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We will discuss invertibility of Toeplitz products Ty T}, for analytic /" and g, on the
Bergman space and the Hardy space. We will furthermore describe when these
Toeplitz products are Fredholm. © 2002 Elsevier Science (USA)

1. INTRODUCTION

Let P* denote the Hardy projection from L*(6D) onto the Hardy space
H?, and let h € L*(0D), define the Toeplitz operator T, on H? by

Typ = P*(hp)

for polynomials p. It is well known that 7} is bounded if and only
if 4 is bounded on the unit circle dD. However, Sarason [12,13] found
examples of f and g in H? such that the product T T} is actually a bounded
operator on H?, though neither 7y nor T, is bounded. Sarason [14] also
conjectured that a necessary and sufficient condition for this product to be
bounded is

sup |/ ()lgP o) <o, (1)

weD
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where u(w) denotes the Poisson extensmn of }4 over the D:
i) = [ a0 s )
Treil [14] proved that (1.1) is a necessary condition. Zheng [20] showed that
(1.1) is sufficient if the exponent 2 on the functions | f | and |g]| is replaced by
2 + ¢ for any ¢ > 0. A stronger result, utilizing the scale of Orlicz spaces, was
found by Treil, Volberg, and Zheng [17]. Another stronger result, using a
rigged non-tangential maximal function, was obtained by Xia [19]. However,
Nazarov [7] has constructed a counter-example to Sarason’s conjecture.

If we consider instead the question of whether the product T,Tj; is
bounded and invertible, then (1.1) provides the correct condition. More
precisely, Cruz-Uribe [2] showed that if f and g are outer functions, a
necessary and sufficient condition for 7,7} to be bounded and invertible is
that (fg) ' is bounded and (1.1) holds. A similar, though different,
characterization of bounded invertible Toeplitz products on H? with outer
symbols was obtained by Zheng [20]. At the heart of Cruz-Uribe’s [2] proof
is a characterization of invertible Toeplitz operators due to Devinatz and
Widom, which in turn is closely related to the Helson—Szegd theorem, that
characterizes the weights w such that the conjugation operator (or Hilbert
transform) is bounded on L*(0D, wdm). See Sarason’s book [11] for more on
these results. On the other hand, the proof in [20] is based on a distribution
function inequality.

The Helson—Szegd theorem relies heavily on complex analytic methods.
There is another characterization of the boundedness of the conjugation
operator, derived using real-variable techniques, due to Hunt, Muck-
enhoupt, and Wheeden [5]; this result has led to an extensive theory of
weighted norm inequalities. For a good overview with extensive references,
see [3,4, 6]. For new approaches to the theory of weighted norm inequalities,
see [8,9, 10, 18].

In this article, we will give a complete characterization of the bounded
invertible Toeplitz products Ty T}y, for analytic f and g, not only on the
Hardy space but also on the Bergman space. We will furthermore describe
the Fredholm Toeplitz products 7yT; on the Hardy or Bergman space, for
analytic f and g¢.

Let d4 denote Lebesgue area measure on the unit disk D, normalized so
that the measure of D equals 1. The Bergman space L? is the Hilbert space
consisting of the analytic functions on D that are also in L*(D, dA).

The orthogonal projection P of L*(D,dA) onto L2 is easily seen to be
given by the formula

u(z)

P —
u(w) (w3

2 dA(2),

for ue L*(D,dA) and w e D.
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If g is a bounded analytic function on D, then

9()h(z)

(T3h)(w) = /D ey M

for all he L2 and we D. If g e L2 and h e L2, we define Tjh by the latter
integral. If /" is furthermore in L2, then the meaning of Ty T/ is clear: it is
the analytic function f* T;4. We will be concerned with the question for
which f and g in L2 the Toeplitz product 7y Ty is invertible on L2,

The question for which /" and g in L2 the operator Ty Tj is bounded on L2
was considered in [16]. The following result was proved in [16]:

THEOREM 1.2. Let f and g be in L2.
(i) If the Toeplitz product Ty Ty is bounded on L2, then

sup |j’"\|_2/(w)|é|vz(w) <00.

