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Abstract. We characterize when a Hankel operator and a Toeplitz operator

have a compact commutator.

Let dσ(w) be the normalized Lebesgue measure on the unit circle ∂D. The
Hardy space H2 is the subspace of L2(∂D, dσ), denoted by L2, which is spanned
by the space of analytic polynomials. So there is an orthogonal projection P from
L2 onto the Hardy space H2, the so-called Hardy projection. Let f be in L∞. The
Toeplitz operator Tf and the Hankel operator Hf with symbol f are defined by
Tfh = P (fh), and Hfh = P (Ufh), for h in H2. Here U is the unitary operator on
L2 defined by

Uh(w) = w̄h̃(w).

Clearly,
H∗
f = Hf∗ ,

where f∗(w) = f(w̄). U is a unitary operator which maps H2 onto [H2]⊥ and has
the following useful property:

UP = (1− P )U.

These two classes of operators, Hankel operators and Toeplitz operators have
played an especially prominent role in function theory on the unit circle and there
are many fascinating problems about those two classes of operators [7], [16], [17],
[18] and [19]. It is natural to ask about the relationships between these two classes
of operators. In this paper we shall concentrate mainly on the following problem:

When is the commutator [Hg, Tf ] = HgTf − TfHg of the Hankel operator Hg

and Toeplitz operator Tf compact?
This problem is motivated by Martinez-Avendaño’s recent paper [15] solving the

problem of when a Hankel operator commutes with a Toeplitz operator. Martinez-
Avendaño showed that Hg commutes with Tf if and only if either g ∈ H∞ or
there exists a constant λ such that f + λg is in H∞, and both f + f̃ and ff̃ are
constants. Here f̃(z) denotes the function f(z̄). An equvialent statement is : Hg

and Tf commute if and only if one of the following three conditions is satisfied:
(M1). g is in H∞.
(M2). f and f̃ are in H∞.
(M3). There exists a nonzero constant λ such that f + λg f + f̃ and ff̃ are in

H∞.
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Note that f̃ is in H∞ whenever f is in H∞. Clearly, (M2) means that f is
constant; (M3) implies that f + f̃ and ff̃ are constant since

f̃ + f̃ = f + f̃ , f̃ f̃ = ff̃ .

One may conjecture that Hg and Tf have a compact commutator if and only
if Martinez-Avendaño’s conditions hold on the boundary of the unit disk in some
sense. In Theorem 2 we confirm this conjecture with (M2) replaced by the following
condition:

(M2′). f and f̃ are in H∞, and (f − f̃)g is in H∞.
To state our main results we will also need results about Douglas algebras. Let

H∞ be the subalgebra of L∞ consisting of bounded analytic functions on the unit
disk D. A Douglas algebra is, by definition, a closed subalgebra of L∞ that contains
H∞. Let H∞[f ] denote the Douglas algebra generated by the function f in L∞,
and H∞[f, g, h] the Douglas algebra generated by the functions f , g and h in L∞.

Theorem 1. The commutator [Hg, Tf ] = HgTf −TfHg of the Hankel operator Hg

and Toeplitz operator Tf is compact if and only if

(0.1) H∞[g]
⋂
H∞[f, f̃ , (f − f̃)g]

⋂
∩|λ|>0H

∞[f + λg, f + f̃ , f f̃ ] ⊆ H∞ + C.

Here H∞ + C denotes the minimal Douglas algebra, i.e., the sum of H∞ and the
algebra C(∂D) of continuous functions on the unit circle.

This theorem completely solves the problem we mentioned before. In Section 3,
we show that (0.1) can be restated as a local condition involving support sets (see
Section 3 for the definition).

Theorem 2. The commutator [Hg, Tf ] = HgTf −TfHg of the Hankel operator Hg

and Toeplitz operator Tf is compact if and only if for each support set S, one of
the following holds:

(1). g|S is in H∞|S .
(2). f |S, f̃ |S and [(f − f̃)g]|S are in H∞|S .
(3). There exists a nonzero constant λS such that [f + λSg]|S, [f + f̃ ]|S and

[ff̃ ]|S are in H∞|S .
Theorems 1 and 2 are applications of the main result in [12], which characterizes

when those compact perturbations of Toeplitz operators on the Hardy space that
can be written as a finite sum of finite products of Toeplitz operators. Examples
exist [2] of some f and g such that K = HgTf−TfHg is not in the Toeplitz algebra,
the C∗-algebra generated by the bounded Toeplitz operators; see Section 2. Clearly,
such a K is not a finite sum of finite products of Toeplitz operators. But we will
show that K∗K is a finite sum of finite products of Toeplitz operators.

Our work is inspired by the following beautiful theorem of Axler, Chang and
Sarason [1] and Volberg [21], stated below, on the compactness of the semicommu-
tator Tfg − TfTg of two Toeplitz operators.

Axler-Chang-Sarason-Volberg Theorem. Tfg−TfTg is compact if and only
if

H∞[f̄ ]∩H∞[g] ⊆ H∞ + C.

One of our motivations is the solution of the compactness of the commutator
TfTg − TgTf of two Toeplitz operators Tf and Tg in [9]:
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Theorem 3. The commutator [Tf , Tg] of two Toeplitz operators is compact if and
only if

H∞[f, g]
⋂
H∞[f, g]

⋂
∩|a|+|b|>0H

∞[af + bg, af + bg] ⊆ H∞ + C.

Another motivation is the characterization of the compactness of a finite sum of
products of two Hankel operators in [11].

1. Elementary identities

In this section we will obtain some identities needed in the proof of Theorem
2. Hankel operators and Toeplitz operators are closely related. First we introduce
some notation.

