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In this paper we study Hankel operators and Toeplitz operators through a
distribution function inequality on the Lusin area integral function and the
Littlewood�Paley theory. A sufficient condition and a necessary condition are
obtained for the boundedness of the product of two Hankel operators. They lead
to a way to approach Sarason's conjecture on products of Toeplitz operators and
shed light on the compactness of the product of Hankel operators. An elementary
necessary and sufficient condition for the product of two Toeplitz operators to be
a compact perturbation of a Toeplitz operator is obtained. Moreover, a necessary
condition is given for the product of Hankel operators to be in the commutator
ideal of the algebra generated by the Toeplitz operators with symbols in a Sarason
algebra. � 1996 Academic Press, Inc.

Introduction

Let D be the open unit disk in the complex plane and �D the unit circle.
Let d_(w) be the normalized Lebesgue measure on the unit circle. The
Hardy space H 2 is the subspace of L2(�D, d_) which is spanned by P+ , the
space of analytic polynomials. So there is an orthogonal projection P from
L2 onto the Hardy space H 2, the so-called Hardy projection. Let f be in L2.
The Toeplitz operator Tf and the Hankel operator Hf with symbol f are
defined by Tf p=P( fp), and Hf p=(1&P)( fp), for all p in P+. Obviously
they are densely defined on the Hardy space H2.

A central problem in the theory of Toeplitz operators and Hankel
operators is to establish relationships between the fundamental properties
of those operators and analytic and geometric properties of their symbols.
In this paper we will focus on two such basic properties. One is bounded-
ness of the product of two Toeplitz operators or two Hankel operators.
The other one is compactness of the product.

The map ! : f � Tf is a contractive *-linear mapping from L� into the
bounded operators on H2. But it does not (fortunately) preserve products.
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Without this apparent defect, the theory of Hf and Tf would be much less
interesting. On the other hand, Douglas [8] showed that ! is actually an
isometric cross section for a *-homomorphism from the Toeplitz algebra
onto L�. In special cases, ! is multiplicative. Brown and Halmos [2]
showed that TfTg=Tfg if and only if either f� or g is in H�.

The discovery of such multiplicative properties as ! possesses has
provided one key to analysis of Hf and Tf . A weak form of multiplicativity
is suggested by the fact that two Toeplitz operators with symbols in C(�D)
commute with each other modulo the compact operators [5]. This leads to
a hard problem: for which f, g # L� is the semi-commutator Tfg&Tf Tg

(which equals Hf�
* Hg) compact? This problem also arose from studying the

Fredholm theory of Toeplitz operators by Douglas, Sarason and many
other people in the 1970s. The problem was solved by the combined efforts
of Axler, Chang and Sarason [1] and Volberg [17] more than ten years
ago. Their beautiful result is that Tfg&Tf Tg is compact if and only if
H�[ f� ] & H�[ g]/H �+C(�D); here H �[ g] denotes the closed sub-
algebra of L� generated by H � and g. Since then several other papers
have studied this problem and found additional equivalent conditions; see
[10], [13] and [18]. Sarason [15] asked for more comprehensible condi-
tions. In this paper we will obtain an elementary characterization of the
compactness of the product of two Hankel operators. One of main results
in this paper is that Tfg&Tf Tg is compact if and only if

lim
|z| � 1

&Hf� kz&2 &Hgkz&2=0; (*)

here kz denotes the normalized reproducing kernel in H2 for point evalua-
tion at z.

Little is known about when the product of Hankel operators is bounded.
Recently Sarason [14] found a class of examples for which the product
TgTh� is bounded for two outer functions g and h in H2, from his study of
de Branges spaces. He posed the problem of characterizing pairs of outer
functions f and g in H2 of the unit disk such that the operator TfTg� is
bounded on H2. He made the following conjecture.

Sarason's Conjecture. Let g and h be outer functions in H2. The
product TgTh� is bounded if and only if

sup
z # D

| g| 2 (z) |h| 2 (z)<�. (**)

Here we follow the convention of identifying functions on the unit circle
with their harmonic extensions, defined via Poisson's formula, into the unit
disk D.
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The Sarason conjecture is related to a famous open problem: When is
the Hilbert transform bounded from a weighted L2(v) to another weighted
L2(w)? We will address this problem in another paper.

Treil showed that if the product Tg Th� is bounded, then the condition
(**) holds in Sarason's Conjecture. Conversely, we will show that the con-
dition (**) with 2 replaced by 2+= implies that TgTh� is bounded.

Because of the identity Hf�
* Hg� =Tfg� &TfTg� the problem of determining

when Tf Tg� is bounded reduces to the problem of determining when Hf�
* Hg�

is bounded. On the product of Hankel operators we make the following
conjecture.

Conjecture (*). Let f and g be in L2. Then the product Hf�
* Hg is bounded

if and only if

sup
z # D

&Hf� kz&2 &Hgkz&2<�. (-)

Let f+ and f& denote P( f ) and (1&P) f, respectively for f # L2. Then
the condition (-) is equivalent to

sup
z # D

& f+ b ,z& f+(z)&2 &g& b ,z& g&(z)&2<�. (***)

We will show that the condition (-) is necessary for Hf�
* Hg to be bounded

and that the condition (***) is sufficient if the 2 is replaced by 2+=.
This paper is arranged as follows. In Section 1 a necessary condition is

obtained for the boundedness of the product of two Hankel operators. We
will present an elementary condition for the compactness for the product
in Section 2 and show that the condition is also sufficient in Section 8.
Using the condition we will give another proof of Volberg's part of the
Axler�Chang�Sarason�Volberg Theorem in Section 3. In Section 4 the
result in Section 3 is extended to more general Douglas algebras. The dis-
tribution function inequality is established in Section 5. A sufficient condi-
tion is obtained for the boundedness of the product of Hankel operators in
Section 6. The result in Section 6 leads to a sufficient condition for the
boundedness of the product of Toeplitz operators in Section 7. The letter
C will denote a positive constant, possibly different on each occurrence.