weD

(i) If

sup | [ (w)lgl+*(w) < oo,

weD

for some ¢>0, then the Toeplitz product Ty T is bounded on L2

We will show that if f and g are in L2, then the product 7} T} is bounded
and invertible on L2 if and only if

inf | /(1)g(w)] >0
and

sup /12 om)lgl*(w) < 00
Wwel

Here f(w) is the Berezin transform of a function f € L*(D, d4) defined on
D by

ﬂwzémmwwww

and the functions
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are the normalized reproducing kernels for L2. To prove the above
result, using Theorem 1.2, we need to get the reverse Holder inequality
for the so-called invariant A, weights. To do so, we extend the
basic techniques of the real-variable theory of weighted norm
inequalities [1, 3,4, 6, 15] to the Bergman space. We form a dyadic grid on
D, define a dyadic maximal operator, form a Calderon-Zygmund
decomposition, and use this to prove an inequality analogous to the so-
called “‘reverse Holder inequality” of the theory of weighted norm
inequalities (Theorem 2.1).

2. A REVERSE HOLDER INEQUALITY

First, we introduce more notation and discuss some preliminaries needed
in the sequel.
For w € D, the fractional linear transformation ¢,, defined by

w—2Zz

¢,(2) = T
— Wz

is an automorphism of the unit disk, in fact, ¢, ! = ¢,,. The real Jacobian
for the change of variable &= ¢,(z) is equal to |¢/ (2)]> = (1 — [w[*)*/
|1 — wz|*, thus we have the change-of-variable formula

2\2

|4d()

— vl

[ o ase = [
It follows from the above change-of-variable formula that

P =1/ e gl

for every f € L*(D, dA) and w € D. The Berezin transform has the following
Moébius-invariance:

fo@, (w) = flp,(w)),

for every f € L*(D,dA), we D and 4 e D.
In this section, we will prove a reverse Holder inequality for f in L2
satisfying the following invariant A, weight condition:

sup AP o) 1T () <o (A2)

He
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We will prove that the above condition implies the invariant weight
condition:

sup LS ) 1173 (m) < 0,

Wel

for sufficiently small ¢ > 0. The above implication will follow once we prove
a reverse Holder inequality analogous to the Coifman—Fefferman theorem
[1] (the fundamental property about A., weights):

THEOREM 2.1.  Suppose that f € L2 satisfies condition (Ay) with constant
M =sup |1 00) 1172 () <.
wel

There exist constants ey > 0 and Cyy > 0 such that

P 0 < Cu(1f 1 ()07
for every we D and 0<e<ey,.

Our proof will make use of dyadic rectangles and the dyadic maximal
function. We first discuss the dyadic rectangles and prove some elementary
properties related to these rectangles.

Dyadic rectangles. Any set of the form

Oumi = {re :(m — 1)27"<r<m2™" and (k — 127" ln<O0<k2"x},
where n, m and k are positive integers such that m<2" and k<2" is called a
dyadic rectangle. The center of the above dyadic rectangle Q = Q, .« is the
point zp = (m — 27", with 9 = (k —$)2'""n. Write |E| to denote the
normalized area of a measurable set £ € D. If d(Q) denotes the distance
between Q and 0D, then a simple calculation shows that

101 = 4lz0l(1 — |20 — d(0))*.
In particular,
101> (1 - |zo] — d(Q))",
whenever |zp|>1/4.

LEMMA 2.2.  Let Q be a dyadic rectangle with center w = zg. There is a
constant ¢1 > 0 such that
C1

k() = )
lkw(2)l =)

for every z € Q.
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Proof. 1f z =re and w = se”, then
11 —wz]> =1+ s> — 2rscos(0 — 9)
= (1 — rs)* + 4rssin®((0 — 9)/2)
< (1=rs)’ +rs(0 — 9%
If ze Q and Q = Ok, then
10 — 3 <m/2" = 2m /2" 1 <2n(1 — ).

Also

Ir—s|<1/2"1<1 — s,

thus
Il—rs=04+)0—=-5)—(F—s)s<2(l —s5)+ (1 —5)s<3(1 — ).

Hence
11— wz]> <9(1 — s5)* + 47°(1 — 5)> <50(1 — s)%,

and we obtain
232 212 2
A=) A=) (d+[w) - 1

k’; z 2 = = - = '
| H( )| |1 - WZ|4 502(1 _ |W|)4 2500(1 _ |11/|)2 2500(1 - |M}|)2

This proves the inequality with ¢; = 1/2500. 1

For we D and 0<s<1 let D(w, s) denote the pseudohyperbolic disk with
center w and radius 0<s<1, i.e.,

D(w,s) = {ze C:]p,(2)| <s.