For each z in the unit disk D, let kz denote the normalized reproducing kernel
at z:

kz(w) =
(1− |z|2)1/2

1− z̄w
,

and φz be the Möbius transform:

φz(w) =
z − w

1− z̄w
.

Define a unitary operator Uz on L2 by

Uzf(w) = f(φz(w))kz(w),

for f ∈ L2. Since φz ◦ φz(w) = w and kz ◦ φzkz = 1, we have

U∗z = Uz = U−1
z .

For each f ∈ L2, we use f+ to denote P (f) and f− to denote (1 − P )(f). The
operator Uz has the following useful properties:

Lemma 4. For each z ∈ D,
(1) Uz commutes with P , and
(2) UzU = −UUz̄.

Proof. First we show that Uz commutes with P . Let f be in L2. Thus

UzP (f) = f+(φz)kz,

and
PUz(f) = P (f+(φz)kz + f−(φz)kz) = f+(φz)kz.

The last equality follows because f+(φz)kz is in H2 and

φz(w)kz(w) = −w̄kz̄(w̄)

is perpendicular to H2. So we obtain

UzP (f) = PUz(f)

for each f ∈ L2. Hence Uz commutes with P .
Next we turn to the proof of the statement (2). For each f in L2, an easy

calculation gives
UzUf = Uz(w̄f̃) = φzkz f̃(φz)

= −w̄kz̄(w̄)f(φz) = −w̄kz̄(w̄)f(φz̄(w̄)),
and

UUz̄f = U(f(φz̄)kz̄) = w̄f(φz̄(w̄))kz̄(w̄).
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This implies
UzUf = −UUz̄f.

So we conclude that UzU = −UUz̄, to complete the proof of the lemma.
Let x and y be two vectors in L2. Define x ⊗ y to be the following operator of

rank one: for f ∈ L2,

(x⊗ y)(f) = 〈f, y〉x.

Lemma 5. For fixed z ∈ D,

Hφz
= −kz̄ ⊗ kz.

Proof. Let {wn}∞0 be the basis for H2. For n ≥ 0,

PU(w̄wn) = P (w̄n).

This gives
Hw̄w

n = PU(w̄wn) = 0
for n > 1, and

Hw̄1 = PU(w̄) = 1.
Hence we have

Hw̄ = 1⊗ 1.
By Lemma 4, we have that Uz commutes with P and

Uz̄U = −UUz
giving

Uz̄Hw̄Uz = −Hφz
,

since U2
z = I. On the other hand, an easy calculation leads to

Uz̄[1⊗ 1]Uz = [Uz̄1]⊗ [Uz1] = kz̄ ⊗ kz.

This completes the proof.
To get the relationship between these two classes of operators, we consider the

multiplication operator Mφ on L2 for φ ∈ L∞, defined by

Mφh = φh

for h ∈ L2. If Mφ is expressed as an operator matrix with respect to the decompo-
sition L2 = H2 ⊕ [H2]⊥, the result is of the form

(1.1) Mφ =
(

Tφ Hφ̃U

UHφ UTφ̃U

)
.

If f and g are in L∞, then Mfg = MfMg, and therefore (multiply matrices and
compare upper or lower left corners)

(1.2) Tfg = TfTg +Hf̃Hg

and

(1.3) Hf̃g = TfHg +Hf̃Tg.

The second equality implies that if f̃ is in H∞, then

(1.4) TfHg = HgTf̃ ,

for g ∈ L∞. These identities can be found in [3] and [17]. They will play an
important role and be used often in this paper
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Lemma 6. Suppose that f and g are in L∞. For each z ∈ D,

Tφ̃z
HgTfTφz

=

HgTf − [HgTfkz]⊗ kz + [Hgkz]⊗ [TφzH
∗
fkz̄].

Proof. Since φ̃z is in H∞ for each z ∈ D, (1.4) gives

Tφ̃z
Hg = HgTφz

.

So we obtain

Tφ̃z
HgTfTφz

= HgTφz
TfTφz

= HgTfTφz
Tφz

−HgHφ̃z
HfTφz

.

The last equality follows from the consequence of (1.2):

Tφz
Tf = Tfφz

−Hφ̃z
Hf = TfTφz

−Hφ̃z
Hf ,

since φz is in H∞. By (1.2) again, we obtain

Tφz
Tφz

= 1−Hφ̃z
Hφz

.

Lemma 5 implies
Hφz

= −kz̄ ⊗ kz,

and
Hφ̃z

= Hφz̄
= −kz ⊗ kz̄.

Therefore we conclude

Tφ̃z
HgTfTφz

= HgTf − [HgTfkz]⊗ kz + [Hgkz]⊗ [Tφz
H∗
fkz̄].

Lemma 7. Suppose that f and g are in L∞. For each z ∈ D,

Tφ̃z
TfHgTφz

= TfHg − [TfHgkz]⊗ kz − [Hf̃kz]⊗ [TφzH
∗
gkz̄].

Proof. Let z be in D. (1.2) gives

Tφ̃z
TfHgTφz

= TfTφ̃z
HgTφz

+Hf̃Hφ̃z
HgTφz

= TfHgTφzTφz
+Hf̃Hφ̃z

HgTφz
.

The last equality comes from (1.4). As in the proof of Lemma 6, by Lemma 5 we
obtain

Tφ̃z
TfHgTφz

= TfHg − [TfHgkz]⊗ kz − [Hf̃kz]⊗ [TφzH
∗
gkz̄].

This gives the desired result.
The next lemma will be used in the proof of Theorem 2.

Lemma 8. Suppose that f and g are in L∞. Let K = HgTf − TfHg. Then
(1) For each z ∈ D,

KTφz
= Tφ̃z

K − [Hgkz]⊗ [H∗
fkz̄]− [Hf̃kz]⊗ [H∗

gkz̄].

