1Tb is compact.

This result will be also used at the end of this proof.
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Let Z = TbX1 − X1Tb. Since TbX1 − X1Tb is a finite sum of finite products of
Toeplitz operators, to prove thatZ is compact, by Theorem12 we need only to show
that

lim|z|→1
‖Z − T ∗

�z
ZT�z

‖ = 0.

By the Corona theorem, this is equivalent to the requirement that for eachm∈M(H∞+
C),

lim
z→m

‖Z − T ∗
�z
ZT�z

‖ = 0. (31)

Since

‖Z − T ∗
�z
ZT�z

‖ = ‖X1 − T ∗
�z
X1T�z

+ T ∗
b [X1 − T ∗

�z
X1T�z

]Tb‖
�‖X1 − T ∗

�z
X1T�z

‖ + ‖T ∗
b ‖‖X1 − T ∗

�z
X1T�z

‖‖Tb‖
�2‖X1 − T ∗

�z
X1T�z

‖,

for eachm∈M(H∞ + C) satisfying |b(m)| < 1, by (30), we have

lim
z→m

‖Z − T ∗
�z
ZT�z

‖ = 0.

So we need only to prove (31) for m∈M(H∞ + C) satisfying |b(m)| = 1. In this
case,b is constant on the support set ofm. Thus

lim
z→m

∫
|b − b(z)|4|kz|2d� = 0.

Making a change of variable gives

lim
z→m

‖b ◦ �z − b(z)‖4 = 0.

By (27), we have

X1 =
L∑
l=1

2Il−2∑
j=1

H ∗
�zA

Il−2
lj

H
�zB

Il−2
lj

. (32)
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Let G be either�zA
Il−2
lj or �zB

Il−2
lj . Then,

‖T ∗
b−b(z)VHGkz‖2 = ‖UzTb◦�z−b(z)VHG◦�z

1‖2
= ‖Tb◦�z−b(z)VHG◦�z

1‖2 = ‖P [(b ◦ �z − b(z))VHG◦�z
1]‖2

�‖(b ◦ �z − b(z))VHG◦�z
1]‖2�‖b ◦ �z − b(z)‖4‖VHG◦�z

1‖4
�‖b ◦ �z − b(z)‖4(1+N4)‖G ◦ �z‖4
�(1+N4)M4‖b ◦ �z − b(z)‖4.

HereN4 is the norm of the Hardy projectionP on L4, andUz is a unitary operator
defined onL2 by

Uzh = h ◦ �zkz.

Similarly, we also have

‖Tb−b(z)VHGkz‖2�(1+N4)M4‖b ◦ �z − b(z)‖4.

Those give

lim
z→m

max{‖T ∗
b−b(z)VHGkz‖2, ‖Tb−b(z)VHGkz‖2} = 0. (33)

For eachz∈D, (32) gives

Z=
L∑
l=1

2Il−2∑
j=1

[
TbH

∗
�zA

Il−2
lj

H
�zB

Il−2
lj

−H ∗
�zA

Il−2
lj

H
�zB

Il−2
lj

Tb

]

=
L∑
l=1

2Il−2∑
j=1

[
Tb−b(z)H

∗
�zA

Il−2
lj

H
�zB

Il−2
lj

−H ∗
�zA

Il−2
lj

H
�zB

Il−2
lj

Tb−b(z)

]
.

Thus

Z − T ∗
�z
ZT�z

=
L∑
l=1

2Il−2∑
j=1

{
[Tb−b(z)H

∗
�zA

Il−2
lj

H
�zB

Il−2
lj

− T ∗
�z
Tb−b(z)H

∗
�zA

Il−2
lj

H
�zB

Il−2
lj

T�z
]