LEMMA 2.3.  Suppose that f € L2 satisfies the invariant weight condition
(A;) and let 0<s< 1. There is a constant ¢; > 0 such that

L_lf@l_

- e
o 1Sl

whenever z € D(w, ).

Proof. Fix we D. Let u be in D(0,s). Since f is in L§ we have f(u) =
{f,K,>. Applying the Cauchy—Schwarz inequality we obtain

A1 _ 1Ak

1—Juf? 1—s%

Lf @I < f1llIKully =
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for each u in D(0, s). Now if z € D(w, s) then z = ¢, (u), for some u € D(0, s).
Replacing f by f - ¢,, in the above inequality gives

||f %llz

fOl=1(f0,)W)|< SI7 S0,

By the Cauchy—Schwarz inequality

1

=|(f" -1, 120 /2
Fom = 10T @OISIS T e gl = L7002,

Combining these inequalities we have

I/ _ 1
If(W)I s?

MY
P00 1P 2 < ;,

for all ze D(w,s). Replacing f by its reciprocal f~' gives the other
inequality. |

LEMMA 2.4. If f e L2 satisfies the invariant weight condition (A), then
there is a constant C > 0 such that

0L (L [
(|Q|/Q'f' dA) (|Q|/Q'f' dA) <G

for every dyadic rectangle Q.

Proof. Suppose that |f|> (w)|f]72(w)< M, for all weD. Let Q be a
dyadic rectangle. We first consider the case that |zp|>1/4. We consider two
subcases. First we assume that |Q] >d(Q)2/100. By Lemma 2.2 we see that

/P (z) = /D \ Plkay P dA
> [ 11 Pl

Cl / 2
>———= [ |f[d4
(1= lzo)* Jo

Because |zg|>1/4 we have 1 — |zo|<d(Q) + |Q|"/?. Thus

(1 — 20> <2(d(Q)* + 1) < 2(100|Q] + |Q)) = 202|Q.
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Combining the above two inequalities yields
- c
P o= [ (7P aa
101 /o

A similar inequality holds for f~!. Hence we have

R R P TN (L. M
(g Lrean) (g [ 12 04) < (S17P o)) (217 o)) <25

Next we assume that |Q| <d(Q)2/100. Suppose that z=re’ € 0 and
zg = 5. If QO = Qumx, then |r — s|<1/2"! and |0 — 9 <n/2", thus

1+4n% 49
2 Sy

|z — zQ|2 = (r — s)* + 4rs sin’ (0 ; 9) <

On the other hand,

1
01> (1 = [0l = d(Q)) = 57,7

Thus
|z — 20l < 710" <(7/10)d(Q) < (7/10)(1 — |z¢)).
This implies

Zg— 2 <|zQ—z|

11—zl

<7/10.

I—ZQZ

So Qs a subset of D(zp,7/10). By Lemma 2.3, there is a constant C, which
is independent of Q such that

C N/ GI<If IS Cl G,

for all z € Q. Therefore

%/Q 7 dA) (é/g e dA) <Cf G Cl Gl = ¢

This completes the proof in case |zp|>1/4.
Finally, we consider the case that |z9|<1/4. Then Q < D(0,1/2), and the
proof is finished as in the second subcase above.

The following lemma and its proof are adapted from the theory of
weighted norm inequalities [1].
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LEMMA 2.5.  Suppose that [ € L? satisfies the invariant weight condition
(Az). For every we D let du,, = |foo,|> dA. If 0<y<1, then there exists a
0<d<1 such that

t(E)<op,(Q),
whenever E a subset of Q with |[E|<7v|Q).
Proof. Suppose that |}\|2/(w)| fA|:2 (w)< M, for all w e D. Let g be locally

integrable and let O a dyadic rectangle. We use go to denote the average
value of g over Q. If g is non-negative, then

2 ldA)
o= </g|f||f|
Applying the Cauchy—Schwarz inequality yields
1
2 <— 2 2dA>( -2 dA)
7 lle(/ng /Qlfl
o) (o) (o)
= dA dA dA |.
|Q|2M0(Q)</Qg 7! /Qlf | /Q|f |

By Lemma 2.4 we have
C
b [ |2dA>,
0 uo(Q)< o

where C is the constant in Lemma 2.4.
Let F be a subset of Q. Taking g = y in the last inequality gives