(2) Let λ 6= 0 be a constant. For each z ∈ D,

λKTφz = Tφ̃z
λK + [Hf̃−λgkz]⊗ [H∗

fkz̄]− [Hf̃kz]⊗ [H∗
f+λgkz̄].
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Proof. Since φz is in H∞ and φ̃z is in H∞ for each z ∈ D, by (1.2) and (1.4),

(1.5) TfTφz
= Tφz

Tf +Hφ̃z
Hf ,

(1.6) TfTφ̃z
= Tφ̃z

Tf −Hf̃Hφ̃z
,

and

(1.7) Tφ̃z
Hf = HfTφz .

Thus we have
KTφz = HgTfTφz − TfHgTφz

= HgTφz
Tf +HgHφ̃z

Hf − TfTφ̃z
Hg

= Tφ̃z
HgTf +HgHφ̃z

Hf − Tφ̃z
TfHg +Hf̃Hφ̃z

Hg

= Tφ̃z
K +HgHφ̃z

Hf +Hf̃Hφ̃z
Hg

= Tφ̃z
K − [Hgkz]⊗ [H∗

fkz̄]− [Hf̃kz]⊗ [H∗
gkz̄].

The second equality comes from (1.5) and (1.7). The third equality follows from
(1.6) and (1.7). The last equality follows from Lemma 5. This completes the proof
of (1).

To prove (2), for the given constant λ 6= 0, by (1.3), write

Hf̃f = TfHf +Hf̃Tf

= λ[HgTf − TfHg] + TfHf+λg +Hf̃−λgTf ,

to obtain
λK = Hf̃f − TfHf+λg −Hf̃−λgTf .

Similarly, use of (1.5), (1.6) and (1.7) gives

λKTφz
= Tφ̃z

λK + [Hf̃−λgkz]⊗ [H∗
fkz̄]− [Hf̃kz]⊗ [H∗

f+λgkz̄].

This completes the proof.

2. Compact operators

We begin with a necessary condition for a bounded operator to be compact on
H2. The proof of the following lemma is analogous to the proof of Lemma 6.1 in
[20].

Lemma 9. If K : H2 → H2 is a compact operator, then

lim
|z|→1−

‖K − Tφ̃z
KTφ̄z

‖ = 0.

Proof. Since operators of finite rank are dense in the set of compact operators,
given ε > 0 there exist f1, · · · , fn and g1, · · · , gn in H2 so that

‖K −
n∑
i=1

fi ⊗ gi‖ < ε.

Thus this lemma follows once we prove it for operators of rank one.
If f ∈ L2 and |z| → 1−, then for every w on ∂D we have z − φz(w) = (1 −

|z|2)w/(1 − z̄w) → 0 and z − φ̃z(w) = (1 − |z|2)w̄/(1 − z̄w̄), so by the Lebesgue
Dominated Convergence Theorem, ‖zf − φzf‖2 → 0 and ‖zf − φ̃zf‖2 → 0, as
|z| → 1−. It follows that ‖ζf − φzf‖2 → 0 and ‖ζf − φ̃zf‖2 → 0, if z ∈ D tends to
ζ.
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If f ∈ H2, we apply the Hardy projection P to obtain

‖ζf − Tφz
f‖2 = ‖ζf − P (φzf)‖2 → 0,

and
‖ζf − Tφ̃z

f‖2 = ‖ζf − P (φ̃zf)‖2 → 0,

as z in D tends to ζ. If f, g ∈ H2, then writing

‖f ⊗ g − Tφ̃z
(f ⊗ g)Tφ̄z

‖ = ‖(ζf)⊗ (ζg)− (Tφ̃z
f)⊗ (Tφz

g)‖
≤ ‖(ζf − Tφ̃z

f)⊗ (ζg)‖+ ‖(Tφ̃z
f)⊗ (ζg − Tφz

g)‖
≤ ‖ζf − Tφ̃z

f‖2‖g‖2 + ‖f‖2‖ζg − Tφzg‖2,

we see that
‖f ⊗ g − Tφ̃z

(f ⊗ g)Tφ̄z
‖ → 0

as |z| → 1−. This completes the proof of the lemma.
By making use of the above lemma, we obtain a necessary condition for HgTf −

TfHg to be compact.

Lemma 10. Suppose that f and g are in L∞. If HgTf − TfHg is compact, then

lim
|z|→1−

‖[Hgkz]⊗ [H∗
fkz̄] + [Hf̃kz]⊗ [H∗

gkz̄]‖ = 0.

Proof. Suppose that HgTf − TfHg is compact. Letting K = HgTf − TfHg, by
Lemma 9, we obtain

lim
|z|→1−

‖K − Tφ̃z
KTφ̄z

‖ = 0.

On the other hand, Lemmas 6 and 7 give

Tφ̃z
KTφ̄z

= [HgTf − [HgTfkz]⊗ kz+

[Hgkz]⊗ [TφzH
∗
fkz̄]]− [TfHg − [TfHgkz]⊗ kz − [Hf̃kz]⊗ [TφzH

∗
gkz̄]]

= K − [Kkz]⊗ kz + [Hgkz]⊗ [TφzH
∗
fkz̄] + [Hf̃kz]⊗ [TφzH

∗
gkz̄].

Noting that kz converges weakly to zero as |z| → 1−, we have

Kkz → 0

giving
lim

|z|→1−
‖[Hgkz]⊗ [Tφz

H∗
fkz̄] + [Hf̃kz]⊗ [Tφz

H∗
gkz̄]‖ = 0.