1. A Necessary Condition for Boundedness

In this section a necessary condition is obtained for the boundedness of
the product of two Hankel operators. First we introduce an antiunitary
operator V on L2 by defining (Vh)(w)=e&i%h(w). The operator enjoys
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many nice properties such as V&1(1&P) V=P and V=V&1. These
properties lead easily to the relation V&1Hf V=Hf*.

Let x and y be two vectors in L2. x� y is the operator of rank one
defined by

(x� y)( f )=( f, y) x.

Observe that the norm of the operator x� y is &x&2 &y&2 .
For z in D, let kz be the normalized reproducing kernel (1&|z| )1�2�

(1&z� w) for point evaluation at z, and ,z the Mo� bius map on the unit disk,

,z(w)=
z&w
1&z� w

.

,z can also be viewed as a function on the unit circle. The product T,z T,z

is the orthogonal projection onto H2�[kz]. Thus 1&T,zT,z is the
operator kz �kz of rank one. This leads to the following Lemma.

Lemma 1. Let f and g be in L2, and z in D. Then H f*Hg&
T*,z Hf*HgT,z , is a bounded operator with norm &Hf kz&2 &Hgkz&2 .

Proof. By the following identity due to Treil:

T*,z Hf*HgT,z=H f*(1&P) ,z(1&P) ,z Hg ,

we have

Hf*Hg&T*,z H f*HgT,z=Hf*[1&(1&P) ,z(1&P) ,z] Hg .

On the other hand, one easily verifies that

1&(1&P) ,z(1&P) ,z=V(1&T,z T,z) V*=(Vkz)� (Vkz).

Thus

Hf*Hg&T*,z Hf*HgT,z=(Hf*Vkz)� (H*gVkz).

Since V&1Hf V=Hf*, we obtain

Hf*Hg&T*,z H f*HgT,z=V[(Hf kz)� (Hg kz)] V*.

Because V is antiunitary, we conclude that

&Hf*Hg&T*,z Hf*HgT,z&=&Hf kz&2 &Hgkz&2 .

This completes the proof of Lemma 1.
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We thank the referee for pointing out the above proof to simplify our
original proof. Using Lemma 1, we present a proof of the result of Brown�
Halmos [2].

Corollary. Let f and g be in L2. If H f*Hg is zero, then either f or g
is in H2.

Proof. Assuming Hf*Hg is zero, H f*Hg&T*,z Hf*HgT,z is zero. But by
Lemma 1, the norm of Hf*Hg&T*,z Hf*Hg T,z is &Hf kz&2 &Hgkz&2 . So
either &Hf kz&2 or &Hgkz&2 is zero. In particular, either &Hf 1&2 or &Hg1&2

is zero. This implies that either f or g is in H 2.

The following Theorem gives a necessary condition for the boundedness
of the product of two Hankel operators.

Theorem 1. If Hf*Hg is bounded on H 2, then

sup
z # D

&Hf kz&2 &Hgkz&2<�.

Proof. If H f*Hg is bounded on H 2, let M be the norm of Hf*Hg . Let
z be a fixed point in D. Then Hf*Hg&T*,z Hf*Hg T,z is also bounded. Its
norm is not greater than 2M. On the other hand, by Lemma 1, the norm
of H f*H*g&T*,z Hf*HgT,z is &Hf kz&2 &Hgkz&2 . So

sup
z # D

&Hf kz&2 &Hgkz&2�2M,

which completes the proof of the theorem.

2. A Necessary Condition for Compactness

Let [Tf , Tg) be the semi-commutator Tf Tg&Tfg . Thus [Tf , Tg)=
Hf�

* Hg . If f is in C(�D), by a result of Coburn [5], we see that both Hf

and Hf� are compact and so limz � �D &Hf kz&=0 and limz � �D &H f� kz&=0
since kz weakly converges to zero as z goes to �D. The following lemma
gives a nice property of compact operators.

Lemma 2. Let K be a compact operator on H2. Then

lim
z � �D

&K&T*,z KT,z&=0.

Proof. By a result in [5], the commutator ideal of the Toeplitz algebra
F(C(�D)) generated by the Toeplitz operators with symbols in C(�D)
equals the ideal of compact operators. One easily verifies that the operators
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Th[Tf1
, Tg1

)[Tf2
, Tg2

) } } } [Tfn , Tgn), with h, fi and gi in C(�D) for i=1, ..., n
and any n>0, span the commutator ideal. So it suffices to show

lim
z � �D

&K&T*,z KT,z&=0

for K=Th[Tf , Tg). Because 1&T,z T*,z is kz�kz and T*,zTh T,z=Th ,

&Th[Tf , Tg)&T*,z Th[Tf , Tg) T,z&

=&Th[Tf , Tg)&T*,z Th(T,z T*,z+kz�kz)[Tf , Tg) T,z&

�&Th& &[Tf , Tg)&T*,z[Tf , Tg) T,z&+&Th& &[Tf , Tg)* kz&2 .