2

(@) b

10l 1o(Q)

Let E be a subset of Q with |E|<y|Q| for O0<y<1. Let F be the
complement of E in Q. Thus

s

|F|

oY

So

po(F) >(1 - "/)
(@~ C
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Note that ug(E) = ug(Q) — 1o(F). The last inequality yields

(1—y’
C

Ho(E)< (1 - )MO(Q)-

So, putting 6 = 1 — (1 —7)?/C, for each fixed we D applying the above
argument to |f o (pw|2 leads to

o (E) <op,,(0),

whenever E a subset of Q with |E|<7y|Q| for 0<y<1. 1

The dyadic maximal function. The dyadic maximal operator M is defined
by

1
M4 _ 1

where the supremum is over all dyadic rectangles Q that contain w. The
maximal function is of weak-type (1,1) (see [3] or [15]) and the maximal
function is greater than the dyadic maximal function, so the dyadic maximal
function of any continuous integrable function is finite on D. In particular, if
fe Lﬁ satisfies the invariant 4;-condition, then the dyadic maximal function
MA|f ? is always finite. This can also be seen directly as follows. Given a
point w € D, there is a number 0 < R< 1 such that all but a finite number of
dyadic rectangles containing the point w lie inside the closed disk D(0, R) =
{zeC:|z|<R}.If f € L? and Q is a dyadic rectangle containing w inside the
disk D(0, R), then

1
o | R 4@ <maxifGF : <R
101 /o
If Qy,..., O are dyadic rectangles containing w not contained in the disk
D(0, R), then

M P <max{GF <R + max o [ P da) <.
101 /g,

This proves that the dyadic function of |f | is finite on D.

The principal fact about the dyadic maximal function is the Calderon—
Zygmund decomposition formulated in the next theorem. We will need the
notion of “doubling” of dyadic rectangles in its proof. Suppose that n>1
and m, k are positive integers such that m, k<2". The double of Q = Q.
denoted by 20, is defined by

20 = Q-1 {om+1)/21tk+1)/2)>
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where [£] denotes the greatest integer less than or equal to £. An elementary
calculation shows that
120 _
o0
for every proper dyadic rectangle Q in the unit disk.

The following theorem and proof should be compared with Lemma 1 in
Section 1V.3 (p. 150) of Stein’s book [15].

<8,

Calderon—Zygmund decomposition theorem. Let [ be locally integrable on
D, let t > 0, and suppose that Q = {z € D : MAf(z) > t} is not equal to D. Then
Q may be written as the disjoint union of dyadic rectangles {Q;} with

t<— ||dA<8t.
01 Jo

Proof. Suppose that we Q, that is, M“f(w)>t. Then there exists a
dyadic rectangle Q containing w such that

1
— d .
|Q|/Q|f| 4>

Now, if z € Q, then
M“f(z)>i/ f1dA>1
01/,

It follows z € Q. Thus Q < Q. It follows that Q = U 0O;. We may assume
that the Q; are maximal dyadic rectangles. Since Q = Q; is not equal to D,
by maximality its double 2Q is not contained in Q. This means that 2Q
contains a point z which is not in Q. Since M“f(z)<t, we obtain

1 A
|2Q|/2Q|f|dA<Mf(Z)<t,

and hence

/|f|dA</ /1 dA<i20).
(9] 20

It follows that

I 20
_ d 1251
|Q|/Q'f' ST

completing the proof. 1

Before we prove the reverse Holder inequality (Theorem 2.1), we need one
more preliminary result for the dyadic maximal function:
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PROPOSITION 2.6. If f € L2, then

() 1/ P<M|f* on D, and
(i) [I/13< M4 1P0) <2l f13

Proof. (i) In fact, we will prove that if g is continuous on D, then
lg(w)| < M4 g(w) for every w e D. Fix w e D. Let Qy be any dyadic rectangle
containing w. Since Qo is a compact subset of D, function ¢ is uniformly
continuous on Qp. Given ¢ >0, there is a J >0 such that |g(z) — g(w)|<e
whenever z,w € Qg are such that |z — w|<J. Subdividing Qp a number of
times there exists a dyadic rectangle Q containing w with diameter less than
0. Then

lgw)I<lg(2)] + lgOw) — g(2)I<lg(2)] + &

for all z € Q. This implies that

s g .
o< /Q 9 dAG) + e< M g(w) + ¢,

Therefore

lg(w)| < M?g(w),

as desired.
(i1) Since D is a dyadic rectangle we have

M ROz [ 1 P da =11

Suppose that Q is a dyadic rectangle containing 0. Then m =1, so
0 = Ou.14- It follows that