Since
‖[Hgkz]⊗ [H∗

fkz̄] + [Hf̃kz]⊗ [H∗
gkz̄]‖ =

‖[[Hgkz]⊗ [TφzH
∗
fkz̄] + [Hf̃kz]⊗ [TφzH

∗
gkz̄]]Tφz‖

≤ ‖[[Hgkz]⊗ [Tφz
H∗
fkz̄] + [Hf̃kz]⊗ [Tφz

H∗
gkz̄]]‖‖Tφz

‖,
we conclude that

lim
|z|→1−

‖[Hgkz]⊗ [H∗
fkz̄] + [Hf̃kz]⊗ [H∗

gkz̄]‖ = 0.

The next lemma gives a close relationship between Hf and H∗
f .

Lemma 11. Suppose that f is in L∞. For each z ∈ D,

‖H∗
fkz̄‖2 = ‖Hfkz‖2.

The above lemma is the special case of the following lemma with g = kz. We
thank the referee for suggesting the following lemma.
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Lemma 12. Let Hf be a bounded Hankel operator and let g ∈ H2. Then H∗
f g

∗ =
(Hfg)∗ and thus ‖H∗

f g
∗‖ = ‖Hfg‖.

Proof. Notice that for all g ∈ L2, (Ug)∗ = Ug∗ and Pg∗ = (Pg)∗. Therefore,

H∗
f g

∗ = Hf∗g
∗ = PU(f∗g∗) = P (Ufg)∗ = (PUfg)∗ = (Hfg)∗.

Since ‖g∗‖ = ‖g‖ for all g ∈ L2, we have

‖H∗
f g

∗‖ = ‖(Hfg)∗‖ = ‖Hfg‖,
to complete the proof.

To prove the sufficiency part of Theorem 2 we need the following result [12] which
characterizes when an operator is the compact perturbation of a Toeplitz operator
if the operator is a finite sum of finite products of Toeplitz operators.

Theorem 13. A finite sum T of finite products of Toeplitz operators is a compact
perturbation of a Toeplitz operator if and only if

(2.1) lim
|z|→1

‖T − T ∗φz
TTφz‖ = 0.

Theorem 13 is a variant of Theorem 4 in the paper [10] of C. Gu. However, some
crucial details are omitted from the proof in [10], especially details in the proof of
a key distribution function inequality. An alternative proof of Theorem 13 can be
found in the authors paper [12]. Theorem 13 can not be applied to HgTf − TfHg

directly since HgTf − TfHg may not be a finite sum of finite products of Toeplitz
operators. The following example shows that there are f and g in L∞ such that
HgTf − TfHg is not a finite sum of finite products of Toeplitz operators.

Example: Let {an} be a Blaschke sequence in the unit disk such that

lim
n→∞

an = 1,

and
|1− an|
1− |an|

≥ 2n.

Let b be the Blaschke product associated with the sequence. Let f be the function
constructed in [2] with the following properties

(A) f is in QC(= [H∞ + C] ∩ [H∞ + C]).
(B) f̃ = −f.
(C) f(an) → 1.
Let g = b̄, and K = HgTf − TfHg. It was shown that K is not compact in [2].

By making use of Theorem 2, we will show that K is not in the Toeplitz algebra.
Suppose that K is in the Toeplitz algebra. We will derive a contradiction. By (1.3),
we see

K = H(f−f̃)g +Hf̃Tg − Tg̃Hf .

It is well known that both Hf and Hf̃ are compact. Letting

O = Hf̃Tg − Tg̃Hf ,

we have that O is compact and

K = H(f−f̃)g +O.

By a lemma in [2], which states that if a bounded operator K on H2 is in the
Toeplitz algebra, then KTf − TfK is compact for every function f ∈ QC, we have
that H(f−f̃)gTf − TfH(f−f̃)g is compact. Let m be in the closure of {an} in the
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maximal ideal space M(H∞) of H∞. Let S be the support set of m. Noting that
g|S = b̄|S is not in H∞|S , and [(f − f̃)g]|S = 2b̄|S , we have that for any nonzero
constant λ

[f + λ(f − f̃)g]|S = (1 + 2λb̄)|S
is not in H∞|S . By Theorem 2, we see that only Condition (2) in Theorem 2 may
hold. That is,

(f − f̃)2g|S ∈ H∞|S .
But (B) and (C) imply that f − f̃ = 2f and f |S = 1. This leads to

4g|S ∈ H∞|S ,
which is a contradiction.

The following lemma shows thatK∗K is a finite sum of finite products of Toeplitz
operators.

Lemma 14. Suppose that f and g are in L∞. Let K = HgTf −TfHg. Then K∗K
is a finite sum of finite products of Toeplitz operators.

Proof. Letting K = HgTf − TfHg, by (1.3) we write K as

K = −Hf̃g +HgTf +Hf̃Tg.

Taking adjoint both sides of the above equality gives

K∗ = −H(f̃g)∗ + T ∗gHf̃∗ + T ∗fHg∗

The last equality follows from
H∗
f = Hf∗ ,

where f∗(w) = f(w). This leads to

K∗K = H(f̃g)∗Hf̃g −H(f̃g)∗ [HgTf +Hf̃Tg]

(2.2) −[T ∗gHf̃∗ + T ∗fHg∗ ]Hf̃g + [T ∗gHf̃∗ + T ∗fHg∗ ][HgTf +Hf̃Tg].

The first term in the right hand side of (2.2) is a semicommutator of two Toeplitz
operators since for two functions φ and ψ in L∞, by (1.3)

Hφ∗Hψ = Tφψ − TφTψ;

both the second and the third terms are products of a Toeplitz operator and a
semicommutator of two Toeplitz operators; the fourth term is the product of two
Toeplitz operators and a semicommutator of two Toeplitz operators. Therefore
(2.2) gives that K∗K is a finite sum of finite products of Toeplitz operators. This
completes the proof of the lemma.

