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We will discuss invertibility of Toeplitz products Tf T %gg; for analytic f and g; on the

Bergman space and the Hardy space. We will furthermore describe when these

Toeplitz products are Fredholm. # 2002 Elsevier Science (USA)
1. INTRODUCTION

Let Pþ denote the Hardy projection from L2ð@DÞ onto the Hardy space
H2; and let h 2 L2ð@DÞ; define the Toeplitz operator Th on H2 by

Thp ¼ PþðhpÞ

for polynomials p: It is well known that Th is bounded if and only
if h is bounded on the unit circle @D: However, Sarason [12, 13] found
examples of f and g in H2 such that the product Tf T %gg is actually a bounded
operator on H2; though neither Tf nor Tg is bounded. Sarason [14] also
conjectured that a necessary and sufficient condition for this product to be
bounded is

sup
w2D

dj f j2j f j2 ðwÞ cjgj2jgj2ðwÞo1; ð1:1Þ
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where ûðwÞ denotes the Poisson extension of u over the D:

ûðwÞ ¼
Z
@D

uðzÞ
1� jwj2

j1� %wwzj2
dmðzÞ:

Treil [14] proved that (1.1) is a necessary condition. Zheng [20] showed that
(1.1) is sufficient if the exponent 2 on the functions j f j and jgj is replaced by
2þ e for any e > 0: A stronger result, utilizing the scale of Orlicz spaces, was
found by Treil, Volberg, and Zheng [17]. Another stronger result, using a
rigged non-tangential maximal function, was obtained by Xia [19]. However,
Nazarov [7] has constructed a counter-example to Sarason’s conjecture.

If we consider instead the question of whether the product Tf T %gg is
bounded and invertible, then (1.1) provides the correct condition. More
precisely, Cruz-Uribe [2] showed that if f and g are outer functions, a
necessary and sufficient condition for Tf T %gg to be bounded and invertible is
that ð fgÞ�1 is bounded and (1.1) holds. A similar, though different,
characterization of bounded invertible Toeplitz products on H2 with outer
symbols was obtained by Zheng [20]. At the heart of Cruz-Uribe’s [2] proof
is a characterization of invertible Toeplitz operators due to Devinatz and
Widom, which in turn is closely related to the Helson–Szegö theorem, that
characterizes the weights w such that the conjugation operator (or Hilbert
transform) is bounded on L2ð@D;wdmÞ: See Sarason’s book [11] for more on
these results. On the other hand, the proof in [20] is based on a distribution
function inequality.

The Helson–Szegö theorem relies heavily on complex analytic methods.
There is another characterization of the boundedness of the conjugation
operator, derived using real-variable techniques, due to Hunt, Muck-
enhoupt, and Wheeden [5]; this result has led to an extensive theory of
weighted norm inequalities. For a good overview with extensive references,
see [3, 4, 6]. For new approaches to the theory of weighted norm inequalities,
see [8, 9, 10, 18].

In this article, we will give a complete characterization of the bounded
invertible Toeplitz products Tf T %gg; for analytic f and g; not only on the
Hardy space but also on the Bergman space. We will furthermore describe
the Fredholm Toeplitz products Tf T %gg on the Hardy or Bergman space, for
analytic f and g:

Let dA denote Lebesgue area measure on the unit disk D; normalized so
that the measure of D equals 1. The Bergman space L2

a is the Hilbert space
consisting of the analytic functions on D that are also in L2ðD; dAÞ:

The orthogonal projection P of L2ðD; dAÞ onto L2
a is easily seen to be

given by the formula

PuðwÞ ¼
Z
D

uðzÞ

ð1� w%zzÞ2
dAðzÞ;

for u 2 L2ðD; dAÞ and w 2 D:
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If g is a bounded analytic function on D; then

ðT %gghÞðwÞ ¼
Z
D

gðzÞhðzÞ

ð1� w%zzÞ2
dAðzÞ;

for all h 2 L2
a and w 2 D: If g 2 L2

a and h 2 L2
a; we define T %ggh by the latter

integral. If f is furthermore in L2
a; then the meaning of Tf T %ggh is clear: it is

the analytic function f T %ggh: We will be concerned with the question for
which f and g in L2

a the Toeplitz product Tf T %gg is invertible on L2
a:

The question for which f and g in L2
a the operator Tf T %gg is bounded on L2

a

was considered in [16]. The following result was proved in [16]:

Theorem 1.2. Let f and g be in L2
a:

(i) If the Toeplitz product Tf T %gg is bounded on L2
a; then

sup
w2D

gj f j2j f j2 ðwÞ fjgj2jgj2ðwÞo1:

(ii) If

sup
w2D

gj f j2þej f j2þe ðwÞ gjgj2þejgj2þeðwÞo1;

for some e > 0; then the Toeplitz product Tf T %gg is bounded on L2
a:

We will show that if f and g are in L2
a; then the product Tf T %gg is bounded

and invertible on L2
a if and only if

inf
w2D

j f ðwÞgðwÞj > 0

and

sup
w2D

gj f j2j f j2 ðwÞ fjgj2jgj2ðwÞo1:

Here f̃ ðwÞ is the Berezin transform of a function f 2 L2ðD; dAÞ defined on
D by

f̃ ðwÞ ¼
Z
D

f ðzÞjkwðzÞj
2 dAðzÞ

and the functions

kwðzÞ ¼
1� jwj2

ð1� %wwzÞ2
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are the normalized reproducing kernels for L2
a: To prove the above

result, using Theorem 1.2, we need to get the reverse Hölder inequality
for the so-called invariant A2 weights. To do so, we extend the
basic techniques of the real-variable theory of weighted norm
inequalities [1, 3, 4, 6, 15] to the Bergman space. We form a dyadic grid on
D; define a dyadic maximal operator, form a Calderón–Zygmund
decomposition, and use this to prove an inequality analogous to the so-
called ‘‘reverse Hölder inequality’’ of the theory of weighted norm
inequalities (Theorem 2.1).

2. A REVERSE HÖLDER INEQUALITY

First, we introduce more notation and discuss some preliminaries needed
in the sequel.

For w 2 D; the fractional linear transformation jw defined by

jwðzÞ ¼
w � z

1� %wwz

is an automorphism of the unit disk, in fact, j�1
w ¼ jw: The real Jacobian

for the change of variable x ¼ jwðzÞ is equal to jj0
wðzÞj

2 ¼ ð1� jwj2Þ2=
j1� %wwzj4; thus we have the change-of-variable formula

Z
D

hðjwðzÞÞ dAðzÞ ¼
Z
D

hðzÞ
ð1� jwj2Þ2

j1� %wwzj4
dAðzÞ:

It follows from the above change-of-variable formula that

gj f j2j f j2 ðwÞ ¼ jj f 8jwjj
2
2;

for every f 2 L2ðD; dAÞ and w 2 D: The Berezin transform has the following
Möbius-invariance:

gf 8jlf 8jl ðwÞ ¼ f̃ðjlðwÞÞ;

for every f 2 L2ðD; dAÞ; w 2 D and l 2 D:
In this section, we will prove a reverse Hölder inequality for f in L2

a

satisfying the following invariant A2 weight condition:

sup
w2D

gj f j2j f j2 ðwÞ gj f j�2j f j�2 ðwÞo1: ðA2Þ
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We will prove that the above condition implies the invariant weight
condition:

sup
w2D

gj f j2þej f j2þe ðwÞ gj f j�ð2þeÞj f j�ð2þeÞ ðwÞo1;

for sufficiently small e > 0: The above implication will follow once we prove
a reverse Hölder inequality analogous to the Coifman–Fefferman theorem
[1] (the fundamental property about A1 weights):

Theorem 2.1. Suppose that f 2 L2
a satisfies condition ðA2Þ with constant

M ¼ sup
w2D

gj f j2j f j2 ðwÞ gj f j�2j f j�2 ðwÞo1:

There exist constants eM > 0 and CM > 0 such that

gj f j2þej f j2þe ðwÞ4CMð gj f j2j f j2 ðwÞÞð2þeÞ=2

for every w 2 D and 0oeoeM :

Our proof will make use of dyadic rectangles and the dyadic maximal
function. We first discuss the dyadic rectangles and prove some elementary
properties related to these rectangles.

Dyadic rectangles. Any set of the form

Qn;m;k ¼ freiy : ðm � 1Þ2�n4rom2�n and ðk � 1Þ2�nþ1p4yok2�nþ1pg;

where n; m and k are positive integers such that m42n and k42n is called a
dyadic rectangle. The center of the above dyadic rectangle Q ¼ Qn;m;k is the
point zQ ¼ ðm � 1

2
Þ2�neiW; with W ¼ ðk � 1

2
Þ21�np: Write jEj to denote the

normalized area of a measurable set E 2 D: If dðQÞ denotes the distance
between Q and @D; then a simple calculation shows that

jQj ¼ 4jzQjð1� jzQj � dðQÞÞ2:

In particular,

jQj5ð1� jzQj � dðQÞÞ2;

whenever jzQj51=4:

Lemma 2.2. Let Q be a dyadic rectangle with center w ¼ zQ: There is a

constant c1 > 0 such that

jkwðzÞj
25

c1

ð1� jwjÞ2
;

for every z 2 Q:
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Proof. If z ¼ reiy and w ¼ seiW; then

j1� %wwzj2 ¼ 1þ r2s2 � 2rs cosðy� WÞ

¼ ð1� rsÞ2 þ 4rs sin2ððy� WÞ=2Þ

4 ð1� rsÞ2 þ rsðy� WÞ2:

If z 2 Q and Q ¼ Qn;m;k; then

jy� Wj4p=2n ¼ 2p=2nþ142pð1� sÞ:

Also

jr � sj41=2nþ141� s;

thus

1� rs ¼ ð1þ sÞð1� sÞ � ðr � sÞso2ð1� sÞ þ ð1� sÞso3ð1� sÞ:

Hence

j1� %wwzj2o9ð1� sÞ2 þ 4p2ð1� sÞ2o50ð1� sÞ2;

and we obtain

jkwðzÞj
2 ¼

ð1� jwj2Þ2

j1� %wwzj4
5

ð1� jwj2Þ2

502ð1� jwjÞ4
¼

ð1þ jwjÞ2

2500ð1� jwjÞ2
5

1

2500ð1� jwjÞ2
:

This proves the inequality with c1 ¼ 1=2500: ]

For w 2 D and 0oso1 let Dðw; sÞ denote the pseudohyperbolic disk with
center w and radius 0oso1; i.e.,

Dðw; sÞ ¼ fz 2 C : jjwðzÞjosg:

Lemma 2.3. Suppose that f 2 L2
a satisfies the invariant weight condition

ðA2Þ and let 0oso1: There is a constant cs > 0 such that

1

cs

4
j f ðzÞj
j f ðwÞj

4cs;

whenever z 2 Dðw; sÞ:

Proof. Fix w 2 D: Let u be in Dð0; sÞ: Since f is in L2
a we have f ðuÞ ¼

hf ;Kui: Applying the Cauchy–Schwarz inequality we obtain

j f ðuÞj4jj f jj2jjKujj2 ¼
jj f jj2

1� juj2
4

jj f jj2
1� s2

;



STROETHOFF AND ZHENG54
for each u in Dð0; sÞ: Now if z 2 Dðw; sÞ then z ¼ jwðuÞ; for some u 2 Dð0; sÞ:
Replacing f by f 8jw in the above inequality gives

j f ðzÞj ¼ jð f 8jwÞðuÞj4
jj f 8jwjj2
1� s2

¼
1

1� s2
gj f j2j f j2 ðwÞ1=2:

By the Cauchy–Schwarz inequality

1

j f ðwÞj
¼ jð f �1

8jwÞð0Þj4jj f �1
8jwjj2 ¼

gj f �1j2j f �1j2ðwÞ1=2:

Combining these inequalities we have

j f ðzÞj
j f ðwÞj

4
1

1� s2
gj f j2j f j2 ðwÞ1=2 gj f �1j2j f �1j2ðwÞ1=24

M1=2

1� s2
;

for all z 2 Dðw; sÞ: Replacing f by its reciprocal f �1 gives the other
inequality. ]

Lemma 2.4. If f 2 L2
a satisfies the invariant weight condition ðA2Þ; then

there is a constant C > 0 such that

1

jQj

Z
Q

j f j2 dA

� �
1

jQj

Z
Q

j f j�2 dA

� �
4C;

for every dyadic rectangle Q:

Proof. Suppose that gj f j2j f j2 ðwÞ gj f j�2j f j�2 ðwÞ4M ; for all w 2 D: Let Q be a
dyadic rectangle. We first consider the case that jzQj51=4: We consider two
subcases. First we assume that jQj5dðQÞ2=100: By Lemma 2.2 we see that

gj f j2j f j2 ðzQÞ ¼
Z
D

j f j2jkzQ
j2 dA

5
Z

Q

j f j2jkzQ
j2 dA

5
c1

ð1� jzQjÞ
2

Z
Q

j f j2 dA:

Because jzQj51=4 we have 1� jzQj4dðQÞ þ jQj1=2: Thus

ð1� jzQjÞ
242ðdðQÞ2 þ jQjÞ42ð100jQj þ jQjÞ ¼ 202jQj:
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Combining the above two inequalities yields

gj f j2j f j2 ðzQÞ5
c2

jQj

Z
Q

j f j2 dA:

A similar inequality holds for f �1: Hence we have

1

jQj

Z
Q

j f j2 dA

� �
1

jQj

Z
Q

j f j�2 dA

� �
4

1

c2

gj f j2j f j2 ðzQÞ
� �

1

c2

gj f j�2j f j�2 ðzQÞ
� �

4
M

c22
:

Next we assume that jQjodðQÞ2=100: Suppose that z ¼ reiy 2 Q and
zQ ¼ seiW: If Q ¼ Qn;m;k; then jr � sj41=2nþ1 and jy� Wj4p=2n; thus

jz � zQj
2 ¼ ðr � sÞ2 þ 4rs sin2

y� W
2

� �
4

1þ 4p2

22nþ2
o

49

22nþ2
:

On the other hand,

jQj5ð1� jzQj � dðQÞÞ2 ¼
1

22nþ2
:

Thus

jz � zQj47jQj1=24ð7=10ÞdðQÞ4ð7=10Þð1� jzQjÞ:

This implies

zQ � z

1� %zzQz

����
����4jzQ � zj

1� jzQj
47=10:

So Q is a subset of DðzQ; 7=10Þ: By Lemma 2.3, there is a constant C; which
is independent of Q such that

C�1j f ðzQÞj4j f ðzÞj4Cj f ðzQÞj;

for all z 2 Q: Therefore

1

jQj

Z
Q

j f j2 dA

� �
1

jQj

Z
Q

j f j�2 dA

� �
4C2j f ðzQÞj

2C2j f ðzQÞj
�2 ¼ C4:

This completes the proof in case jzQj51=4:
Finally, we consider the case that jzQj41=4: Then Q � Dð0; 1=2Þ; and the

proof is finished as in the second subcase above. ]

The following lemma and its proof are adapted from the theory of
weighted norm inequalities [1].
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Lemma 2.5. Suppose that f 2 L2
a satisfies the invariant weight condition

ðA2Þ: For every w 2 D let dmw ¼ j f 8jwj
2 dA: If 0ogo1; then there exists a

0odo1 such that

mwðEÞ4dmwðQÞ;

whenever E a subset of Q with jEj4gjQj:

Proof. Suppose that gj f j2j f j2 ðwÞ gj f j�2j f j�2 ðwÞ4M ; for all w 2 D: Let g be locally
integrable and let Q a dyadic rectangle. We use gQ to denote the average
value of g over Q: If g is non-negative, then

g2
Q ¼

1

jQj2

Z
Q

gj f j j f j�1 dA

� �2

:

Applying the Cauchy–Schwarz inequality yields

g2
Q4

1

jQj2

Z
Q

g2j f j2 dA

� � Z
Q

j f j�2 dA

� �

¼
1

jQj2m0ðQÞ

Z
Q

g2j f j2 dA

� � Z
Q

j f j2 dA

� � Z
Q

j f j�2 dA

� �
:

By Lemma 2.4 we have

g2
Q4

C

m0ðQÞ

Z
Q

g2j f j2 dA

� �
;

where C is the constant in Lemma 2.4.
Let F be a subset of Q: Taking g ¼ wF in the last inequality gives

jF j
jQj

� �2

4C
m0ðF Þ
m0ðQÞ

:

Let E be a subset of Q with jEj4gjQj for 0ogo1: Let F be the
complement of E in Q: Thus

jF j
jQj

5ð1� gÞ:

So

m0ðF Þ
m0ðQÞ

5
ð1� gÞ2

C
:
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Note that m0ðEÞ ¼ m0ðQÞ � m0ðF Þ: The last inequality yields

m0ðEÞ4 1�
ð1� gÞ2

C

� �
m0ðQÞ:

So, putting d ¼ 1� ð1� gÞ2=C; for each fixed w 2 D applying the above
argument to j f 8jwj

2 leads to

mwðEÞ4dmwðQÞ;

whenever E a subset of Q with jEj4gjQj for 0ogo1: ]

The dyadic maximal function. The dyadic maximal operator MD is defined
by

ðMDf ÞðwÞ ¼ sup
w2Q

1

jQj

Z
Q

j f j dA;

where the supremum is over all dyadic rectangles Q that contain w: The
maximal function is of weak-type ð1; 1Þ (see [3] or [15]) and the maximal
function is greater than the dyadic maximal function, so the dyadic maximal
function of any continuous integrable function is finite on D: In particular, if
f 2 L2

a satisfies the invariant A2-condition, then the dyadic maximal function
MDj f j2 is always finite. This can also be seen directly as follows. Given a
point w 2 D; there is a number 0oRo1 such that all but a finite number of
dyadic rectangles containing the point w lie inside the closed disk %DDð0;RÞ ¼
fz 2 C : jzj4Rg: If f 2 L2

a and Q is a dyadic rectangle containing w inside the
disk %DDð0;RÞ; then

1

jQj

Z
Q

j f ðzÞj2 dAðzÞ4maxfj f ðzÞj2 : jzj4Rg:

If Q1; . . . ;Qm are dyadic rectangles containing w not contained in the disk
%DDð0;RÞ; then

MDj f j2ðwÞ4maxfj f ðzÞj2 : jzj4Rg þ max
14j4m

1

jQj j

Z
Qj

j f ðzÞj2 dAðzÞo1:

This proves that the dyadic function of j f j2 is finite on D:
The principal fact about the dyadic maximal function is the Calderon–

Zygmund decomposition formulated in the next theorem. We will need the
notion of ‘‘doubling’’ of dyadic rectangles in its proof. Suppose that n51
and m; k are positive integers such that m; k42n: The double of Q ¼ Qn;m;k;
denoted by 2Q; is defined by

2Q ¼ Qn�1;½ðmþ1Þ=2�;½ðkþ1Þ=2�;
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where ½‘� denotes the greatest integer less than or equal to ‘: An elementary
calculation shows that

j2Qj
jQj

48;

for every proper dyadic rectangle Q in the unit disk.
The following theorem and proof should be compared with Lemma 1 in

Section lV.3 (p. 150) of Stein’s book [15].