5 1 & 5 1/2"  2km/2" y
Q|f| dA:Eijl A 21 dr do

(e—1)m/2n
(1/4n)/+1
2n 1 Z | /| :

Using that |Q] = 273" we get

|2

i/|f|2dA2fj|a24 25 e
10l Jo TS J+1 o

Jj=0
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Hence
MAfFO) <215,

as desired. 1

We are now ready to prove the reverse Hoélder inequality contained in
Theorem 2.1. The following proof is analogous to the proof about A
weights in [1,4, 15].

Proof of Theorem 2.1. First we prove that for some constant Cys >0,

(2+¢)/2
/D|f|2+”dA<CM</D|f|2dA> :

For each integer k>0, set
Ex = {zeD: M|/ P2) > 2% 7113

Since M| f (0) < 2| f13 <2*+1| f]3, it follows from Proposition 2.6(ii) that
for every positive integer k the set Ej is not equal to D). Fix k>1. By the
Calderon-Zygmund decomposition theorem, Ej; = J; Q;, where Q; are
disjoint dyadic rectangles in Ej that satisfy

L
101

44101 112
2% f1 <

/ 1/ 1dA<8 x 2%+ 7|1,

0

thus

01 <2 1152 /Q fld4  and /Q f 1dA<8 x 2% 71E o)l

Let O be a maximal dyadic rectangle in Ej_;. Summing over all such
Q; < QO gives that

Eno= 3 10l<2 /11, / 1/ P da,
VY 0

since the Q; are disjoint and their union is E;. On the other hand,
/Qif [ da<8 x 22XV 101 = 24111113 10

Hence

B 0 0I<310l.
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Now by Lemma 2.5 there exists a 0<d <1 such that

WEx N Q)<ouQ),

where du = | f |* dA. Taking the union over all maximal dyadic rectangles
Q in E;_| gives

UWED) <Ou(Er—_1),
and therefore
w(Ep) <0 u(E%) < o8| 1113,

Now, using Proposition 2.6, we have

/ P dA< / (M1 P11 P dA
D D

- / (MALf Y2 P dd
(M2 f P<IFIBY

3 / (MA1f PY LS P dd
kZ:; E\Eis

o0
SIS+ 24D 115 ()
k=0

o0
2 k 2
< ||f||2+s + Z 2(2k+5/2)£5 ||f||2+s
=0

255/2
< 1 2+¢
( + = 2285>||f||2 ,

if 2265 < 1. Put &y = In(2/(1 + 8))/In 4. If 0<e<eyy, then 2% <2/(1 + §), so
that

05¢/2 - (2/(1 +5))5/4 B 05/4 - 3
1—-2%5 "1-25/(1+0) (1-o)1+6)/* 1-0

So, if Cyy = (4 —0)/(1 — 9), then for 0<e<ey we have shown that

(2+¢)/2
/D|f|2+'9dA<CM(/D|f|2dA) )
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Observe that Cj; depends only on M. For a fixed we D by Mobius-
invariance of the Berezin transform we also have

M = sup /o 0ulP2) 1S 2 0,1 2(2).

Let |fo (pwl2 in the above argument. We obtain

2+2)/2
[ir-opraa<cu( [ 1o, as)
D D

that is,

P 0) < Car(L£ P (0) 072,

as desired. 1

3. INVERTIBLE TOEPLITZ PRODUCTS

In this section, we will completely characterize the bounded invertible
Toeplitz products Ty T; on L2. We have the following result:

THEOREM 3.1.  Letf,g € L2. Then: T, Tj is bounded and invertible on L2if
and only if sup{|f* W)lg|*(w): w € D} <00 and inf{| f(w)|lg(w)| : w e D} > 0.