By Lemma 1, the first term goes to zero as z � �D while the second term
goes zero too as z � �D by the compactness of [Tf , Tg). So

lim
z � �D

&Th[Tf , Tg)&T*,z Th[Tf , Tg) T,z&=0,

which completes the proof of the lemma.

Theorem 2. Let f and g be in L2. If H f*Hg is compact, then

lim
z � �D

&Hf kz&2 &Hgkz&2=0.

Proof. Let H f*Hg be compact. By Lemma 2 we have

lim
z � �D

&Hf*Hg&T*,z Hf*HgT,z&=0.

On the other hand, by Lemma 1,

&Hf*Hg&T*,z Hf*HgT,z&=&Hf kz&2 &Hgkz&2 .

This completes the proof of the theorem.

3. More on Necessary Conditions for Compactness

In this section we will present a new proof of Volberg's part of the Axler�
Chang�Sarason�Volberg theorem using the elementary condition in
Theorem 2. The following lemma is the key.

Without loss of generality we may assume that & f &�<1. As in [17],
there is a unimodular function u in f +H� such that Tu is invertible.
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Lemma 3. If Tu is invertible, then there is a constant Cu>0 such that

&Hukz&
2
2�(1&|u(z)| 2)�Cu&Hukz&

2
2

for all z in D.

Proof. The first inequality does not need the hypothesis of invertibility
and is evident. An elementary computation yields

&Hukz&
2
2=| |(1&P)(ukz)| 2

=| |(1&P)((u&u(z)) kz | 2�| |(u&u(z))|2 |kz | 2 d_

=1&|u(z)| 2

since u is unimodular. The hard part is to prove the second inequality.
Now we turn to the proof. First, we have

Hu kz=Hu&
kz=u& kz&Tu&

kz=(u&&u&(z)) kz ,

and

Tu� kz=Tu&
kz+Tu+

kz

=u& kz+u+(z) kz=(u&&u&(z)) kz+u(z) kz ,

from which the equality

&Hukz&2=&Tu� &u(z) kz&2

is immediate. On the other hand,

&Tu� &u(z) kz&
2
2=&P((u� &u(z)) kz&

2
2=&P[u� (1&u(z) u) kz]&2

2

�1�2 &Tu� P[(1&u(z) u) kz]&2
2

&&P[u� (1&P)[(1&u(z) u) kz]]&2
2

=1�2 &Tu� P[(1&u(z) u) kz]&2
2&&H*uH1&u(z) u kz&

2
2 .

Since Tu� is invertible, there is a constant K>0 such that

&Tu� P[(1&u(z) u) kz]&2
2�K &P[(1&u(z) u) kz]&2

2=K &T1&u(z) u kz&
2
2 .
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One easily verifies

&T1&u(z) ukz&
2
2=&(1&u(z) u) kz&

2
2&&H1&u(z) ukz&

2
2

=1&|u(z)| 2&|u(z)| 2 &Hukz&
2
2 .

Combining the above inequality and equation yields

&Hukz&
2
2�K�2(1&|u(z)| 2&|u(z)| 2 &Hukz&

2
2)&&H*u H1&u(z) ukz&

2
2

�K�2(1&|u(z)| 2&|u(z)| 2 &Hu kz&
2
2)&|u(z)| 2 &Hukz&

2
2

=K�2(1&|u(z)| 2)&(K�2+1) |u(z)| 2 &Hukz&
2
2 .

The second inequality in Lemma 3 follows immediately from the above
inequality.

This completes the proof of Lemma 2.

Theorem 3. Let u and v be two unimodular functions such that Tu and
Tv are invertible. For any z # D,

&H*u Hv&T*,z H*u HvT,z&
2�

(1&|u(z)| 2)(1&|v(z)| 2)
CuCv

,

where Cu is the constant in Lemma 3.

Proof. By Lemma 1 we have

&H*u Hv&T*,z H*u HvT,z&
2=&Hukz&

2
2 &Hvkz&

2
2 .

Lemma 3 yields

&H*u Hv&T*,z H*u HvT,z&
2�

(1&|u(z)| 2)(1&|v(z)| 2)
CuCv

.

This completes the proof of Theorem 3.

Now we are ready to present a new proof of Volberg's part of the Axler�
Chang�Sarason�Volberg Theorem. Before doing so we recall concepts
about function algebras. As Douglas algebras play a prominent role in
various problems on Toeplitz operators and Hankel operators, we need
some properties of them. A Douglas algebra is, by definition, a closed sub-
algebra of L� which contains H�. It is a consequence of the Gleason�
Whitney Theorem that the maximal ideal space M(B) of a Douglas algebra
B is naturally imbedded in M(H�), the maximal ideal space of H�. A sub-
set of M(L�) will be called a support set if it is the (closed) support of the
representing measure for a functional in M(H�+C(�D)).
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Lemma 4. Let f and g be in L�. let m be a point in M(H�+C(�D))
and S the support set of m. If there is a net [z:] in D converging to m such
that

lim
z: � m

&Hf kz:&2 &Hgkz:&2=0

then either f |S or g|S is in H�|S .

Proof. Without loss of generality we may assume that & f &�<1 and
&g&�<1. Then it is well-known that there are unimodular functions u in
f +H� and v in f +H� such that both Tu and Tv are invertible. Since
Hf =Hu and Hg=Hv , we have

lim
z: � m

&Hukz:&2 &Hvkz:&2=0.

But Theorem 3 implies

&Hukz:&2 &Hvkz:&
2�

(1&|u(z:)| 2)(1&|v(z:)| 2)
CuCv

for some constants Cu and Cv . Therefore

lim
z: � m

(1&|u(z:)| 2)(1&|v(z:)| 2)=0.