− [H ∗
�zA

Il−2
lj

H
�zB

Il−2
lj

Tb−b(z) − T ∗
�z
H ∗

�zA
Il−2
lj

H
�zB

Il−2
lj

Tb−b(z)T�z
]
}
.
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To prove (31) it suffices to show that for eachl, j ,

lim
z→m

‖Tb−b(z)H
∗
�zA

Il−2
lj

H
�zB

Il−2
lj

− T ∗
�z
Tb−b(z)H

∗
�zA

Il−2
lj

H
�zB

Il−2
lj

T�z
‖ = 0, (34)

and

lim
z→m

‖H ∗
�zA

Il−2
lj

H
�zB

Il−2
lj

Tb−b(z) − T ∗
�z
H ∗

�zA
Il−2
lj

H
�zB

Il−2
lj

Tb−b(z)T�z
‖ = 0. (35)

SinceTb−b(z)T�z
= T�z

Tb−b(z), by Lemma9, we have

H ∗
�zA

Il−2
lj

H
�zB

Il−2
lj

Tb−b(z) − T ∗
�z
H ∗

�zA
Il−2
lj

H
�zB

Il−2
lj

Tb−b(z)T�z

=
{
[VH ∗

�zA
Il−2
lj

kz] ⊗ [VH
�zB

Il−2
lj

kz]
}
Tb−b(z)

= [VH ∗
�zA

Il−2
lj

kz] ⊗ [T ∗
b−b(z)VH

�zB
Il−2
lj

kz].

Thus (33) implies (35). Using two well-known identities (see, e.g., (1.2) and Lemma
5 in [16]),

T ∗
�z
Tb−b(z) − Tb−b(z)T

∗
�z

= H ∗
b−b(z)

H�z

and

H�z
= −V kz ⊗ kz,

by Lemma9 again, we have

Tb−b(z)H
∗
�zA

Il−2
lj

H
�zB

Il−2
lj

− T ∗
�z
Tb−b(z)H

∗
�zA

Il−2
lj

H
�zB

Il−2
lj

T�z

= [Tb−b(z)VH
�zA

Il−2
lj

kz] ⊗ [VH
�zB

Il−2
lj

kz] +H ∗
b−b(z)

H�z
H ∗

�zA
Il−2
lj

H
�zB

Il−2
lj

T�z

= [Tb−b(z)VH
�zA

Il−2
lj

kz] ⊗ [VH
�zB

Il−2
lj

kz] + [VHb−b(z)kz]

⊗[(H ∗
�zA

Il−2
lj

H
�zB

Il−2
lj

T�z
)∗kz].

Thus (33) implies (34). Therefore, we conclude

lim
z→m

‖Z − T ∗
�z
ZT�z

‖ = 0.
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Hence by Theorem12, Z = TbX1 −X1Tb is compact.
Noting that

TbTF − TFTb = Tb[X −X1] − [X −X1]Tb = TbX −XTb − Z

we have thatTbTF − TFTb is compact. Since

TbTF − TFTb = TbTF − TFb = H ∗̄
b
HF ,

by the main result in[23] we obtain

lim|z|→1
‖b̄ ◦ �z − b̄(z)|‖2‖F− ◦ �z − F−(z)‖2 = 0.

Because

lim
z→m

‖b̄ ◦ �z − b̄(z)|‖2 = lim
z→m

(1− |b(z)|2)1/2 = (1− |b(m)|2)1/2 > 0,

for eachm∈M(H∞ + C) with |b(m)| < 1, the above limit gives

lim
z→m

‖F− ◦ �z − F−(z)‖2 = 0.

Thus we get

lim
z→m

‖HFkz‖2 = lim
z→m

‖F− ◦ �z − F−(z)‖2 = 0,

we get (29), as desired.
Conversely, suppose that there areF∈L∞ and an operatorX1 in the commutator

ideal of T such thatX = TF +X1 and for eachm∈M(H∞ + C) with |b(m)| < 1,

lim
z→m

‖X1 − T ∗
�z
X1T�z

‖ = 0, (36)

and

lim
z→m

‖HFkz‖2 = 0. (37)

We need to show thatTbX −XTb is compact. Since

TbX −XTb = TbX1 −X1Tb + TbTF − TFTb,
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it suffices to show that bothTbX1−X1Tb andTbTF − TFTb are compact. In the proof
of (29) we have shown that Condition (36)((30)) implies thatZ = TbX1 − X1Tb is
compact. Also for eachm∈M(H∞ + C) satisfying |b(m)| = 1,

lim
z→m

‖Hb̄kz‖2 = lim
z→m

(1− |b(z)|2)1/2 = 0,

and hence (37) gives that for eachm∈M(H∞ + C),

lim
z→m

‖Hb̄kz‖2‖HFkz‖2 = 0.