Proof. = Suppose that T;T; is bounded and invertible on L2. By
Theorem 1.2 there exists a constant M such that

/() lgPOn < M, (32)
for all w e D. Note that
Tf Tékw = Mﬂcw.
Thus
1T, Taleu |2 = lgO)PILfReulB = lgOn)PLAE (v,
so the invertibility of T Ty yields

gOPLAE (9)= 6, > 0, (3.3)
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for some constant o, and for all wel. Since also 7,77 = (TrTy* is
bounded and invertible, there also is a constant d, such that

£ O0)PlglP(w) =8, > 0, (3.4)

for all w e D. Putting 6 = 019,, it follows from (3.2) to (3.4) that

S WRlgOnPLIE 0)IgPow) < M1 ()P lgOm)P

and thus
512
|/ )lg(w)] >W’

for all we D.
<: Suppose that

M = supd| /P 0)lglPov) : w e D} < o0
and

n =1f{|f(w)|lgw)|:we D} >0.

By the inequality of Cauchy—Schwarz,

FOE<ISE (),

for all we D, thus |f(w)|lg(w)|<M'/2, for all we D. So, fg is a bounded
function on D). Note that / and g cannot have zeros in . Since |g(z)]* >
2 f(2)|72, for all z e D, we have

1gP(w) =21 £ (w),

for all w e D. Consequently

M =11 P 0lgPo0) =L f R )12 ()
so that
LA 0 < M,

for all w e D. This means that f satisfies the (A,) condition. By the reverse
Holder inequality, for some ¢ > 0,

sup /17 ()£ 1-® (w) < oc.

weD
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By Theorem 1.2, Ty T+ is bounded on L2. Since fg is bounded on D, the
operator 17 1s bounded on L2. That T; T is bounded follows from the fact
that 7, 7> T+ is bounded on L2 and the claim that 7y T; = T, 1T Ty ona
dense su{)set of L2.
To prove the clalm, it suffices to show
TfT ku — ’Z}T |ngklts

for each w € D, since the linear span of the set {k, :w e D} is dense in Lz.
For h e L2 and a polynomial p, an easy calculation gives

((h = h(W)kw, Y = ko, (h — h(W))p)

= (1 — wl*)*(h(w) — h(w))p(w) = 0.
Thus (4 — h(w))k, is in [L2]*, so
Tikw = h(w)ki,.

Since /~!, g and fy are in L2, we obtain

Tf Tgkw :ngkw = Wfkw

and
Ty T Tk = fW)g(0) Ty Ty
=/ (Wgw) f 1 (W) Trk,
= g(w) k-
This gives

Ty Tykw = Ty T Tk

to complete the proof of the above claim.
The function = 1/(fg) is bounded on D, so that the operator Ty is
bounded on L2. Using that

I;T;1, =1 =T,1yTy,

we conclude that T;Tj is invertible on L2. 1
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Using Theorem 8 of [20] for boundedness of Toeplitz products on the
Hardy space, by essentially the same argument as above we obtain
the following characterization of bounded invertible Toeplitz products on
the Hardy space.

THEOREM 3.5. Let f,g € H*>. Then: T;Ty is bounded and invertible on

H? if and only if sup{lﬁ(w)lgla(w) weD}<oo and inf{|f(w)|lg(w):
weD}>0.

This generalizes the main result of David Cruz-Uribe [2]: if f and ¢ are
outer functions and

sup /12 (ow)lgl*(w) < 00,
Wel

then it follows from the above theorem that 7T} is bounded and invertible
on H? if and only if

inf{| f(w)|lgw)| : w e D} > 0.

4. FREDHOLM TOEPLITZ PRODUCTS

In this section, we will completely characterize the bounded Fredholm
Toeplitz products 7y T; on L2. We have the following result:

THEOREM 4.1.  Let f and g be in L2. Then: T;Ty is a bounded Fredholm
operator on L? if and only if |f1? |gI* is bounded on D and the function | f||g| is

bounded away from zero near 0D.

The latter condition simply means that there exists a number r with
0<r<1 such that inf{| f(2)l|lg(2)|: r<|z|<1} > 0.
In the proof of the above theorem we will need the following lemma.