As u and v are continuous on the maximal ideal space of H�, we see

(1&|u(m)| 2)(1&|v(m)| 2)=0.

So either 1&|u(m)| 2=0 or 1&|v(m)| 2=0. We may assume that (1&
|u(m)|2)=0. Thus |u(m)|=1. Let d+ be the representing measure of m.
Then u(m)=�S u d+. Because u is unimodular, we obtain that u is constant
on S, so f |S is in H �|S . This completes the proof of the lemma.

Let f be in L�. The Douglas algebra generated by the function f in L�

will denoted by H�[ f ]. The following theorem is Volberg's part of the
Axler�Chang�Sarason�Volberg theorem. Our proof seems new.

Theorem 4. Let f and g be in L�. If Hf*Hg is compact, then H �[ f ] &

H�[ g]/H�+C(�D).

Proof. From Lemma 2 [1], it suffices to show that for each support set
S, either f |S or g|S is in H�|S . The set S is the support set for a point m
in M(H �+C(�D)). The corona theorem tells us that there is a net [z:]

485TOEPLITZ AND HANKEL OPERATORS



File: AAAAAA 288510 . By:CV . Date:12:07:96 . Time:08:07 LOP8M. V8.0. Page 01:01
Codes: 2748 Signs: 1815 . Length: 45 pic 0 pts, 190 mm

in D converging to m. On the other hand, by Theorem 3 the compactness
of H f*Hg implies

lim
z: � m

&Hf kz:&2 &Hgkz:&2=0.

The theorem follows from Lemma 4.

4. Commutator Ideals of Toeplitz Algebras

In this section we extend results to general Douglas algebras. Let B be
a Douglas algebra. The Chang-Marshall theorem [5] tells us that every
Douglas algebra is generated as a closed algebra over H� by a family of
complex conjugates of Blaschke products. An important part of Chang's
proof is the study of a certain mean oscillation condition connected with a
Douglas algebra. As in [16], a statement such as ``�(z) � 0 as z � M(B)''
has the following obvious interpretation: given =>0 there is a Blaschke
product b # B&1 and + # (0, 1) such that |�(z)|<= whenever |b(z)|>+. This
is equivalent to the statement: ``Whenever a net [z:] in D converges to a
point in M(B), �(z:) � 0.''

Define VMOB=[ f # BMO : | f & f (z)|2(z) � 0 as z � M(B)]. There are
several characterizations on VMOB . ([4], [16]). we are interested in an
operator theoretic characterization of VMOB , which is easily gotten from
[4] and [16]. we need appropriate concepts from operator theory. Let CB

be the Sarason algebra, the C*-algebra generated by the inner functions
that are invertible in B. Chang [3] proved that B=H �+CB and
VMOB=CB+C� B . It is easy to check that

lim
z � M(B)

max[&Hf kz&2 , &Hf� kz&2]=0,

for f # VMOB .
For A a subset of L�, let F(A) denote the closed subalgebra of the

algebra of bounded operators on H2 generated by [Tf : f # A] and J(A)
the commutator ideal of the algebra F(A).

Proposition. Let f be in BMO and B a Douglas algebra. Then both
Hf*Hf and Hf�

* Hf� are in J(CB) if and only if f is in VMOB .

To prove the Proposition we need the following Lemma.

Lemma 5. Let CB be a Sarason algebra. If K is in the commutator ideal
J(CB), then

lim
z � M(B)

&K&T*,zKT,z&=0.
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Proof. Since the commutator ideal J(CB) is generated by those
elements Th[Tf , Tg) for f, g, and h in CB , we need only to show

lim
z � M(B)

&Th[Tf , Tg)&T*,z Th[Tf , Tg) T,z&=0.

Using the same method in the proof of Lemma 1, we have

&Th[Tf , Tg)&T*,z Th[Tf , Tg) T,z&

�&Th& &Hf� kz& &Hgkz&+&Th& &[Tf , Tg)* kz&.

Because f and g are in CB , &Hf� kz&, &Hgkz&, and &[Tf , Tg)* kz& go to zero
as z � M(B). Thus

lim
z � M(B)

&Th[Tf , Tg)&T*,z Th[Tf , Tg) T,z&=0,

which completes the lemma.

Proof of Proposition. If both Hf*Hf and H f�
*Hf� are in J(CB), by

Lemma 5, we have

lim
z � M(B)

&Hf*Hf&T*,zH f*Hf T,z&=0

and

lim
z � M(B)

&Hf�
*Hf� &T*,z Hf�

*Hf� T,z&=0.

It follows from Lemma 1 that limz � M(B) &Hf kz&2=0 and limz � M (B)

&Hf� kz&2=0. So f is in VMOB .
The other direction follows from the equality VMOB=CB+C� B [4].

The following theorem is the extension of Theorem 4. It was proved in
[5] that J(CB) is the ideal of compact operators if the Douglas algebra B
is the minimal Douglas algebra H�+C(�D).

Theorem 5. Let f and g be in L�. If Hf*Hg is in the commutator ideal
J(CB), then H �[ f ] & H �[ g]/H �+CB .

Proof. First we show that for each support set S for a point in M(B),
either f |S or g|S is in H�|S . Since Hf*Hg is in the commutator ideal
J(CB), from Lemma 5 it follows that

lim
z � M(B)

&Hf*Hg&T*,z Hf*HgT,z&=0.
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On the other hand, by Lemma 1 we have

&Hf*Hg&T*,z Hf*HgT,z&=&Hf kz&2 &Hgkz&2 .