Calderon–Zygmund decomposition theorem. Let f be locally integrable on

D; let t > 0; and suppose that O ¼ fz 2 D : MDf ðzÞ > tg is not equal to D: Then

O may be written as the disjoint union of dyadic rectangles fQjg with

to
1

jQj j

Z
Qj

j f j dAo8t:

Proof. Suppose that w 2 O; that is, MDf ðwÞ > t: Then there exists a
dyadic rectangle Q containing w such that

1

jQj

Z
Q

j f j dA > t:

Now, if z 2 Q; then

MDf ðzÞ5
1

jQj

Z
Q

j f j dA > t:

It follows z 2 O: Thus Q � O: It follows that O ¼
S

j Qj : We may assume
that the Qj are maximal dyadic rectangles. Since Q ¼ Qj is not equal to D;
by maximality its double 2Q is not contained in O: This means that 2Q

contains a point z which is not in O: Since MDf ðzÞ4t; we obtain

1

j2Qj

Z
2Q

j f j dA4MDf ðzÞ4t;

and hence Z
Q

j f j dA4
Z
2Q

j f j dA4tj2Qj:

It follows that

1

jQj

Z
Q

j f j dA4t
j2Qj
jQj

48t;

completing the proof. ]

Before we prove the reverse Hölder inequality (Theorem 2.1), we need one
more preliminary result for the dyadic maximal function:
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Proposition 2.6. If f 2 L2
a; then

(i) j f j24MDj f j2 on D; and

(ii) jj f jj224MDj f j2ð0Þ42jj f jj22:

Proof. (i) In fact, we will prove that if g is continuous on D; then
jgðwÞj4MDgðwÞ for every w 2 D: Fix w 2 D: Let Q0 be any dyadic rectangle
containing w: Since %QQ0 is a compact subset of D; function g is uniformly
continuous on Q0: Given e > 0; there is a d > 0 such that jgðzÞ � gðwÞjoe
whenever z;w 2 Q0 are such that jz � wjod: Subdividing Q0 a number of
times there exists a dyadic rectangle Q containing w with diameter less than
d: Then

jgðwÞj4jgðzÞj þ jgðwÞ � gðzÞj4jgðzÞj þ e

for all z 2 Q: This implies that

jgðwÞj4
1

jQj

Z
Q

jgðzÞj dAðzÞ þ e4MDgðwÞ þ e:

Therefore

jgðwÞj4MDgðwÞ;

as desired.
(ii) Since D is a dyadic rectangle we have

MDj f j2ð0Þ5
1

jDj

Z
D

j f j2 dA ¼ jjf jj22:

Suppose that Q is a dyadic rectangle containing 0. Then m ¼ 1; so
Q ¼ Qn;1;k: It follows that

Z
Q

j f j2 dA ¼
1

p

X1
j¼0

jaj j2
Z 1=2n

0

Z 2kp=2n

2ðk�1Þp=2n

2rr2j dr dy

¼
1

2n�1

X1
j¼0

jaj j2
ð1=4nÞjþ1

j þ 1
:

Using that jQj ¼ 2�3n we get

1

jQj

Z
Q

j f j2 dA ¼ 2
X1
j¼0

jaj j2
4�nj

j þ 1
42

X1
j¼0

jaj j
2

j þ 1
¼ 2jjf jj22:
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Hence

MDj f j2ð0Þ42jjf jj22;

as desired. ]

We are now ready to prove the reverse Hölder inequality contained in
Theorem 2.1. The following proof is analogous to the proof about A1

weights in [1, 4, 15].

Proof of Theorem 2.1. First we prove that for some constant CM > 0;Z
D

j f j2þe dA4CM

Z
D

j f j2 dA

� �ð2þeÞ=2

:

For each integer k50; set

Ek ¼ fz 2 D : MDj f j2ðzÞ > 24kþ1jj f jj22g:

Since MDj f j2ð0Þ42jj f jj22424kþ1jj f jj22; it follows from Proposition 2.6(ii) that
for every positive integer k the set Ek is not equal to D: Fix k51: By the
Calderon–Zygmund decomposition theorem, Ek ¼

S
j Qj ; where Qj are

disjoint dyadic rectangles in Ek that satisfy

24kþ1jj f jj22o
1

jQj j

Z
Qj

j f j dAo8� 24kþ1jj f jj22;

thus

jQj j42�4k�1jj f jj�2
2

Z
Qj

j f j dA and

Z
Qj

j f j dAo8� 24kþ1jj f jj22 jQj j:

Let Q be a maximal dyadic rectangle in Ek�1: Summing over all such
Qj � Q gives that

jEk \ Qj ¼
X

j : Qj�Q

jQj j42�4k�1jj f jj�2
2

Z
Q

j f j2 dA;

since the Qj are disjoint and their union is Ek: On the other hand,Z
Q

j f j2 dA48� 24ðk�1Þþ1jj f jj22 jQj ¼ 24kjj f jj22 jQj:

Hence

jEk \ Qj41
2
jQj:
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Now by Lemma 2.5 there exists a 0odo1 such that

mðEk \ QÞ4dmðQÞ;

where dm ¼ j f j2 dA: Taking the union over all maximal dyadic rectangles
Q in Ek�1 gives

mðEkÞ4dmðEk�1Þ;

and therefore

mðEkÞ4dkmðE0Þ4dk jj f jj22:

Now, using Proposition 2.6, we haveZ
D

j f j2þe dA4
Z
D

ðMDj f j2Þe=2j f j2 dA

¼
Z
fMD j f j24jj f jj22g

ðMDj f j2Þe=2j f j2 dA

þ
X1
k¼0

Z
Ek=Ekþ1

ðMDj f j2Þe=2j f j2 dA

4 jj f jje2jj f jj
2
2 þ

X1
k¼0

2ð4ðkþ1Þþ1Þe=2jj f jje2mðEkÞ

4 jj f jj2þe
2 þ

X1
k¼0

2ð2kþ5=2Þedkjj f jj2þe
2

4 1þ
25e=2

1� 22ed

� �
jj f jj2þe

2 ;

if 22edo1: Put eM ¼ lnð2=ð1þ dÞÞ=ln 4: If 0oeoeM ; then 22eo2=ð1þ dÞ; so
that

25e=2

1� 22ed
o

ð2=ð1þ dÞÞ5=4

1� 2d=ð1þ dÞ
¼

25=4

ð1� dÞð1þ dÞ1=4
o

3

1� d
:

So, if CM ¼ ð4� dÞ=ð1� dÞ; then for 0oeoeM we have shown that

Z
D

j f j2þe dA4CM

Z
D

j f j2 dA

� �ð2þeÞ=2

:
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Observe that CM depends only on M : For a fixed w 2 D by Möbius-
invariance of the Berezin transform we also have

M ¼ sup
l2D

j f 8jwj
2g ðlÞ j f 8jwj

�2g ðlÞ:

Let j f 8jwj
2 in the above argument. We obtain

Z
D

j f 8jwj
2þe dA4CM

Z
D

j f 8jwj
2 dA

� �ð2þeÞ=2

that is,

gj f j2þej f j2þe ðwÞ4CMð gj f j2j f j2 ðwÞÞð2þeÞ=2;

as desired. ]

3. INVERTIBLE TOEPLITZ PRODUCTS

In this section, we will completely characterize the bounded invertible
Toeplitz products Tf T %gg on L2

a: We have the following result:

Theorem 3.1. Let f ; g 2 L2
a: Then: Tf T %gg is bounded and invertible on L2

a if

and only if supf gj f j2j f j2 ðwÞ fjgj2jgj2ðwÞ : w 2 Dgo1 and inffj f ðwÞjjgðwÞj : w 2 Dg > 0:

Proof. ): Suppose that Tf T %gg is bounded and invertible on L2
a: By

Theorem 1.2 there exists a constant M such that

gj f j2j f j2 ðwÞ fjgj2jgj2ðwÞ4M ; ð3:2Þ

for all w 2 D: Note that

Tf T %ggkw ¼ gðwÞfkw:

Thus

jjTf T %ggkwjj22 ¼ jgðwÞj2jj fkwjj22 ¼ jgðwÞj2 gj f j2j f j2 ðwÞ;

so the invertibility of Tf T %gg yields

jgðwÞj2 gj f j2j f j2 ðwÞ5d2 > 0; ð3:3Þ
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for some constant d1 and for all w 2 D: Since also TgT %ff ¼ ðTf T %ggÞ
n is

bounded and invertible, there also is a constant d2 such that

j f ðwÞj2 fjgj2jgj2ðwÞ5d2 > 0; ð3:4Þ

for all w 2 D: Putting d ¼ d1d2; it follows from (3.2) to (3.4) that

d4j f ðwÞj2jgðwÞj2 gj f j2j f j2 ðwÞ fjgj2jgj2ðwÞ4M j f ðwÞj2jgðwÞj2;

and thus

j f ðwÞjjgðwÞj5
d1=2

M1=2
;

for all w 2 D:
(: Suppose that

M ¼ supf gj f j2j f j2 ðwÞ fjgj2jgj2ðwÞ : w 2 Dgo1

and

Z ¼ inffj f ðwÞjjgðwÞj : w 2 Dg > 0:

By the inequality of Cauchy–Schwarz,

j f ðwÞj24 gj f j2j f j2 ðwÞ;

for all w 2 D; thus j f ðwÞjjgðwÞj4M1=2; for all w 2 D: So, fg is a bounded
function on D: Note that f and g cannot have zeros in D: Since jgðzÞj25
Z2j f ðzÞj�2; for all z 2 D; we have

fjgj2jgj2ðwÞ5Z2 gj f j�2j f j�2 ðwÞ;

for all w 2 D: Consequently

M5 gj f j2j f j2 ðwÞ fjgj2jgj2ðwÞ5Z2 gj f j2j f j2 ðwÞ gj f j�2j f j�2 ðwÞ

so that gj f j2j f j2 ðwÞ gj f j�2j f j�2 ðwÞ4M=Z2;

for all w 2 D: This means that f satisfies the ðA2Þ condition. By the reverse
Hölder inequality, for some e > 0;

sup
w2D

gj f j2þej f j2þe ðwÞ gj f j�ð2þeÞj f j�ð2þeÞ ðwÞo1:
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By Theorem 1.2, Tf T
f �1 is bounded on L2

a: Since fg is bounded on D; the
operator T

fg
is bounded on L2

a: That Tf T %gg is bounded follows from the fact
that Tf T

f �1Tfg
is bounded on L2

a and the claim that Tf T %gg ¼ Tf T
f �1Tfg

on a
dense subset of L2

a:
To prove the claim, it suffices to show

Tf T %ggkw ¼ Tf T
f �1Tfg

kw;

for each w 2 D; since the linear span of the set fkw : w 2 Dg is dense in L2
a:

For h 2 L2
a and a polynomial p; an easy calculation gives

hð %hh � hðwÞÞkw; pi ¼hkw; ðh � hðwÞÞpi

¼ ð1� jwj2Þ2ðhðwÞ � hðwÞÞpðwÞ ¼ 0:

Thus ð %hh � hðwÞÞkw is in ½L2
a�
?; so

T %hhkw ¼ hðwÞkw:

Since f �1; %gg and fg are in L2
a; we obtain

Tf T %ggkw ¼ fT %ggkw ¼ gðwÞfkw

and

Tf T
f �1Tfg

kw ¼ f ðwÞgðwÞTf T
f �1kw

¼ f ðwÞgðwÞ f �1ðwÞTf kw

¼ gðwÞ fkw:

This gives

Tf T %ggkw ¼ Tf T
f �1Tfg

kw

to complete the proof of the above claim.
The function c ¼ 1=ð f %ggÞ is bounded on D; so that the operator Tc is

bounded on L2
a: Using that

Tf T %ggTc ¼ I ¼ TcTf T %gg;

we conclude that Tf T %gg is invertible on L2
a: ]
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Using Theorem 8 of [20] for boundedness of Toeplitz products on the
Hardy space, by essentially the same argument as above we obtain
the following characterization of bounded invertible Toeplitz products on
the Hardy space.

Theorem 3.5. Let f ; g 2 H2: Then: Tf T %gg is bounded and invertible on

H2 if and only if supf dj f j2j f j2 ðwÞ cjgj2jgj2ðwÞ : w 2 Dgo1 and inffj f ðwÞjjgðwÞj :
w 2 Dg > 0:

This generalizes the main result of David Cruz-Uribe [2]: if f and g are
outer functions and

sup
w2D

dj f j2j f j2 ðwÞ cjgj2jgj2ðwÞo1;

then it follows from the above theorem that Tf T %gg is bounded and invertible
on H2 if and only if

inffj f ðwÞjjgðwÞj : w 2 Dg > 0:

4. FREDHOLM TOEPLITZ PRODUCTS

In this section, we will completely characterize the bounded Fredholm
Toeplitz products Tf T %gg on L2

a: We have the following result:

Theorem 4.1. Let f and g be in L2
a: Then: Tf T %gg is a bounded Fredholm

operator on L2
a if and only if

gj f j2j f j2 fjgj2jgj2 is bounded on D and the function j f jjgj is

bounded away from zero near @D:

The latter condition simply means that there exists a number r with
0oro1 such that inffj f ðzÞjjgðzÞj : rojzjo1g > 0:

In the proof of the above theorem we will need the following lemma.

Lemma 4.2. Suppose that f is an analytic function on D with a finite

number of zeros. Let B denote the Blaschke product of the zeros of f and

F ¼ f =B: Then there exists a constant C such that

gjF j2jF j2 ðwÞ4C
gj f j2j f j2 ðwÞ;

for all w in D:
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Proof. Choose 0oRo1 such that jBðzÞj > 1=
ffiffiffi
2

p
; for all Rojzjo1:

Suppose w 2 D: Then

gj f j2j f j2 ðwÞ ¼
Z
D

j f ðjwðzÞÞj
2 dAðzÞ

¼
Z
D

jBðjwðzÞÞj
2jF ðjwðzÞÞj

2 dAðzÞ

5
1

2

Z
RojjwðzÞjo1

jF ðjwðzÞÞj
2 dAðzÞ:

By a change-of-variable,Z
RojjwðzÞjo1

jF ðjwðzÞÞj
2 dAðzÞ ¼

Z
Rojzjo1

jF ðzÞj2
ð1� jwj2Þ2

j1� %wwzj4
dAðzÞ:

Now, if h is analytic on D; then using power series it is easily shown thatZ
D

jhðzÞj2 dAðzÞ4
1

1� R2

Z
Rojzjo1

jhðzÞj2 dAðzÞ:

Applying the above estimate to the function

hðzÞ ¼ F ðzÞ
1� jwj2

ð1� %wwzÞ2
;

we see thatZ
Rojzjo1

jF ðzÞj2
ð1� jwj2Þ

j1� %wwzj4
dAðzÞ5 ð1� R2Þ

Z
D

jF ðzÞj2
ð1� jwj2Þ

j1� %wwzj4
dAðzÞ

5 ð1� R2ÞgjFj2jFj2 ðwÞ:

Thus

gj f j2j f j2 ðwÞ51
2
ð1� R2ÞgjFj2jFj2 ðwÞ

so that

gjFj2jFj2 ðwÞ4C
gj f j2j f j2 ðwÞ;

with C ¼ 2=ð1� R2Þ; for all w 2 D: ]