We thank the referee for pointing out that any product of Hankel and Toeplitz
operators that has an even number of Hankel operators is a finite sum of finite
products of Toeplitz operators.

A symbol mapping was defined on the Toeplitz algebra in [7]. It was extended to
a ∗-homomorphism on the Hankel algebra in [3]. One of the important properties
of the symbol mapping is that the symbols of both compact operators and Hankel
operators are zero ([7], [3]). Note K is in the Hankel algebra and equals HgTf −
TfHg. Clearly, the symbol of K is zero. By Theorem 13 we see that K is compact
if and only if

lim
|z|→1

‖K∗K − T ∗φz
K∗KTφz‖ = 0.
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3. Proof of main results

To prove Theorems 1 and 2 we need some notation. The Gelfand space (space of
nonzero multiplicative linear functionals) of the Douglas algebra B will be denoted
by M(B). If B is a Douglas algebra, then M(B) can be identified with the set of
nonzero linear functionals in M(H∞) whose representing measures (on M(L∞)) are
multiplicative on B, and we identify the function f with its Gelfand transform on
M(B). In particular, M(H∞+C) = M(H∞)−D, and a function f ∈ H∞ may be
thought of as a continuous function on M(H∞+C). A subset of M(L∞) is called a
support set if it is the (closed) support of the representing measure for a functional
in M(H∞+C). For a function F on the unit disk D and m ∈M(H∞+C), we say

lim
z→m

F (z) = 0

if for every net {zα} ⊂ D converging to m,

lim
zα→m

F (zα) = 0.

The following lemma in [9] (Lemma 2.5) will be used several times later.

Lemma 15. Let f be in L∞ and m ∈ M(H∞ + C), and let S be the support set
for m. Then f |S ∈ H∞|S if and only if

limz→m‖Hfkz‖2 = 0.

Clearly, Theorem 1 follows from Theorem 2 and the following lemma.

Lemma 16. Let f, g ∈ L∞. Then

(3.1) H∞[g]
⋂
H∞[f, f̃ , (f − f̃)g]

⋂
∩|λ|>0H

∞[f + λg, f + f̃ , f f̃ ] ⊆ H∞ + C

if and only if for each support set S one of the following holds:
(1). g|S is in H∞|S .
(2). f |S, f̃ |S and [(f − f̃)g]|S are in H∞|S .
(3). There exists nonzero constant λS, such that [f + λSg]|S is in H∞ and both

[f + f̃ ]|S and [ff̃ ]|S are in H∞|S .

Proof. Without loss of generality we may assume that ‖f‖∞ < 1/4 and ‖g‖∞ < 1/4.
Let A denote the Douglas algebra

H∞[g]
⋂
H∞[f, f̃ , (f − f̃)g]

⋂
∩|λ|>0H

∞[f + λg, f + f̃ , f f̃ ].

By the Sarason Theorem (Lemma 1.3 in [9]), we get that M(A) equals

M(H∞[g])
⋃
M(H∞[f, f̃ , (f − f̃)g])

⋃
∪|λ|>0M(H∞[f + λg, f + f̃ , f f̃ ]).

Suppose that (3.1) holds. Then A ⊂ H∞ + C, and so M(H∞ + C) ⊂ M(A). Let
m ∈M(H∞ + C). Then m is an element of

M(H∞[g])
⋃
M(H∞[f, f̃ , (f − f̃)g])

⋃
∪|λ|>0M(H∞[f + λg, f + f̃ , f f̃ ]).

If m is in either of the first two sets, Lemma 1.5 in [9] gives that either Condition
(1) or Condition (2) holds. Thus, we may assume that

m ∈ ∪|λ|>0M(H∞[f + λg, f + f̃ , f f̃ ]).

Note
∩|λ|>0H

∞[f + λg, f + f̃ , f f̃ ] =
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∩1≥|λ|>0H
∞[f + λg, f + f̃ , f f̃ ]

⋂
∩1≥|λ|>0H

∞[λf + g, f + f̃ , f f̃ ],

since (f + λg) = λ( fλ + g). Thus

∪|λ|>0M(H∞[f + λg, f + f̃ , f f̃ ]) = ∪1≥|λ|>0M(H∞[f + λg, f + f̃ , f f̃ ])⋃
∪1≥|λ|>0M(H∞[λf + g, f + f̃ , f f̃ ]).

So m must be either in

∪1≥|λ|>0M(H∞[f + λg, f + f̃ , f f̃ ])

or in
∪1≥|λ|>0M(H∞[λf + g, f + f̃ , f f̃ ]).

Now we only consider the case that m is in

∪1≥|λ|>0M(H∞[f + λg, f + f̃ , f f̃ ]).

If m is in the second set, use the same argument that we will use below.
We shall show that m ∈M(H∞[f + λg, f + f̃ , f f̃ ]) for some λ with |λ| ≤ 1. By

Lemma 15 and Lemma 1.5 in [9], it suffices to show that for some λ with |λ| ≤ 1,

lim
z→m

‖Hf+λgkz‖2 = 0,

lim
z→m

‖Hf+f̃kz‖2 = 0,

and
lim
z→m

‖Hff̃kz‖2 = 0.

We only prove the first limit; the second and third limits follow by the same argu-
ment.

Hence there exist constants λα and points mα ∈ M(H∞[f + λαg, f + f̃ , f f̃ ])
such that mα → m. We may assume that λα → λ, for some complex number λ.
Clearly, |λ| ≤ 1.

Note that since mα ∈M(H∞[f + λαg, f + f̃ , f f̃ ]),

lim
z→mα

‖Hf+λαgkz‖2 = 0.