So

lim
z � M(B)

&Hf kz&2 &Hgkz&2=0.

Let S be a support set for a point m in M(B). Then there is a net [z:] in
D converging to m. Thus

lim
z: � m

&Hf kz:&2 &Hgkz:&2=0.

By Lemma 4, either f |S or g|S is in H �|S .
To establish the theorem, we need to show that M(H�[ f ] & H �[ g])

contains M(B), since the maximal ideal space of a Douglas algebra com-
pletely determines the algebra. Because on the support set for each point m
in M(B) either f or g is in H�, the representing measure of m is multi-
plicative either on H�[ f ] or on H�[ g] and hence on H�[ f ] & H �[ g].
Thus M(H�[ f ] & H�[ g]) contains M(B). This completes the proof of
the theorem.

One may expect that the converse of Theorem 5 holds. But when B is
not the minimal Douglas algebra H�+C(�D) or L�, J(CB) is not an
ideal of the Toeplitz algebra F(L�), though it is the commutator ideal of
F(CB).

5. The Distribution Function Inequality

In this section we will get a distribution function inequality involving the
Lusin area integral and a certain maximal function. Some notations are
needed.

For w a point of �D, we let 1w denote the angle with vertex w and opening
?�2 which is bisected by the radius to w. The set of points z in 1w satisfying
|z&w|<= will be denoted by 1w, = . For h in L1(�D), we define the trun-
cated Lusin area integral of h to be

A=(h)(w)=_|1w, =

| gradh(z)| 2 dA(z)&
1�2

where h(z) means the harmonic extension of h to D via the Possion
integral:

h(z)=|
�D

h(w)
(1&|z| 2)
|1&wz� | 2 d_(w).
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Here dA(z) denotes the normalized Lebesgue measure on the unit disk D
and d_(w) denotes the normalized Lebesgue measure in the unit circle �D.
The Hardy�Littlewood maximal function of the function h will be denoted
by h*, and for r>1, we let 4rh=[(|h| r)*]1�r. For z # D, we let Iz denote
the closed subarc of �D with center z�|z| and measure $(z)=1&|z|. The
Lebesgue measure of the subset E of �D will be denoted by |E|.

Let f and g be in L2 and l>2. Define

5l (z)=[| f&& f&(z)| l (z)]1�l [| g&& g&(z)| l (z)]1�l

for z in D.
We have the following distribution function inequality.

Theorem 6. Let f and g be in L2, and , and � in the Hardy space H 2.
Fix l>2. Then there are numbers p, r # (1, 2) with 1�l+1�r=1�p, such that
for |z|>1�2 and a>0 sufficiently large,

|[w # Iz : A2$(z)(Hf ,)(w) A2$(z)(Hg�)(w)

<a25l (z) inf
w # Iz

4r(,)(w) inf
w # Iz

4r(�)(w)]|�Ca |Iz |.

Moreover, the constant Ca can be chosen to satisfy lima � � Ca=1.

Proof. For a fixed z in D and a>0 let E(a) be the set of points in Iz

where

A2$(z)(Hf ,)(w)�a[| f&& f&(z)| l (z)]1�l inf
w # Iz

4r(,)(w)

and F(a) the set of points in Iz where

A2$(z)(Hg�)(w)�a[| g&& g&(z)| l (z)]1�l inf
w # Iz

4r(�)(w).

Then we will get the following distribution function inequalities for a>0
sufficiently large:

|E(a)|�Ka |Iz |, (*)

and |F(a)|�Ka |Iz |, with lima � � Ka=1. For simplicity we will present
only the details of the proof of (*). The same method will prove the second
distribution function inequality.

First we show how Theorem 6 follows from these two distribution
inequalities. It is easy to see that
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E(a) & F(a)/[w # Iz : A2$(z)(Hf ,)(w) A2$(z)(Hg�)(w)

<a2[ | f&& f&(z)| l(z)]1�l [| g&& g&(z)| l (z)]1�l

_ inf
w # Iz

4r(,)(w) inf
w # Iz

4r(�)(w)].

Since lima � � Ka=1, Theorem 6 follows from

|[w # Iz : A2$(z)(Hf ,)(w) A2$(z)(Hg�)(w)

<a2[ | f&& f&(z)| l (z)]1�l [| g&& g&(z)| l (z)]1�l

_ inf
w # Iz

4r(,)(w) inf
w # Iz

4r(�)(w)]|

�|E(a)|+|F(a)|&|Iz |�(2Ka&1) |Iz |

if Ca=2Ka&1.
Now we turn to the proof of (*). The proof consists of three steps. Let

/E denote the characteristic function of the subset E of �D. In order to
prove (*) we write Hf , as Hf ,=(1&P) ,1+(1&P) ,2 where ,1=
[ f&& f&(z)](/2Iz,), and ,2=[ f&& f&(z)](/�D�2Iz,).

