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ABSTRACT. In this paper, by lifting the Bergman shift as the compression of an isome-
try on a subspace of the Hardy space of the bidisk, we give a proof of the Beurling type
theorem on the Bergman space of Aleman, Richter and Sundberg [1] via the Hardy
space of the bidisk.

1. INTRODUCTION

Let D be the open unit disk in C. Let dA denote Lebesgue area measure on the
unit disk D, normalized so that the measure of D equals 1. The Bergman space L2

a is
the Hilbert space consisting of the analytic functions on D that are also in the space
L2(D, dA) of square integrable functions on D. The famous Beurling theorem [3] clas-
sifies the invariant subspaces of the multiplication operator by the coordinate function z
on the Hardy space of the unit disk, the unilateral shift. For an operator T on a Hilbert
space H , the subspace H 	 TH is called a wandering subspace of T on H . The Beurl-
ing theorem says that all invariant subspaces of the unilateral shift are generated by their
wandering subspaces with dimension 1. This result has played an important role in
function theory and operator theory. Recently Aleman, Richter and Sundberg have es-
tablished a remarkable Beurling type theorem [1] for the multiplication operator by the
coordinate function z on the Bergman space, the Bergman shift even if the dimension of
the wandering subspace ranges from 1 to∞ [2]. Their result states that all invariant sub-
spaces of the Bergman shift are also generated by their wandering subspaces. This result
is a breakthrough in understanding of the invariant subspaces of the Bergman space and
becomes a fundamental theorem in the function theory on the Bergman space [6], [10].
Different proofs of the Beurling type theorem were given in [11], [12], [15] later. The
goal of this paper is to give a new proof of the Beurling type theorem of Aleman, Richter
and Sundberg [1] via the Hardy space of the bidisk. Our main objective is the study of
the Bergman space of the unit disk and its operators via the Hardy space of the bidisk.
Our project starts in [9], [17], [18] to study multiplication operators on L2

a by bounded
analytic functions on the unit disk D via the Hardy space of the bidisk. The theme is to
use the theory of multivariable operators and functions to study a single operator and the
functions of one variable. Our main idea is to lift the Bergman shift up as the compres-
sion of a commuting pair of isometries on a subspace of the Hardy space of the bidisk.
This idea was used in studying the Hilbert modules by R. Douglas and V. Paulsen [4],
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operator theory in the Hardy space over the bidisk by R. Douglas and R. Yang [5], [19],
[20] and [21]; the higher-order Hankel forms by S. Ferguson and R. Rochberg [7] and
[8] and the lattice of the invariant subspaces of the Bergman shift by S. Richter [14].

Let T denote the unit circle. The torus T2 is the Cartesian product T× T. The Hardy
space H2(T2) over the bidisk is H2(T)⊗H2(T). For each integer n ≥ 0, let

pn(z, w) =
n∑

i=0

ziwn−i.

LetH be the subspace of H2(T2) spanned by functions {pn}∞n=0. Thus every function in
H is symmetric with respect to z andw. Let [z−w] denote the closure of (z−w)H2(T2)
in H2(T2). As every function in [z − w] is orthogonal to each pn, we easily see

H2(T2) = H⊕ [z − w].

Let A be a subspace of L2(T2) and let PA denote the orthogonal projection from
L2(T2) onto A. The Toeplitz operator on H2(T2) with symbol f in L∞(T2) is defined
by

Tf (h) = PH2(T2)(fh),

for h in H2(T2). It is not difficult to see that Tz and Tw are a pair of doubly commuting
pure isometries on H2(T2). A little computation gives

PHTz|H = PHTw|H.
We use B to denote the operator above. It was shown explicitly in [16] and implicitly
in [4] that B is unitarily equivalent to the Bergman shift, the multiplication operator by
the coordinate function z on the Bergman space L2

a via the following unitary operator
U : L2

a(D)→ H,

Uzn =
pn(z, w)

n+ 1
.

So the Bergman shift is lifted up as the compression of an isometry on a nice subspace
H of H2(T2). In the rest of the paper we identify the Bergman shift with the operator B.

This paper is organized as follows. In Section 2, as in [14] we lift each invariant sub-
space of B as an invariant subspace of the isometry Tz, do the Wold decomposition and
identify the the wandering subspace. In Section 3, using the structure of the wandering
space and establishing an identity (in Step 8 in the proof of Theorem 3.1) we give a
proof of Aleman, Richter and Sundberg theorem [1].