Since
distL∞(f + λg,H∞) ≤ ‖f + λg‖∞ < 1/2,

as a consequence of the Adamian-Arov-Krein Theorem [8], [16], there exists a uni-
modular function uλ in f + λg +H∞. Lemma 2 [22] gives

(3.2) ‖Hf+λgkz‖2 ≤ (1− |uλ(z)|2)1/2 ≤ 3‖Hf+λgkz‖2,

where uλ(z) denotes the value of the harmonic extension of uλ at z.
Note

‖Hf+λgkz‖2 ≤ ‖Hf+λαgkz‖2 + |λ− λα|.
Thus we have

lim sup
z→mα

‖Hf+λgkz‖2 ≤ lim sup
z→mα

‖Hf+λαgkz‖2 + |λ− λα| = |λ− λα|.

(3.2) gives

lim sup
z→mα

(1− |uλ(z)|2)1/2 ≤ 3 lim sup
z→mα

‖Hf+λgkz‖2 ≤ 3|λ− λα|.



12 KUNYU GUO AND DECHAO ZHENG

Since uλ(m) is continuous on M(H∞) [13], we have

(1− |uλ(mα)|2)1/2 ≤ 3|λ− λα|.
Taking the limit on both sides of the above inequality gives

(1− |uλ(m)|)1/2 = lim sup
mα→m

(1− |uλ(mα)|2)1/2 ≤ lim sup
mα→m

3|λ− λα| = 0.

We obtain
(1− |uλ(m)|)1/2 = 0.

On the other hand, (3.2) gives

lim sup
z→m

‖Hf+λgkz‖2 ≤ lim sup
z→m

(1− |uλ(z)|)1/2

= (1− |uλ(m)|)1/2 = 0.
This gives the desired result.

Conversely, let S be the support set for an element m ∈M(H∞+C) and suppose
that one of Conditions (1), (2) and (3) holds for m. Then by Lemma 1.5 in [9],
either m ∈ M(H∞[g]) or m ∈ M(H∞[f, f̃ , (f − f̃)g]), or there exists a nonzero
constant λ, such that m ∈M(H∞[f + λg, f + f̃ , f f̃ ]). Thus m is in

M(H∞[g]
⋂
H∞[f, f̃ , (f − f̃)g]

⋂
∩|λ|>0H

∞[f + λg, f + f̃ , f f̃ ]).

Therefore, M(H∞ + C) ⊆ M(A). By the Chang-Marshall Theorem ([6], [14])
A ⊆ H∞ + C. The proof of Lemma 16 is completed

Let BMO be the space of functions with bounded mean oscillation on the unit
circle. If f is in BMO and analytic or co-analytic on D, the norm ‖f‖BMO is
equivalent to

|f(0)|+ sup
z∈D

‖f ◦ φz − f(z)‖p

for p ≥ 1. It is well known that the Hardy projection P maps L∞ into BMO ([8]
and [18]).

Lemma 17. Suppose that f and g are in L∞. If

lim
z→m

‖Hgkz‖2 = 0,

then
lim
z→m

‖HgTfkz‖2 = 0.

Proof. Write
g = g+ + g−

where g+ = P (g) and g− = (1−P )(g). Since Uz commutes with the Hardy projec-
tion P we get

Hgkz = Hg−kz = Hg−Uz1 = −Uz̄Hg−◦φz
1.

Thus we have
‖Hgkz‖2 = ‖Uz̄Hg−◦φz

1‖2 = ‖Hg−◦φz
1‖2.

The last equality follows because Uz̄ is a unitary operator on L2. An easy calculation
gives

Hg−◦φz
1 = U(g− ◦ φz − g−(z)).

Therefore
lim
|z|→1

‖g− ◦ φz − g−(z)‖2 = 0.
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Similarly we can also get

‖HgTfkz‖2 = ‖Uz̄Hg−◦φz
Tf◦φz

1‖2

= ‖Hg−◦φz
Tf◦φz

1‖2 = ‖Hg−◦φz
(f+ ◦ φz + f−(z))‖2

= ‖(1− P )(g− ◦ φz − g−(z))(f+ ◦ φz + f−(z))‖2.

The first equality holds because Uz̄ commutes with P and the second equality
holds because Uz̄ is a unitary operator on L2. The third equality follows from the
decomposition of f :

f = f+ + f−.

The Hölder inequality gives

‖HgTfkz‖2 ≤ ‖g− ◦ φz − g−(z)‖4‖f+ ◦ φz + f−(z)‖4.

To prove that
lim
z→m

‖HgTfkz‖2 = 0

we need only to show that

‖f+ ◦ φz + f−(z)‖4 ≤ C‖f‖∞,

and
lim
z→m

‖g− ◦ φz − g−(z)‖4 = 0.

f+ ◦ φz + f−(z) = f+ ◦ φz − f+(z) + f(z),

we have
‖f+ ◦ φz + f−(z)‖4 ≤ ‖f+ ◦ φz − f+(z)‖4 + ‖f‖∞

≤ C1‖P (f)‖BMO + ‖f‖∞ ≤ C‖f‖∞,
for some positive constants C and C1. The last inequality follows because P is
bounded from L∞ to BMO. The Hölder inequality gives

‖g− ◦ φz − g−(z)‖4 ≤ ‖g− ◦ φz − g−(z)‖1/4
2 ‖g− ◦ φz − g−(z)‖3/4

6

≤ C‖g− ◦ φz − g−(z)‖1/4
2 ‖g−‖1/4

BMO ≤ C‖g− ◦ φz − g−(z)‖1/4
2 ‖g‖1/4

∞ .