Thus by the main result in[23] again,TbTF − TFTb is compact. This completes the
proof. �
To prove Theorem13 we need the following lemmas:

Lemma 15. Let {gj } be functions inL2. Suppose that for a fixedz∈D, {VHgj kz}Nj=1
are linearly independent. Let

Az = (〈[VHgi kz], [VHgj kz]〉)N×N,

and

Bz = (〈[VHgi kz], [VHgjbkz]〉)N×N.

If c is an eigenvalue of the matrixA−1
z Bz, then |c|�1.

Proof. Letting (x1, . . . , xN)
T be the eigenvector for the eigenvaluec of A−1

z Bz, we
have

cAz

 x1
...

xN

 = Bz

 x1
...

xN

 .

Taking inner product of(x1, . . . , xN)T with both sides of the above vector equations
we obtain

c‖VH∑N
j=1 xj gj

kz‖2 = 〈V SbH∑N
j=1 xj gj

kz, VH∑N
j=1 xj gj

kz〉
= 〈Tb̄VH∑N

j=1 xj gj
kz, VH∑N

j=1 xj gj
kz〉.
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The Cauchy–Schwarz inequality gives

|c|‖VH∑N
j=1 xj gj

kz‖2�‖Tb̄‖‖VH∑N
j=1 xj gj

kz‖2.

Thus |c|�1 because‖Tb̄‖�1 and‖VH∑N
j=1 xj gj

kz‖2 �= 0.

Lemma 16. Suppose that A is aN ×N matrix with eigenvalues|ci |�1 and for some
positive constantM4,

sup
z∈D,j

‖fj ◦ �z‖p�M4.

If for m∈M(H∞ + C) with |b(m)| < 1,

lim
z→m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 VHf1kz

...

VHfN kz

− A

 VHf1bkz
...

VHfNbkz


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= 0,

then

lim
z→m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 VHf1kz

...

VHfN kz


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= 0.

Proof. By the Jordan theory there is a unitary matrixU such that

U∗AU =



c1 0 0 · · · 0 0
�21 c2 0 · · · 0 0
�31 �32 c3 · · · 0 0
...

...
...

...
...

...

�N1 �N2
...

... �NN−1 cN

 .

Let

 VH
f̃1
kz

...

VH
f̃N
kz

 = U∗

 VHf1kz
...

VHfN kz

 .
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We get

U∗

 VHf1kz
...

VHfN kz

− U∗AUU∗

 VHf1bkz
...

VHfNbkz



=
 VH

f̃1
kz

...

VH
f̃N
kz

−



c1 0 0 · · · 0 0
�21 c2 0 · · · 0 0
�31 �32 c3 · · · 0 0
...

...
...

...
...

...

�N1 �N2
...

... �NN−1 cN


 VH

f̃1b
kz

...

VH
f̃Nb

kz

 . (38)

The first equality in the above vector equation gives

lim
z→m

‖VH
f̃1(1−c̄1b)

kz‖2 = 0.

Making a change of variable yields

lim
z→m

‖(1− P)[f̃1 ◦ �z(1− c̄1b ◦ �z)]‖2 = 0.

Since |c1|�1 andb is not constant on the support set ofm, by Lemma1, (1− c̄1b)

is an outer function on the support set ofm. For any� > 0, there is a functionp∈H∞
such that ∫

Sm

|p(1− c̄1b)− 1|2 d�m < �.