2. WOLD DECOMPOSITION AND WANDERING SUBSPACES

First we introduce notation to lift each invariant subspace of B as an invariant sub-
space of Tz. For an invariant subspace M of B, define the lifting M̃ to be the direct
sum

M⊕ [z − w].

In Theorem 6.8 [14] Richter showed that the mapping

η :M→ M̃
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is a one-to-one correspondence between invariant subspaces of B and invariant sub-
spaces of Tz containing [z − w]. In this section we will get the Wold decomposition of
the isometry Tz on M̃ and identify the wandering subspace of Tz on M̃.

Although for an invariant subspaceM of B,M may not be invariant for T ∗z , let the
operator B∗M onM denote the compression of T ∗z onM, i.e.,

B∗Mq = PMT
∗
z q = PMB∗q

for q inM. Since the Bergman shift is bounded below, we have the following lemma.

Lemma 2.1. LetM be an invariant subspace of B. Then B∗MB is invertible onM.

Proof. Since B is unitarily equivalent to the Bergman shift, an easy computation gives

‖Bf‖ ≥ 1√
2
‖f‖

for each f inM. The Cauchy-Schwarz inequality gives

‖B∗MBf‖‖f‖ ≥ |〈B∗MBf, f〉
= ‖Bf‖2

≥ 1

2
‖f‖2.

Thus we have

‖B∗MBf‖ ≥
1

2
‖f‖

for each f inM. So B∗MB is bounded below onM. To show that B∗MB is invertible on
M, we need only show that B∗MB is onto. If it is not so, then there is a nonzero function
f inM such that

〈B∗MBx, f〉 = 0

for all x inM. In particular, letting x be equal to f in the above equality, we have

‖Bf‖2 = 0,

to get that f is zero since B is injective onM. This shows that B∗MB is onto onM, to
complete the proof.

The following lemma will be used in the proof of Theorem 2.3. First we introduce a
notation. For two functions x, y in H2(T2), the symbol x⊗ y is the operator on H2(T2)
defined by

(x⊗ y)g = [〈g, y〉H2(T2)]x

for g ∈ H2(T2).

Lemma 2.2. On the Hardy space H2(T2), the identity operator equals

I = TzT
∗
z +

∑
l≥0

wl ⊗ wl = TwT
∗
w +

∑
l≥0

zl ⊗ zl.
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Proof. We will just verify the first equality in the lemma since the same argument leads
to the proof of the second equality.

To do this, let h be in H2(T2). Writing h(z, w) =
∑∞

j=0 hj(w)zj for some functions
hj(w) in H2(T), we have

TzT
∗
z h =

∞∑
j=0

hj(w)TzT
∗
z z

j =
∞∑

j=1

hj(w)zj.

Using the identity

(wl ⊗ wl)h = 〈h,wl〉wl

=
∞∑

j=0

〈hj(w)zj, wl〉wl = 〈h0(w), wl〉wl,

we have

(
∑
l≥0

wl ⊗ wl)h =
∑
l≥0

〈h0(w), wl〉wl = h0(w),

to conclude that for each h in H2(T2),

[TzT
∗
z +

∑
l≥0

wl ⊗ wl]h =
∞∑

j=1

hj(w)zj + h0(w)

=
∞∑

j=0

hj(w)zj = h.

This completes the proof.
LetM0 be the wandering space of B onM. Clearly, the wandering subspace LM̃ of

Tz on M̃ containsM0. To get understanding LM̃, we need to find out the orthogonal
complement ofM0 in LM̃. Let

M00 = {−hg + zPHg−wg(w) : (hg, g) ∈ BM×H2(T) and hg = B[B∗MB]−1PMg}.

The following theorem gives the Wold decomposition of Tz on M̃ and shows that the
orthogonal complement ofM0 in LM̃ equalsM00.

Theorem 2.3. LetM be an invariant subspace of B. Let M̃ be the lifting ofM. Then
M̃ is an invariant subspace of the isometry Tz and has the following decomposition:

M̃ = ⊕∞n=0z
nLM̃

where LM̃ is the wandering space of Tz on M̃ given by

LM̃ =M0 ⊕M00.

Proof. LetM be an invariant subspace of B and M̃ denote the lifting ofM.
It was shown in [14] that M̃ is an invariant subspace of Tz. For completeness we

include a proof. To do this, for each f in M̃, we write

f = f1 + f2
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for f1 inM and f2 in [z − w]. Since [z − w] is an invariant subspace of Tz, Tzf2 = zf2

is in [z − w]. A little computation gives

Tzf1 = PH(zf1) + P[z−w](zf1)

= Bf1 + P[z−w](zf1)

∈ M⊕ [z − w] = M̃.