The last inequality also follows because P is bounded from L∞ to BMO. This gives

lim
z→m

‖g− ◦ φz − g−(z)‖4 = 0,

to complete the proof of the lemma.
Combining Lemmas 11 and 17 we have the following lemma needed in the proof

of Theorem 2.

Lemma 18. Suppose that f and g are in L∞. If

lim
z→m

‖H∗
gkz̄‖2 = 0,

then
lim
z→m

‖H∗
gTfkz̄‖2 = 0.
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Now we are ready to prove Theorem 2.

Proof of Theorem 2
First we prove the necessity part of Theorem 2. Suppose that HgTf − TfHg

is compact. Without loss of generality we may assume that ‖f‖∞ < 1/2 and
‖g‖∞ < 1/2. By Lemma 10 we get

(3.3) lim
|z|→1−

‖[Hgkz]⊗ [H∗
fkz̄] + [Hf̃kz]⊗ [H∗

gkz̄]‖ = 0.

Let m be in M(H∞ + C), and let S be the support set of m. By Carleson’s
Corona Theorem [5], there is a net z converging to m.

Suppose that
limz→m‖Hgkz‖2 = 0.

By Lemma 15 we have that g|S is in H∞|S . So Condition (1) holds.
Suppose that there is a constant c such that

limz→m‖Hgkz‖2 ≥ c > 0.

Let λz = 〈Hf̃kz,Hgkz〉/‖Hgkz‖2. Then |λz| ≤ 1
c , and so we may assume that

λz → cm for some constant cm.
Applying the operator [[Hgkz]⊗ [H∗

fkz̄] + [Hf̃kz]⊗ [H∗
gkz̄]]

∗ to Hgkz and multi-
plying by 1

‖Hgkz‖22
we get

lim
z→m

‖H∗
fkz̄ + λz[H∗

gkz̄]‖2 = 0.

Thus
lim
z→m

‖H∗
f+cmgkz̄‖2 = 0.

Lemma 11 implies

(3.4) lim
z→m

‖Hf+cmgkz‖2 = 0.

Now we consider two cases.
Case 1. cm = 0.
In this case, we have

lim
z→m

‖Hfkz‖2 = 0.

(3.3) gives
lim
z→m

‖Hf̃kz‖2 = 0.

Thus by Lemma 15, we obtain

f |S ∈ H∞|S ,
and

f̃ |S ∈ H∞|S .
On the other hand, by making use of (1.3) twice we have

K = H(f−f̃)g − Tg̃Hf +Hf̃Tg.

Since K is compact and kz converges to 0 weakly as z → m, we have

lim
z→m

‖[H(f−f̃)g − Tg̃Hf +Hf̃Tg]kz‖2 = 0.

Lemma 17 gives
lim
z→m

‖[−Tg̃Hf +Hf̃Tg]kz‖2 = 0.
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Thus
lim
z→m

‖H(f−f̃)gkz‖2 = 0.

By Lemma 15, we have
[(f − f̃)g]|S ∈ H∞|S .

to get Condition (2).
Case 2. cm 6= 0.
In this case, by Lemma 15 and (3.4), we obtain

(f + cmg)|S ∈ H∞|S .
Now write

[Hgkz]⊗ [H∗
fkz̄] + [Hf̃kz]⊗ [H∗

gkz̄] =

[Hgkz]⊗ [H∗
f+cmgkz̄] + [Hf̃−cmg

kz]⊗ [H∗
gkz̄].

Because
lim
z→m

‖[Hgkz]⊗ [H∗
fkz̄] + [Hf̃kz]⊗ [H∗

gkz̄]‖ = 0,

and
lim
z→m

‖[H∗
f+cmgkz̄]‖2 = 0,

we get
lim
z→m

‖[Hf̃−cmg
kz]⊗ [H∗

gkz̄]‖ = 0.

Note that
‖[H∗

gkz̄]‖2 = ‖Hgkz‖2,

and
‖[Hf̃−cmg

kz]⊗ [H∗
gkz̄]‖ = ‖[Hf̃−cmg

kz]‖2‖[H∗
gkz̄]‖2.

We have
lim
z→m

‖[Hf̃−cmg
kz]‖2 = 0.

Combining (3.4) with the above limit gives

lim
z→m

‖Hf̃+fkz‖2 = 0

since
Hf̃+fkz = Hf̃−cmg

kz +Hf+cmgkz.

Therefore by Lemma 15,
(f + f̃)|S ∈ H∞|S .

To prove that (ff̃)|S ∈ H∞|S , by (1.3), write

Hf̃f = TfHf +Hf̃Tf

(3.5) = cm[HgTf − TfHg] + TfHf+cmg +Hf̃−cmg
Tf

By Lemma 17, we obtain

lim
z→m

‖Hf̃−cmg
Tfkz‖2 = 0.

Apply the bounded operator Tf to Hf̃+cmg
Tfkz, to get

lim
z→m

‖TfHf+cmgkz‖2 = 0.

Since [HgTf − TfHg] is compact and kz weakly converges to zero as z → m, we
have

lim
z→m

‖[HgTf − TfHg]kz‖2 = 0.
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Therefore (3.5) implies
lim
z→m

‖Hff̃kz‖2 = 0.

Lemma 15 gives
(ff̃)|S ∈ H∞|S .

So Condition (3) holds. This completes the proof of the necessity part.
Next we shall prove the sufficiency part of Theorem 2. Suppose that f and g

satisfy one of Conditions (1)-(3) in Theorem 2.
Let K = HgTf − TfHg and T = K∗K. By Lemma 14, T is a finite sum of finite

products of Toeplitz operators with zero symbol. By Theorem 13, we need only to
show

lim
|z|→1

‖T − T ∗φz
TTφz

‖ = 0.