Proof of Theorem 4.1. ): If Tf T %gg is bounded, then there is an M such

that gj f j2j f j2 fjgj2jgj24M on D: If Tf T %gg is Fredholm, then Tf T %gg þK is invertible in
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the Calkin algebra. Thus there exist a bounded operator S and a compact
operator A such that

STf T %gg ¼ I þ A:

Using that Tf T %ggkw ¼ gðwÞfkw we have

jjSjj jgðwÞj gj f j2j f j2 ðwÞ1=2 ¼ jjSjj jjTf T %ggkwjj2

5 jjSTf T %ggkwjj2

5 jjkwjj2 � jjAkwjj2

¼ 1� jjAkwjj2:

Since A is compact, jjAkwjj2 ! 0 as jwj ! 1�; so there exists an 0or1o1
such that jjAkwjj2o1=2; for all r1ojwjo1: The above inequality shows that

jgðwÞj2 gj f j2j f j2 ðwÞ5M1 ð¼ 1
2
jjSjj�1Þ;

for all r1ojwjo1: Since also TgT %ff ¼ ðTf T %ggÞ
n is Fredholm, there is a positive

constant M2 and a number r2 with 0or2o1 such that

j f ðwÞj2 fjgj2jgj2ðwÞ5M2;

for all r2ojwjo1: Thus

M1M24j f ðzÞj2jgðzÞj2 gj f j2j f j2 ðzÞ fjgj2jgj2ðzÞ4M j f ðzÞj2jgðzÞj2

and hence

j f ðzÞj2jgðzÞj25M1M2=M;

for all maxfr1; r2gojzjo1:
(: Suppose that

j f ðzÞjjgðzÞj5d > 0; ð* Þ

for all 0orojzjo1: Inequality (*) implies that f and g have no zeros in the
annulus fz : rojzjo1g: Let B1 and B2 denote the (finite) Blaschke products
of the zeros of f and g; respectively. Then F ¼ f =B1 and G ¼ g=B2 are zero
free, and by (*) we have

jF ðzÞjjGðzÞj5djB1ðzÞjjB2ðzÞj;
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for all rojzjo1: The function on the right is positive and continuous
on annulus fz : 1

2
ð1þ rÞ4jzj41g; thus has a positive minimum. So putting

r ¼ 1
2 ð1þ rÞ; we have

jF ðzÞjjGðzÞj5Z0;

for all rojzjo1: Then

jGðzÞj5Z0jF ðzÞj�1;

for all rojzjo1: Note that

Z00 ¼ inffjF ðzÞjjGðzÞj : jzj4rg > 0:

If we take Z ¼ minfZ0; Z00g; then

jGðzÞj5ZjF ðzÞj�1;

for all z 2 D: By Lemma 4.2, there exist constants C1 and C2 such that

gjF j2jF j2 ðzÞ4C1
gj f j2j f j2 ðzÞ

and

gjGj2jGj2ðzÞ4C2
fjgj2jgj2ðzÞ;

for all z 2 D: Thus

gjF j2jF j2 ðzÞgjGj2jGj2ðzÞ4M 0;

for all z 2 D: As before we conclude that

gjF j2jF j2 ðzÞ gjF j�2jF j�2 ðzÞ4
M 0

Z2
;

for all z 2 D; so F satisfies condition ðA2Þ: Combining Theorem 2.1 with
Theorem 1.2 we see that TF T1= %FF is bounded. As in the proof of Theorem 3.1
if follows that TF T %GG is bounded. This implies that

Tf T %gg ¼ TB1
TF T %GGT %BB2

is bounded.
Since 1=ðF %GGÞ is bounded, the Toeplitz operator T1=ðF %GGÞ is bounded, and it

follows that TF T %GG is invertible. Since T %BB2
is Fredholm, there are bounded
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and compact operator R2 and K2 such that T %BB2
R2 ¼ I þ K2: It follows that

Tf T %ggR2 ¼ TB1
TF T %GG þ TB1

TF T %GGK2;

thus

Tf T %ggR2ðTF T %GGÞ
�1 ¼ TB1

þ TB1
TF T %GGK2ðTF T %GGÞ

�1:

Using that also TB1
is Fredholm, there are bounded and compact operator

R1 and K1 such that TB1
R1 ¼ I þ K1: Then

Tf T %ggR2ðTF T %GGÞ
�1R1 ¼ I þ K1 þ TB1

TF T %GGK2ðTF T %GGÞ
�1:

Hence Tf T %gg þK is right-invertible in the Calkin algebra. Similarly Tf T %gg þ
K is left-invertible in the Calkin algebra, so that Tf T %gg is Fredholm. ]

By essentially the same argument as above we obtain the following
characterization of Fredholm Toeplitz products on the Hardy space. This
theorem generalizes the main result (Theorem 1.2) of David Cruz-Uribe [2].

Theorem 4.3. Let f and g be in H2: Then: Tf T %gg is a bounded Fredholm

operator on H2 if and only if
dj f j2j f j2 cjgj2jgj2 is bounded on D and the function j f jjgj is

bounded away from zero @D:
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