The last equality follows from thatM is an invariant subspace of B. Thus we have

Tzf = Tzf1 + Tzf2

= Bf1 + Tzf2

∈ M⊕ [z − w] = M̃,

to get that M̃ is an invariant subspace of the isometry Tz.
Since for every function f in ∩∞n=0T

n
z M̃, f and its derivatives vanish at z = 0, we

have
∩∞n=0T

n
z M̃ = {0}.

By the Wold decomposition theorem [13], we have

M̃ = ⊕∞n=0z
nLM̃

where LM̃ is the wandering subspace of Tz on M̃.
To finish the proof, we need identify the wandering subspace LM̃ by showing

LM̃ =M0 ⊕M00.

First we show thatM0 is orthogonal toM00. To do this, let m be inM0 and −hg +
zPHg − wg(w) inM00. An easy calculation gives

〈m,−hg + zPHg − wg(w)〉 = −〈m,hg〉
= 0.

The first equality follows from that zPHg − wg(w) is in [z − w] and the last equality
follows from that hg is in BM. ThusM0 is orthogonal toM00.

Second we show
M0 ⊕M00 ⊂ LM̃.

To do this, let m be inM0 and −hg + zPHg−wg(w) inM00. For each f1 inM and
f2 in [z − w], we have that PMTzf1 = Bf1 and zf2 is contained in [z − w], to get

〈m,Tzf1〉 = 〈m,Bf1〉 = 0,

and
〈m,Tzf2〉 = 〈m, zf2〉 = 0.

These give
〈m,Tz(f1 + f2)〉 = 0.
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An easy computation gives

〈−hg + zPHg − wg(w), Tzf1〉 = 〈−T ∗z hg + PHg, f1〉 − 〈T ∗z (wg(w)), f1〉
= 〈−T ∗z hg + PHg, PMf1〉
= 〈−B∗Mhg + PMg, f1〉
= 0.

The second equality follows from that T ∗z (wg(w)) = 0 and f1 is in M. The third
equality follows from that B∗M is the compression of T ∗z on M. Since [z − w] is an
invariant subspace of Tz and T ∗z (wg(w)) = 0, we also have

〈−hg + zPHg − wg(w), Tzf2〉 = −〈hg, Tzf2〉+ 〈zPHg, Tzf2〉 − 〈wg(w), Tzf2〉
= 〈PHg, f2〉 − 〈T ∗z (wg(w)), f2〉
= 〈PHg, f2〉 = 0.

Thus these give
〈−hg + zPHg − wg(w), Tz(f1 + f2)〉 = 0.

So we obtain
M0 ⊕M00 ⊂ LM̃.

Third we show
LM̃ ⊂M0 ⊕M00.

For q in LM̃, write
q = q1 + q2

for q1 inM and q2 in [z − w]. Noting that q1 is orthogonal to Tz[z − w] and

TzM̃ = TzM⊕ Tz[z − w],

we have that q2 is orthogonal to Tz[z − w] and q1 + q2 is orthogonal to TzM.
Using Lemma 2.2, we will derive a special representation of q2. Since q2 is orthogonal

to Tz[z − w], we have that T ∗z q2 is orthogonal to [z − w]. Letting G = T ∗z q2, then G is
inH and

zG = TzT
∗
z q2

= q2 − q2(0, w).

The last equality follows from Lemma 2.2:

I = TzT
∗
z +

∞∑
n=0

wn ⊗ wn.

Since q2 is in [z − w], by Lemma 8 in [9], we have that q2(z, z) = 0 to get

zG(z, z) = q2(z, z)− q2(0, z) = −q2(0, z).
Letting g(z) = G(z, z), we have that g(z) is in H2(T) since q2(z, w) is in H2(T2).
Rewrite the above equality as

q2(z, w) = zG(z, w)− wg(w). (2.1)
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Applying the projection PH to both sides of the above equality gives

0 = PHq2

= PH[zG− wg(w)]

= PHTzG− PH[w(PHg(w) + PH⊥g(w))]

= BG− PH(w(PHg(w))

= BG− B(PHg(w))

= B(G− (PHg(w))).

The first equality follows from that q2 is in [z −w] and the fourth equality follows from
that [z − w] is an invariant subspace of Tw. Using the fact that B is injective on H, we
have

G = PHg.