For such�, there is also a neighborhoodW of m such that forz∈W ∩D,

∣∣∣∣∫
Sm

|p(1− c̄1b)− 1|2 d�m −
∫
Sm

|p(1− c̄1b)− 1|2|kz|2d�

∣∣∣∣ < �.

Making a change of variable we obtain

∫
|p ◦ �z(1− c̄1b ◦ �z)− 1|2d� < 2�.

For t = 4
3, the Hölder inequality gives

‖(1− P)(f̃1 ◦ �z[p ◦ �z(1− c̄1b ◦ �z)− 1])‖t
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�Ct‖(f̃1 ◦ �z[p ◦ �z(1− c̄1b ◦ �z)− 1])‖t
�Ct‖f̃1 ◦ �z‖(2t)/(2−t)‖p ◦ �z(1− c̄1b ◦ �z)− 1‖2
= Ct‖f̃1 ◦ �z‖4‖p ◦ �z(1− c̄1b ◦ �z)− 1‖2
�CtM4�1/2.

Thus

‖(1− P)f̃1 ◦ �z‖t �CtM4�1/2 + ‖(1− P)[f̃1 ◦ �z(p ◦ �z)(1− c̄1b ◦ �z)]‖t
�CtM4�1/2 + ‖p‖∞‖(1− P)(f̃1 ◦ �z(1− c̄t b ◦ �z))‖2.

The last inequality follows from

(1− P)[f̃1 ◦ �z(p ◦ �z)(1− c̄1b ◦ �z)]
= H

f̃1◦�z(p◦�z)
(1− c̄1b ◦ �z)

= Sp◦�z
H
f̃1
(1− c̄1b ◦ �z). (by (26))

So

lim
z→m

‖(1− P)f̃1 ◦ �z‖t �CtM4�1/2.

Hence we get

lim
z→m

‖(1− P)f̃1 ◦ �z‖t = 0.

This implies

lim
z→m

‖VH
f̃1
kz‖2 = lim

z→m
‖(1− P)f̃1 ◦ �z‖2 = 0

because

‖(1− P)f̃1 ◦ �z‖2�‖(1− P)f̃1 ◦ �z‖1/2t ‖(1− P)f̃1 ◦ �z‖4)
�M4‖(1− P)f̃1 ◦ �z‖1/2t .

The second equality in (38) yields

lim
z→m

‖VH
f̃2(1−c̄2b)

kz + �21VHf̃1
kz‖2 = 0.
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Hence

lim
z→m

‖VH
f̃2(1−c̄2b)

kz‖2 = 0.

Repeating the above argument gives

lim
z→m

‖VH
f̃2
kz‖2 = 0.

By induction we conclude that

lim
z→m

‖VH
f̃j
kz‖2 = 0,

for all j. Therefore

lim
z→m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 VHf1kz

...

VHfN kz


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= lim
z→m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣U
 VH

f̃1
kz

...

VH
f̃N
kz


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= 0.

Now we are ready to prove Theorem13.

Proof of Theorem 13.Assume that

X =
L∑
l=1

Il∏
j=1

TAlj
.

Let

M = max
l,j

‖Alj‖∞.

Theorem5 implies that for eachz∈D, there is a sequence�z of complex numbers such
that X − T∑L

l=1
∏Il

j=1 Alj
is a finite sum of products of two Hankel operators:

N∑
k=1

H ∗
�z fk

H�z gk
,

and

max
k

max{‖�zfk‖4, ‖�zgk‖4}�M4.
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Let Y = Tb̄XTb−X. ThenY is also a finite sum of finite products of Toeplitz operators
and

Y =
N∑
k=1

H ∗
b�z fk

Hb�z gk
−

N∑
k=1

H ∗
�z fk

H�z gk
.

Suppose that for eachm∈M(H∞ + C) with |b(m)| < 1,

lim
z→m

‖X − T ∗
�z
XT�z

‖ = 0.

In order to prove thatY is compact, by Theorem12 we need only to show

lim|z|→1
‖Y − T ∗

�z
YT�z

‖ = 0.