Step 1. For l>2, there is a positive constant C and r # (1, 2) such
that

_|Iz

A=((1&P) ,1) p d_(w)&
1�p

�C |Iz | 1�p [ | f&& f&(z)| l (z)]1�l inf
w # Iz

4r ,(w),

where 1�l+1�r=1�p, and p>1.
For l>2, we can always find l $>2 and p>1 so that l=l $p and

r= pl $�l $&2<2. By the theorem of Marcinkiewicz and Zygmund, the
truncated Lusin area integral A= f (w) is L p-bounded for 1<p<�. So for
l>2, we have

|
Iz

[A=(1&P)(,1)(w)] p d_(w)

�C |
�D

|,1 | p d_(w)

=C |
2Iz

| f&(w)& f&(z)| p |,(w)| p d_(w)

�|2Iz | _ 1
|2Iz | |2Iz

| f&(w)& f&(z)| pl $ d_(w)&
1�l $

__ 1
|2Iz | |2Iz

|,| r d_(w)&
p�r

.
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Let P(z, w) denote the Poisson kernel for the point z. Since

_ 1
|2Iz | |2Iz

|,| r d_(w)&
1�r

�4r,(w)

for each w # 2Iz , and an elementary estimate shows that for w # 2Iz ,
P(z, w)>C�|2Iz |, it follows that

_|Iz

A=((1&P)(,1)(w)) p d_(w)&
1�p

�C |Iz | 1�p [| f&& f&(z)| l (z)]1�l inf
w # Iz

4r ,(w).

Step 2. For l>2, on Iz ,

A=((1&P)(,2))(u)�C[ | f&& f&(z)| l (z)]1�l inf
w # Iz

4l $(,)(w),

for some C>0 and 1�l+1�l $=1. For ,2 , we shall use a pointwise estimate
of the norm of the gradient of (1&P) ,2 . It is easy to see that

(1&P)(,2)(w)=
1

2? |
w� !,2(!)
1&w� !

d_(!).

So the function (I&P)(,2)(w) is anti-holomorphic in D. Thus

| grad(1&P) ,2(w)|�C |
|,2(!)|

|1&w� !| 2 d_(!)

�C |
�D�2Iz

|[ f&(!)& f&(z)] ,(!)|
|1&w� !| 2 d_(!)

On the other hand, there is a constant C>0 so that

} 1&!z�
1&!w� }�C

for all ! in �D�2Iz and w in 1u, 2= . Thus we obtain

| grad(1&P) ,2(w)|�C |
�D�2Iz

|[ f&(!)& f&(z)] ,(!)|
|1&z� !| 2 d_(!).

Applying the Ho� lder inequality yields

| grad(1&P) ,2(u)|�
C

1&|z| 2 [ | f&& f&(z)| l (z)]1�l [(|,| l $)(z)]1�l $.
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Because the nontangential maximal function is bounded by a constant
times the Hardy�Littlewood maximal function, and because z belongs
1u, 2= , the last factor on the right is no larger than C4l $,(u), and the
desired inequality is established.

Step 3. This step will complete the proof of the distribution function
inequality (*) by combining the last two steps. Since Hf ,=(1&P) ,1+
(1&P) ,2 , we have A2$(z)(Hf ,)(w)�A2$(z)((1&P) ,1)(w)+A2$(z)((1&P)
(,2))(w). So for any *>0,

,
2

i=1
{w # Iz : A2$(z)((1&P) ,i)�

*
2=/[w # Iz : A2$(z)(Hf ,)�*].

Let Ei (a) be the subset of Iz such that

A2$(z)((1&P) ,i)�a[| f&& f&(z)| l (z)]1�l inf
w # Iz

4r(,)(w)

for i�2.
Then we have

,
2

i=1

Ei (a�2)/E(a).

Since

|Iz �E1(a�2)| 1�p a[| f&& f&(z)| l (z)]1�l inf
w # Iz

4r(,)(w)

�_|Iz

A2$(z)[(1&P) ,1] p d_(w)&
1�p

,

it follows from Step 1 that

|Iz �E1(a�2)|�|Iz | a&pK

for some positive constant K which is independent of a. Hence |E1(a�2)|�
(1&a&pK) |Iz | for a sufficiently large a.

By Step 2, for a>0 sufficiently large we have

A2$(z)[(1&P) ,2](u)<a[| f&& f&(z)| l (z)]1�l inf
w # Iz

4l ,(w)

everywhere on Iz , which implies E2(a�2)=Iz . So

|E(a)|�(1&a&pK) |Iz |.

This completes the proof of (*) if we choose Ka=1&a&pK.
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6. A Sufficient Condition for Boundedness

In this section we apply the distribution inequality in Section 5 and the
following well-known identity, the so-called Littlewood�Paley formula, to
get a sufficient condition for the boundedness of Hf*Hg . The idea to use
the distribution inequality in the theory of Toeplitz operators and Hankel
operators was first appeared in [1].

The Littlewood�Paley Formula. If h1 and h2 are in L2 and h1(0)
h2(0)=0, then

(h1 , h2) =
1
? ||

D
(gradh1(z), gradh2(z)) log

1
|z| 2 dA(z).

The Littlewood�Paley formula is a bridge from the unit circle to the unit
disk which plays an important role in analysis on the unit disk [9].

Theorem 7. Let f and g be in L2. Let l>2. If supz # D 5l (z)<�, then
Hf*Hg is bounded.

Proof. Let , and � be in H2. Then

(Hf*Hg�, ,) =(Hg �, Hf ,) .

Using the Littlewood�Paley formula, we have

(Hf*Hg�, ,) =|| (grad(Hg �)(z), grad(Hf ,)(z)) log
1
|z|

dA(z).

Define

I=||
|z| >1�2

(grad(Hg�)(z), grad(Hf ,)(z)) log
1
|z|

dA(z).

and

II=||
|z|<1�2

(grad(Hg�)(z), grad(Hf ,)(z)) log
1
|z|

dA(z).

It is easy to verify that there is a compact operator T on H2 such that

II=(T�, ,).
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We claim that there is a constant C>0 such that

|I |�C sup
z # D

5l (z) &�&2 &,&2 .