By (2.1), we obtain

q2 = zPHg − wg(w). (2.2)

Since q1 + q2 is orthogonal to TzM, a simple computation gives

0 = 〈q1 + q2, Tzf〉
= 〈q1 + zPHg − wg(w), Tzf〉
= 〈T ∗z q1 + PHg, f〉
= 〈PMT ∗z q1 + PMg, f〉

for each f inH. This gives

B∗Mq1 + PMg = PMT
∗
z q1 + PMg = 0. (2.3)

Noting

M =M0 ⊕ BM,

we write

q1 = m0 − Bh1 (2.4)

for some h1 inM and m0 inM0. Applying B∗M to both sides of the above equality and
using (2.3) give

B∗MBh1 = PMg.

Thus

h1 = (B∗MB)−1PMg.

Letting hg = Bh1 and using (2.4) and (2.2), we have

q = q1 + q2 = m0 − hg + zPHg − wg(w) ∈M0 ⊕M00

to complete the proof.
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3. A PROOF OF ALEMAN, RICHTER AND SUNDBERG THEOREM

In this section we will give a proof of the following Beurling type theorem of Aleman,
Richter and Sundberg in [1]. Let S be a subspace ofH. We use [S] to denote the smallest
invariant subspace of B containing S, i.e.,

[S] = ∨n≥0BnS,

where ∨n≥0BnS denotes the closed subspace ofH spanned by the set {BnS : n ≥ 0}.

Theorem 3.1. LetM be an invariant subspace of B. ThenM = [M	BM].

Proof. Let M0 denote the wandering subspace M	 BM of B on M. Let N be the
orthogonal complement of [M0] inM.

We will show that N = {0}. The proof is long and will be divided into several steps.

Step 1. First we show

N ⊂ {
∞∑

n=0

znun : un = −hn + zPHgn − wgn(w) ∈M00}.

To do this, let q be a function in N . By Theorem 2.3, we have

q =
∞∑

k=0

zkm̃k +
∞∑

n=0

znun,

where m̃k is inM0 and un = (−hn + zPHgn − wgn(w)) ∈ M00. Since q is in N and
orthogonal to ∨n≥0BnM0, taking inner product of q with Bkm̃k gives

0 = 〈q,Bkm̃k〉
= 〈q, PHzkm̃k〉
= 〈q, znm̃k〉
= 〈zkm̃k, z

km̃k〉+ 〈zkuk, z
km̃k〉

= ‖m̃k‖2 + 〈uk, m̃k〉
= ‖m̃k‖2.

The second equality follows from that Bk equals the compression of Tzk on H and the
fourth equality follows from that uk is orthogonal to m̃k. This gives that m̃k = 0 for all
k ≥ 0. Thus each function q in N has the following form

q =
∞∑

n=0

znun. (3.1)

For a function q in N with the above representation, let

q1 =
∞∑

n=1

zn−1un. (3.2)
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Step 2. Next we show that for each q in N ,

q1 = B∗Mq

and q1 is still in N .
An easy calculation gives

T ∗z q = PH2(T2)[z̄u0 + z̄
∞∑

n=1

znun]

= PH2(T2)[z̄(−h0 + zPMg0 − wg0)] +
∞∑

n=1

zn−1un

Since q and h0 are inM ⊂ H and H is invariant under T ∗z , we have that both T ∗z q and
T ∗z h0 are also in H. Noting that M̃ =M⊕ [z − w] and bothM and H are orthogonal
to [z − w], we have that PM̃|H = PM|H, to get

PMT
∗
z q = PM̃T

∗
z q (3.3)

and

PMT
∗
z h0 = PM̃T

∗
z h0. (3.4)

Applying the operator B∗M to q and using (3.3) give

B∗Mq = PMT
∗
z q = PM̃T

∗
z q

= PM̃{PH2(T2)[z̄(−h0 + zPMg0 − wg0)] +
∞∑

n=1

zn−1un}

= PM̃[−T ∗z h0 + PMg0] +
∞∑

n=1

zn−1un

= −PM̃T
∗
z h0 + PMg0 +

∞∑
n=1

zn−1un

= −PMT ∗z h0 + PMg0 +
∞∑

n=1

zn−1un

= −B∗Mh0 + PMg0 +
∞∑

n=1

zn−1un

=
∞∑

n=1

zn−1un.