This is equivalent to requirement that for eachm∈M(H∞ + C),

lim
z→m

‖Y − T ∗
�z
YT�z

‖ = 0. (39)

Because

‖Y − T ∗
�z
YT�z

‖=‖Tb̄[X − T ∗
�z
YT�z

]Tb − [X − T ∗
�z
XT�z

]‖
�‖Tb̄‖‖X − T ∗

�z
YT�z

‖‖Tb‖ + ‖X − T ∗
�z
XT�z

‖
�2‖X − T ∗

�z
XT�z

‖,

for m satisfying |b(m)| < 1, we get

lim
z→m

‖Y − T ∗
�z
YT�z

‖ = 0.

For m satisfying that|b(m)| = 1, b is constant on the support set ofm. Thus

lim
z→m

‖b ◦ �z − b(m)‖44 = lim
z→m

∫
|b(w)− b(m)|4|kz(w)|2d�(w) = 0.

Let f be either�zfk or �zgk. Then

sup
z∈D

‖f ◦ �z‖4�M4.
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Thus we have

‖Hfbkz − b(m)Hf kz‖2=‖Hf Tb−b(m)kz‖2
=‖(1− P)[f ◦ �z(b ◦ �z − b(m))]‖2
�‖f ◦ �z(b ◦ �z − b(m))‖2
�‖f ◦ �z‖4‖(b ◦ �z − b(m))‖4
�M4‖(b ◦ �z − b(m))‖4.

This implies

lim
z→m

‖Hfbkz − b(m)Hf kz‖2 = 0. (40)

By Lemma9, we have

Y − T ∗
�z
YT�z

=
(

K∑
k=1

{[VH�z fkb
kz] ⊗ [VH�z gkb

kz] − [VH�z fk
kz] ⊗ [VH�z gk

kz]}
)
.

Thus (40) gives

lim
z→m

∣∣∣∣∣
∣∣∣∣∣
N∑
k=1

[VH�z fkb
kz] ⊗ [VH�z gkb

kz] −
N∑
k=1

[VH�z fkb(m)
kz] ⊗ [VH�z gkb(m)

kz]
∣∣∣∣∣
∣∣∣∣∣ = 0.

On the other hand, we have

N∑
k=1

[VH�z fkb(m)
kz] ⊗ [VH�z gkb(m)

kz]

= |b(m)|2
N∑
k=1

[VH�z fk
kz] ⊗ [VH�z gk

kz]

=
N∑
k=1

[VH�z fk
kz] ⊗ [VH�z gk

kz].

This leads to

lim
z→m

∣∣∣∣∣
∣∣∣∣∣
N∑
k=1

[VH�fkbkz] ⊗ [VH�z gkb
kz] −

N∑
k=1

[VH�z fk
kz] ⊗ [VH�z gk

kz]
∣∣∣∣∣
∣∣∣∣∣ = 0.
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Therefore we obtain

lim
z→m

‖Y − T ∗
�z
YT�z

‖

= lim
z→m

∣∣∣∣∣
∣∣∣∣∣
N∑
k=1

[VH�z fkb
kz] ⊗ [VH�z gkb

kz] −
N∑
k=1

[VH�z fk
kz] ⊗ [VH�z gk

kz]
∣∣∣∣∣
∣∣∣∣∣

= 0.

This completes the proof of (39).
Conversely suppose thatY is compact. By Theorem12, we have

lim|z|→1
‖Y − T ∗

�z
YT�z

‖ = 0.

Thus

lim|z|→1

∣∣∣∣∣
∣∣∣∣∣
N∑
k=1

[VH�z fkb
kz] ⊗ [VH�z gkb

kz] −
N∑
k=1

[VH�z fk
kz] ⊗ [VH�z gk

kz]
∣∣∣∣∣
∣∣∣∣∣ = 0.

Note that

X − T ∗
�z
XT�z

=
N∑
k=1

[VH�z fk
kz] ⊗ [VH�z gk

kz].