So &Hf*Hg&�&T&+C supz # D 5l (z). Now we turn to the proof of the
claim. Fix an a>0 for which the distribution function inequality holds. For
w # �D, let \(w) denote the maximum of those numbers = for which

A=(Hf ,)(w) A=(Hg�)(w)�a2 sup
z # D

5l (z) 4r,(w) 4r�(w).

Thus

|
�D

A\(w)(Hf ,)(w) A\(w)(Hg�)(w) d_(w)

�a2 sup
z # D

5l (z) |
�D

4r(,)(w) 4r(�) d_(w)

�a2 sup
z # D

5l (z) &4r(,)&2 &4r(�)&2

�a2 sup
z # D

5l (z) &,&2 &�&2 .

The last inequality holds because the Hardy�Littlewood maximal function
is bounded on L2�r, since 2�r>1.

On the other hand, letting /w(z) denote the characteristic function of
1w, \(w) , we have

|
�D

A\(w)(Hf ,)(w) A\(w)(Hg�)(w) d_(w)

=|
�D \|1w, \(w)

| grad(Hf ,)(z)| 2 dA(z)+
1�2

_\|1w, \(w)

| grad(Hg �)(z)| 2 dA(z)+
1�2

�|
|z|>1�2

|
�D

/w(z) | grad(Hf ,)(z)| | grad(Hg�)(z)| d_(w) dA(z).

Now the distribution function inequality tells us that \(w)�2(1&|z| ) on
a subset of Iz whose measure is at least Ca(1&|z| ). If w # Iz and \(w)�
2(1&|z| ), then z in 1w, \(w) . Thus /w(z)=1 on a subset of Iz of measure at
least Ca(1&|z| ). Combining this observation with the previous inequality,
we obtain
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|
�D

A\(w)(Hf ,)(w) A\(w)(Hg�)(w) d_(w)

�Ca |
|z| >1�2

| grad(Hf ,)(z)| | grad(Hg�)(z)| (1&|z| ) dA(z)

�Ca |I |.

So

|I |�C sup
z # D

5l (z) &,&2 &�&2 .

This completes the proof of the theorem.

To end the section we make a remark on 5l (z) for special functions f
and g. For a function f anti-holomorphic on D, we can get easily

| f&& f&(z)| l (z)=[| f& f (z)| l (z)]1�l.

So in the case that both f and g are anti-holomorphic on D, 5l (z) can be
written as

5l (z)=[| f& f (z)| l (z)]1�l [ | g&g(z)| l (z)]1�l.

This indicates that 5l (z) depends only the behavior of f and g on the disk.
In the next section we use this representation of 5l (z) to study the product
of two unbounded Toeplitz operators.

7. The Product of Two Toeplitz Operators

In the section we deal with the product of two unbounded Toeplitz
operators. The problem posed by Sarason in [15] is the main motivation
of this paper. It arose in [14], which contains a class of examples for which
the product Tf Tg� is bounded even though at least one of the factors is not.

Because of the identity Hf�
* Hg� =Tfg� &TfTg� , we see that the result in the

above section can be applied to the product of two Toeplitz operators. To
compare with Sarason's conjecture we state the following theorem in terms
of a small number =.

Theorem 8. Let f and g be two outer functions in H2. If, for some =>0,

sup
z # D

[| f | 2+= (z)][ | g| 2+= (z)]<�,

then Tf Tg� is bounded.
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Proof. First we are going to show that Hf�
* Hg� is bounded. From

Theorem 7 it is sufficient to show that supz # D 52+=(z)<�. By the remark
at the end of the last section, we have

52+=(z)2+==[| f& f (z)| 2+= (z)][ | g& g(z)| 2+= (z)].

But

| f& f (z)| 2+= (z)�C[| f | 2+= (z)+| f (z)| 2+=]�2C| f | 2+= (z).

Thus

52+=(z)2+=�C[| f | 2+= (z)][ | g| 2+= (z)].

So supz # D 52+=(z)2+=<�. It follows from Theorem 7 that H f�
* Hg� is

bounded. Because of the identity Hf�
* Hg� =Tfg� &TfTg� , we need to show fg�

is in L� to complete the proof of the Theorem. The boundedness of the
function fg� follows easily from

| f (z) g� (z)|= } | f (w) g(w)
1&|z| 2

|1&zw� | 2 d_(w) }
�[| f | 2+= (z)]1�(2+=) [ | g| 2+= (z)]1�(2+=).

The following corollary is a consequence of either the Helson�Szego�
theorem or the Hunt�Muckenhoupt�Wheeden theorem ([9], [12]), as
pointed out in [15]. But it is a direct consequence of Theorem 8.

Corollary 1. Let f be an outer function in H2. If the function | f | 2

satisfies Muckenhoupt's condition (A2), i.e.,

sup
z # D

[| f | 2 (z)][ | f |&2 (z)]<�,

then Tf Tf� &1 is bounded.

Proof. Since Coifman and Fefferman [6] showed that if a weight w
satisfies (Ap), then w also satisfies (Ap&=) for some =>0, it is easy to see
that f also satisfies

sup
z # D

[| f | 2+= (z)][ | f | &(2+=) (z)]<�

for some =>0. So the corollary follows from Theorem 8.
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From the result of Coifman�Fefferman [6], one may expect that there
is a so-called reverse Ho� lder inequality that for two outer functions f and
g: if

sup
z # D

[| f | 2 (z)][ | g| 2 (z)]<�

then

sup
z # D

[| f | 2+= (z)][ | g| 2+= (z)]<�

for some =>0. But this is not true. Wolff showed us the following coun-
terexample.