The sixth equality follows from (3.4) and the last equality follows from that h0 =
B(B∗MB)−1PMg0. This gives

B∗Mq = q1. (3.5)
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To show that q1 is still in N , let m be inM0 and k nonnegative integers. Easy calcula-
tions give

〈q1,Bkm〉 = 〈B∗Mq,Bkm〉
= 〈PMT ∗z q,Bkm〉
= 〈T ∗z q,Bkm〉
= 〈q, TzBkm〉
= 〈q,Bk+1m〉 = 0.

This says that q1 is in N .
Step 3. We show

q = B(B∗MB)−1q1.

To do so, using (3.2) we have

q = zq1 + [−h0 + zPHg0 − wg0(w)]

= Bq1 − h0 + [(z − B)q1 + zPHg0 − wg0(w)].

Note that q and Bq1 − h0 are inM and (z − B)q1 + zPHg0 − wg0(w) is in [z − w] and
hence orthogonal toM. Taking the projection at both sides of the above equality onto
M and [z − w] respectively gives

q = Bq1 − h0 (3.6)

and
(z − B)q1 = −zPHg0 + wg0(w).

By the fact that T ∗z (wg0(w)) = 0, applying T ∗z to both sides of the above equality, we
have

(1− T ∗z B)q1 = −PHg0,

to get
PMg0 = −(1− B∗MB)q1.

Since h0 = B(B∗MB)−1PMg0, we have

h0 = −B(B∗MB)−1(1− B∗MB)q1. (3.7)

So combining (3.6) with (3.7) gives

q = Bq1 − h0

= Bq1 + B(B∗MB)−1(1− B∗MB)q1

= B(B∗MB)−1q1.

Step 4. We show that B(B∗MB)−1q is in N for each q in N . By Step 3, hence
B(B∗MB)−1|N is the inverse of B∗M|N .

Let
q̃ = B(B∗MB)−1q.
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Clearly, q̃ is inM. On the other hand, for eachm inM0 and n > 0, an easy computation
gives

〈q̃,Bnm〉 = 〈B(B∗MB)−1q,Bnm〉
= 〈q,Bn−1m〉 = 0,

and

〈q̃, m〉 = 〈B(B∗MB)−1q,m〉
= 〈q, (B∗MB)−1B∗m〉 = 0,

to get that q̃ is in N .

Step 5. For each q =
∑∞

n=0 z
nun in N as in Step 1, let qk = (B∗M)kq. Then

‖qk−1‖2 + ‖qk+1‖2 − 2‖qk‖2 = ‖uk−1‖2 − ‖uk‖2.
To prove the above equality, by Step 2 we have that qk =

∑∞
n=k z

n−kun, and hence

‖qk‖2 =
∞∑

n=k

‖un‖2,

to obtain

‖qk−1‖2 + ‖qk+1‖2 − 2‖qk‖2

=
∞∑

n=k−1

‖un‖2 +
∞∑

n=k+1

‖un‖2 − 2
∞∑

n=k

‖un‖2

= ‖uk−1‖2 − ‖uk‖2.
Step 6. For each q in N , let qk = (B∗M)kq. Then

‖qk−1‖2 + ‖qk+1‖2 − 2‖qk‖2 = 〈(B∗MB)−1qk, qk〉+ 〈(BB∗M)qk, qk〉 − 2〈qk, qk〉. (3.8)

By Step 4, we have
qk−1 = B(B∗MB)−1qk

to obtain

‖qk−1‖2 = 〈B(B∗MB)−1qk,B(B∗MB)−1qk〉
= 〈(B∗MB)−1qk, qk〉.

This gives (3.8).

The Dirichlet spaceD consists of analytic functions on the unit disk whose derivatives
are in the Bergman space L2

a. We will get a representation of functions inM.
Step 7. For each f inM, there is a function g(z) in H2(T) ∩ D such that

f(z, w) = −PHg −
zg(z)− wg(w)

z − w
. (3.9)

For f inM and each h inH,

〈(B − Tz)f, h〉 = 〈(PHTz − Tz)f, h〉
= 〈Tzf − Tzf, h〉 = 0.
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This gives that (B − Tz)f is in [z − w]. On the other hand, for each F in H2(T2),

〈(B − Tz)f, z(z − w)F 〉 = 〈−Tzf, z(z − w)F 〉
= 〈f, (z − w)F 〉 = 0.

Thus (B − Tz)f is in the wandering subspace L{̃0} = L[z−w]. By Theorem 2.3, there is
a function g in H2(T) such that

(B − Tz)f = zPHg − wg(w).