Lemwma 4.2.  Suppose that f is an analytic function on D with a finite

number of zeros. Let B denote the Blaschke product of the zeros of f and
F = f/B. Then there exists a constant C such that

IFRw)< LI P (w).

for all win D.
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Proof. Choose 0<R<1 such that |B(z)| > 1/\/5, for all R<|z|<]1.
Suppose w € . Then

/P o) = / (@) dA)
D

- /D B, CPIF (0, ()P dAG)

1
> e dac
R<lp,(2)<1

By a change-of-variable,

/ Fo@Fdae = [ rep i D i
R<|o,(2)<1 Re<ll< 11— e |

Now, if £ is analytic on D, then using power series it is easily shown that
[ aes—r [ R dao,
— R R<zl<1

Applying the above estimate to the function

— P’

h(z) = F(z ,
(2) = ()( e

we see that

/ FOP e |W|)dA()>(1 Rz)/|F( 5 |W|)dA()
R<[z]<1 11— wzl* el

> (1 - RO (w).
Thus
E0=L(1 - R)FE (w)
so that
P00 < CLAP (w),
with C =2/(1 — R?), forallweD. 1

Proof of Theorem 4.1. =-:1f T;Tj; is bounded, then there is an M such
that | f|*|gI* < M on D. If Ty T; is Fredholm, then Ty Tj; + #  is invertible in
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the Calkin algebra. Thus there exist a bounded operator S and a compact
operator 4 such that

STf T; =1+ A.
Using that Ty Tk, = g(w)fk,, we have

IS11 lg(w) I}\IZ/(W)I/2 = ISI| 1Ty Tkl
> ||ST; Tyl
= |lkwlly — [lAkwll>
=1 — || Akl

Since A is compact, ||Ak,|l, = 0 as |w| - 17, so there exists an 0<r; <1
such that ||4k,|, <1/2, for all r; <|w|< 1. The above inequality shows that

gL (0)= My (= LS,

for all r; <|w|<1. Since also T, T; = (TyT;)* is Fredholm, there is a positive
constant M, and a number r, with 0<r, <1 such that

LF0)PlgPow) = Mo,

for all r, <|w|<1. Thus

MMy < fOPREPL P lgPE) < MIF @RI (E)P
and hence
@RI = M M/ M,

for all max{r;,r}<|z|<]1.
<: Suppose that

|f@llg(2)|=6 >0, (*)

for all 0<r<|z|< 1. Inequality (*) implies that " and g have no zeros in the
annulus {z:r<|z|<1}. Let B; and B, denote the (finite) Blaschke products
of the zeros of f" and g, respectively. Then F = /B and G = g/B; are zero
free, and by (*) we have

[F(NG(2)|Z0|B1(2)|B2(2)];
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for all r<|z|<1. The function on the right is positive and continuous
on annulus {z :%(1 + r)<Jz|< 1}, thus has a positive minimum. So putting
p =%(1+7r), we have
IFIGE) =1,
for all p<|z|<1. Then
G =7 |F@)I,
for all p<|z|<1. Note that
0 = inf{FEIGE) : |21<p} >0,
If we take # = min{y/, 4"}, then

G =nlF@) ™,

for all z e D. By Lemma 4.2, there exist constants C; and C, such that

FE<CIfP ()

and

IGP(2) < CilgP2),
for all z e D. Thus
FP(2)|GRE) < M.,

for all z e D. As before we conclude that

p—— p—— !
wﬁmm*wsﬁa

for all ze D, so F satisfies condition (A;). Combining Theorem 2.1 with
Theorem 1.2 we see that TrT) ; is bounded. As in the proof of Theorem 3.1
if follows that TrT¢ is bounded. This implies that

TyTg =Ty TrTT3,

is bounded.
Since 1/(FG) is bounded, the Toeplitz operator 7z, is bounded, and it
follows that TrT¢ is invertible. Since T B, is Fredholm, there are bounded
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and compact operator R, and K, such that ngRz = I + K,. It follows that
TyTyRy = Ty TrTg + T TrT¢Ks,
thus
Ty TyRATrTg) " = T, + Ty TrTeKa(TrTg) ™

Using that also T'p, is Fredholm, there are bounded and compact operator
Ry and K; such that T R; =1 + K. Then

Ty T;RA(TrTg) 'Ry =1+ Ky + Tp, TrTeKo(TrTg)

Hence TyT; + 2 is right-invertible in the Calkin algebra. Similarly 7,7 +
A is left-invertible in the Calkin algebra, so that T; T is Fredholm. 1

By essentially the same argument as above we obtain the following
characterization of Fredholm Toeplitz products on the Hardy space. This
theorem generalizes the main result (Theorem 1.2) of David Cruz-Uribe [2].

THEOREM 4.3. Let f and g be in H*. Then: Ty Ty is a bounded Fredholm

operator on H? if and only if | f|* |g|* is bounded on D and the function | f ||g| is
bounded away from zero 0D.
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