Example. Let f be the an outer function such that | f (w)|=1�
|%| 1�2 |log( |%|�2)| for w=ei?% and % # (0, 1) _ (&1, 0), and g(w)=1&w. So
f (z) g(z) is in L�. But f is not in H2+= for any =>0. Of course,

sup
z # D

[| f | 2+= (z)][ | g| 2+= (z)]<�

doesn't hold.
On the other hand, for p in H2 with p(0)=0, we have Tg� p=g� p. So

Tf Tg� p= fg� p. Thus

&Tf Tg� p&2�& fg&� &p&2 .

Therefore Tf Tg� is bounded. From [15] it follows that supz # D [| f | 2 (z)]
[ | g| 2 (z)]<�.

When Tf Tg� is invertible, Sarason's conjecture was proved in [7]. A
characterization is found for Tf Tg� to be bounded and invertible in [7].
Here we give another characterization as follows.

Corollary 2. Let f and g be two outer functions. Then Tf Tg� is bounded
and invertible if and only if f and g satisfy the following conditions

sup
z # D

( | f | 2 (z))( | g| 2 (z))<�, (1)

and

inf
z # D

( | f | 2 (z))( | g| 2 (z))>0. (2)

Proof. If Tf Tg� is bounded, Treil's result [15] tells us that (1) holds. If
Tf Tg� is invertible, then there is a constant C>0 such that

&Tf Tg� kz&>C.
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But Tf Tg� kz=g(z) fkz . Thus | g(z)|2 ( | f | 2 (z))>C 2. Also we have | g(z)| 2�
(| g| 2 (z)). So ( | g| 2 (z))( | f | 2 (z))>C 2 for all z # D. This implies that (2)
holds.

Conversely if both (1) and (2) hold, we claim that there are two con-
stants C1>0 and C2>0 such that C1�| f (z) g(z)|�C2 . Then (1) gives us
that

�>sup
z # D

( | f | 2 (z))( | f &1fg| 2 (z))�sup
z # D

( | f | 2 (z))( | f | &2 (z)) C 2
1 .

By Corollary 1, we see that Tf Tf� &1 is bounded. So is Tf Tg� since

Tf Tg� =Tf Tf� &1 Tfg

and Tfg is bounded. One easily verifies that T( fg)&1 Tf Tg� =Tf Tg� T( fg)&1=1
Thus Tf Tg� is invertible.

Now we are going to prove the claim. Because |h(z)|2�|h| 2(z) for all z
in D, (1) implies that

| f 2(z) g2(z)|�sup
z # D

( | f | 2 (z))( | g| 2 (z))=C2 .

To get | f (z) g(z)|�C1>0, first we get 1�( fg) # L� by taking radial limits
of | f | 2 (z) and | g| 2 (z) and (2). Then we use the fact that fg is outer to
conclude that 1�( fg) is in H�. Hence | f (z) g(z)|>C1>0. The proof is
completed.

8. A Sufficient Condition for Compactness

In this section we present an elementary sufficient condition for the
product of two Toeplitz operator to be a compact perturbation of a
Toeplitz operator. From the above section we see that the compact pertur-
bation problem is equivalent to the problem of the compactness of the
product of two Hankel operators.

The following theorem is the main result in the section.

Theorem 9. Let f and g be functions in L2 satisfying the condition in
Theorem 7 for some l>2. If

lim
z � �D

5l (z)=0,

then Hf*Hg is compact.
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Proof. Let , and � be in H2. Then

(Hf*Hg�, ,) =(Hg �, Hf ,) .

Using the Littlewood�Paley formula, we have

(Hf*Hg�, ,) =|| (grad(Hg �)(z), grad(Hf ,)(z)) log
1
|z|

dA(z).

For any s # (0, 1) we define

Is=||
|z|>s

(grad(Hg�)(z), grad(Hf ,)(z)) log
1
|z|

dA(z).

and

IIs=||
|z|<s

(grad(Hg�)(z), grad(Hf ,)(z)) log
1
|z|

dA(z).

It is easy to verify that there is a compact operator Ts on H 2 such that

IIs=(Ts�, ,).

As in the proof of Theorem 7, we can show that

|Is |�C sup
|z|>s

5l (z) &,&2 &�&2 .

Thus

&Hf*Hg&Ts&�C sup
|z|>s

5l (z).

So lims � 1 &H f*Hg&Ts&=0. Because the set of compact operators is
closed, Hf*Hg is compact.

Theorem 9 immediately leads to the following result.

Theorem 10. Let f and g be in L�. If H�[ f ] & H �[ g]/H�+
C(�D), then Hf*Hg is compact.

Proof. Without loss of generality we may assume that f and g are uni-
modular and invertible in H�[ f ] and H�[ g], respectively. If H�[ f ] &

H�[ g]/H�+C(�D) then, by Lemma 2 in [1], for each support set S,
either f |S or g| S is in H�|S , and hence, by the invertibility, either f |S or
g|S is a unimodular constant. Thus

lim
z � �D

min[1&| f (z)| 2, 1&| g(z)| 2]=0.
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By Lemma 3 in Section 3, we have

lim
z � �D

&Hf kz&2 &Hgkz&2=0.

Since f and g are in L�, it follows that

lim
z � �D

| f&& f&(z)| l (z)| g&& g&(z)| l (z)=0

for all l>2. By Theorem 9 we complete the proof of the theorem.

To conclude this section we mention that the above techniques can be
applied in the unit sphere in higher dimensions to get a sufficient condition
for the product of two Hankel operators to be compact on the Hardy space
of the unit sphere [19].
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