By the Carleson Corona Theorem, the above condition is equivalent to the condition
that for each m ∈M(H∞ + C),

(3.6) lim
z→m

‖T − T ∗φz
TTφz

‖ = 0.

Let m be in M(H∞+C), and let S be the support set of m. By Carleson’s Corona
Theorem, there is a net z converging to m.

Suppose that Condition (1) holds, i.e., g|S ∈ H∞|S . Lemma 15 gives that

lim
z→m

‖Hgkz‖2 = 0.

By Lemma 11, we have
lim
z→m

‖H∗
gkz̄‖2 = 0.

Let
Fz = −[Hgkz]⊗ [H∗

fkz̄]− [Hf̃kz]⊗ [H∗
gkz̄],

the above limits give
lim
z→m

‖Fz‖ = 0.

This gives

(3.7) lim
z→m

‖[K∗T ∗
φ̃z

]Fz + F ∗z [Tφ̃z
K] + F ∗z Fz‖ = 0,

since
‖K‖ <∞, sup

z∈D
‖Fz‖ <∞.

By Lemma 8 we also have

KTφz
= Tφ̃z

K + Fz,

to get

T ∗φz
TTφz

= [KTφz
]∗[KTφz

] = K∗T ∗
φ̃z
Tφ̃z

K + [K∗T ∗
φ̃z

]Fz + F ∗z [Tφ̃z
K] + F ∗z Fz

= K∗K + [K∗kz̄]⊗ [K∗kz̄] + [K∗T ∗
φ̃z

]Fz + F ∗z [Tφ̃z
K] + F ∗z Fz.

The last equality comes from

(3.8) T ∗
φ̃z
Tφ̃z

= 1− kz̄ ⊗ kz̄.

Lemma 18 gives
lim
z→m

‖K∗kz̄‖2 = 0.

Therefore (3.7) implies (3.6).
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Suppose that Condition (2) holds. By Lemma 15, we have

lim
z→m

‖Hfkz‖2 = 0,

lim
z→m

‖Hf̃kz‖2 = 0,

and

(3.9) lim
z→m

‖H(f−f̃)gkz‖2 = 0.

Let
Fz = −[Hgkz]⊗ [H∗

fkz̄]− [Hf̃kz]⊗ [H∗
gkz̄];

the above limits give
lim
z→m

‖Fz‖ = 0.

This gives

(3.10) lim
z→m

‖[K∗T ∗
φ̃z

]Fz + F ∗z [Tφ̃z
K] + F ∗z Fz‖ = 0.

By Lemma 8 we have
KTφz

= Tφ̃z
K + Fz,

to get
T ∗φz

TTφz
= [KTφz

]∗[KTφz
]

= K∗T ∗
φ̃z
Tφ̃z

K + [K∗T ∗
φ̃z

]Fz + F ∗z [Tφ̃z
K] + F ∗z Fz

= K∗K − [K∗kz̄]⊗ [K∗kz̄] + [K∗T ∗
φ̃z

]Fz + F ∗z [Tφ̃z
K] + F ∗z Fz.

The last equality comes from (3.8).
By making use of (1.3) twice, we have

K = H(f−f̃)g − Tg̃Hf +Hf̃Tg.

Lemma 18 and (3.9) give
lim
z→m

‖K∗kz̄‖2 = 0.

Therefore (3.10) implies (3.6).
Suppose that Condition (3) holds. Then for some constant cm 6= 0,

(3.11) lim
z→m

‖Hf−cmgkz‖2 = 0,

(3.12) lim
z→m

‖Hf+f̃kz‖2 = 0,

(3.13) lim
z→m

‖Hff̃kz‖2 = 0.

These give

(3.14) lim
z→m

‖Hf̃+cmg
kz‖2 = 0,

since f̃ + cmg = f + f̃ − (f − cmg). By (3.5) and Lemma 18, we have

(3.15) lim
z→m

‖K∗kz̄‖ = 0.

Lemma 8 gives

(3.16) cmKTφz = Tφ̃z
cmK − [Hf̃−cmg

kz]⊗ [H∗
fkz̄] + [Hf̃kz]⊗ [H∗

f+cmgkz̄].

Letting
Gz = [Hf̃−cmg

kz]⊗ [H∗
fkz̄]− [Hf̃kz]⊗ [H∗

f+cmgkz̄],
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we have
cmKTφz

= Tφ̃z
cmK +Gz

and
lim
z→m

‖Gz‖ = 0.

The last limit follows from (3.11) and (3.14) and gives

(3.17) lim
z→m

‖[Tφ̃z
cmK]∗Gz +G∗zTφ̃z

cmK +G∗zGz‖ = 0.

(3.16) gives

[cmKTφz ]∗[cmKTφz ] = [Tφ̃z
cmK +Gz]∗[Tφ̃z

cmK +Gz]

= [Tφ̃z
cmK]∗[Tφ̃z

cmK] + [Tφ̃z
cmK]∗Gz +G∗zTφ̃z

cmK +G∗zGz

= |cm|2K∗T ∗
φ̃z
Tφ̃z

K + [Tφ̃z
cmK]∗Gz +G∗zTφ̃z

cmK +G∗zGz

= |cm|2K∗K − |cm|2[K∗kz̄]⊗ [K∗kz̄] + [Tφ̃z
cmK]∗Gz +G∗zTφ̃z

cmK +G∗zGz.

The last equality comes from (3.8). (3.15) implies that the second term on the right
hand side of the above equality converges to zero and (3.17) implies that the third,
fourth and fifth terms converge to zero. Thus we conclude

lim
z→m

‖|cm|2T − |cm|2T ∗φz
TTφz

‖ = 0.

Since cm 6= 0, the above limit gives (3.6). This completes the proof of Theorem 2.
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