It suffices to show that for eachm∈M(H∞ + C) with |b(m)| < 1,

lim|z|→1

∣∣∣∣∣
∣∣∣∣∣
N∑
k=1

[VH�z fk
kz] ⊗ [VH�z gk

kz]
∣∣∣∣∣
∣∣∣∣∣ = 0.

Let Sz = ∑N
j=1[VH�z fj

kz] ⊗ [VH�z gj
kz]. By Lemma 7, we may assume that

{VH�z gj
kz}Nj=1 are orthogonal and

trace(SzS
∗
z ) =

N∑
j=1

‖VH�z fj
kz‖22‖VH�z gj

kz‖22.

Since

‖Sz‖2� trace(SzS
∗
z )�N‖Sz‖2,
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it is sufficient to show that

lim
z→m

trace(SzS
∗
z ) = 0.

Now we may assume that

lim
z→m

‖VH�z gj
kz‖22 = cj �= 0

for j�N1�N and

lim
z→m

‖VH�z gj
kz‖22 = 0,

for j > N1. Note thatHfbkz = Hf Tbkz = SbHf kz. Thus

‖Hfbkz‖2�‖Sb‖‖Hf kz‖2,

so

lim
z→m

‖VH�z gj b
kz‖2 = 0,

for j > N1. This gives

lim
z→m

∣∣∣∣∣∣
∣∣∣∣∣∣
N1∑
j=1

{[VH�z fj b
kz] ⊗ [VH�z gj b

kz] − [VH�z fj
kz] ⊗ [VH�z gj

kz]}
∣∣∣∣∣∣
∣∣∣∣∣∣ = 0.

Let

Rz =
N1∑
j=1

[VH�z fj b
kz] ⊗ [VH�z gj b

kz] − [VH�z fj
kz] ⊗ [VH�z gj

kz].

Let

Az = (〈[VH�z gi
kz], [VH�z gj

kz]〉)N1×N1,

and

Bz = (〈[VH�z gi
kz], [VH�z gj b

kz]〉)N1×N1.
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Then  VH�z f1
kz

...

VH�z fN1
kz

 = A−1
z Bz

 VH�z f1b
kz

...

VH�z fN1b
kz

+ A−1
z

 RzVH�z g1
kz

...

RzVH�z gN1
kz

 .

By Lemma 15, the absolute values of the eigenvalues of the matrixA−1
z Bz are less

than or equal to 1. Moreover

lim
z→m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 VH�z f1

kz
...

VH�z fN1
kz

− A−1
z Bz

 VH�z f1b
kz

...

VH�z fN1b
kz


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= 0.

By Lemma16 we conclude that

lim
z→m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 VH�z f1

kz
...

VH�z fN1
kz


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

= 0.

This implies

lim
z→m

trace(SzS
∗
z ) = 0,

to complete the proof. �

8. Block Toeplitz operators

Let L2(Cn) be the space ofCn-valued Lebesgue square integrable functions on the
unit circle. The Hardy spaceH 2(Cn) is the Hilbert space consisting ofCn-valued
analytic functions onD that are also inL2(Cn). Let L∞

n×n denote the space ofMn×n-
valued essentially bounded Lebesgue measurable functions on the unit circle andH∞

n×n

denote the space ofMn×n-valued essentially bounded analytic functions in the disk.
Let P be the projection ofL2(Cn) onto H 2(Cn). For F∈L∞

n×n, the block Toeplitz
operatorTF : H 2(Cn)→H 2(Cn) with symbolF is defined by

TFh = P(Fh).

The main result in Section6 extends to block Toeplitz operators. That is, a finite
sum T of finite products of block Toeplitz operators is a compact perturbation of a
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block Toeplitz operator if and only if

lim|z|→1
‖T − T ∗

�z
T T�z

‖ = 0.

Here �z denotes the functiondiag{�z, . . . ,�z}∈H∞
n×n. This result also extends the

main results in[15] on block Toeplitz operators.
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