So
Bf = zPHg − wg(w) + zf.

Noting that Bf, f, and PHg are in H and hence they are symmetric functions of z and
w, we also have

Bf = wPHg − zg(z) + wf.

Taking the difference of the above equalities gives

0 = (z − w)PHg + zg(z)− wg(w) + (z − w)f.

Hence we have

f = −PHg −
zg(z)− wg(w)

z − w
.

Since f is in H, Theorem 9 in [9] gives that g is also in the Dirichlet space D. This
completes the proof.

Clearly, for each function f̃(z) inD, f̃(z)−f̃(w)
z−w

is inH. For a function q in the invariant
subspace M of B, let f = (B∗MB)−1q. By (3.9) in Step 7, there is a function g in
H2(T) ∩ D such that

f(z, w) = −PHg −
zg(z)− wg(w)

z − w
.

Step 8. LetM⊥ denote the orthogonal complement ofM inH. Then

〈(B∗MB)−1q, q〉+ 〈(BB∗M)q, q〉 − 2〈q, q〉

=
1

2
‖PM⊥BPM⊥ [

g(z)− g(w)

z − w
]‖2 − ‖PM⊥ [

g(z)− g(w)

z − w
]‖2.

The above identity may be interesting in its own and immediately gives

〈(B∗MB)−1q, q〉+ 〈(BB∗M)q, q〉 − 2〈q, q〉 ≤ 0 (3.10)

since
‖PM⊥BPM⊥‖ ≤ 1.

(3.10) is the key ingredient in the new proof of the Beurling type theorem of Aleman,
Richter and Sundberg in [15].
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To prove the above identity, we need to identify (B∗MB)−1q, q and B∗Mq. Easy calcu-
lations give

Bf = PH[Tz(−PHg −
zg(z)− wg(w)

z − w
)]

= −BPHg − PH[
z2g(z)− zwg(w)

z − w
]

= −BPHg − PH[
z2g(z)− w2g(w) + (w2 − zw)g(w)

z − w
]

= −BPHg −
z2g(z)− w2g(w)

z − w
+ PH(wg(w)) (by

z2g(z)− w2g(w)

z − w
∈ H)

= −BPHg −
z2g(z)− w2g(w)

z − w
+ BPHg (by wP⊥Hg ∈ [z − w])

= −z
2g(z)− w2g(w)

z − w
,

and hence we have

q = B∗MBf

= PMT
∗
z [−z

2g(z)− w2g(w)

z − w
]

= −PMPH2(T2)[
zg(z)− w2z̄g(w)

z − w
]

= −PMPH2(T2)[
zg(z)− wg(w) + w(1− wz̄)g(w)

z − w
]

= −PM[
zg(z)− wg(w)

z − w
]− PMPH2(T2)(z̄wg(w))

= −PM[
zg(z)− wg(w)

z − w
]

= PM[−PHg −
zg(z)− wg(w)

z − w
+ PHg]

= PM[f + PHg] (by (3.9))

= f + PMg

= −PM⊥g − zg(z)− wg(w)

z − w
.

The ninth equality follows from that f is inM. SinceM is an invariant subspace of B,
M⊥ is an invariant subspace of B∗. Thus

PMB∗(PM⊥g) = 0.
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So we have

B∗Mq = PMB∗q

= PM[−B∗PM⊥g − B∗ zg(z)− wg(w)

z − w
]

= −PM[
g(z)− g(w)

z − w
],

to get

〈BB∗Mq, q〉 = 〈B∗Mq,B∗Mq〉

= ‖PM[
g(z)− g(w)

z − w
]‖2,

〈(B∗MB)−1q, q〉 = 〈f, q〉

= 〈f,−PM[
zg(z)− wg(w)

z − w
]〉

= 〈f,−[
zg(z)− wg(w)

z − w
]〉 (by f ∈M)

= 〈−PHg −
zg(z)− wg(w)

z − w
,−[

zg(z)− wg(w)

z − w
]〉

= 〈PHg, [
zg(z)− wg(w)

z − w
]〉+ ‖[zg(z)− wg(w)

z − w
]‖2

= 〈g, [zg(z)− wg(w)

z − w
]〉+ ‖[zg(z)− wg(w)

z − w
]‖2 (by

zg(z)− wg(w)

z − w
∈ H)

= ‖g‖2 + ‖[zg(z)− wg(w)

z − w
]‖2,

and

〈q, q〉 = 〈q,−PM[
zg(z)− wg(w)

z − w
]〉

= 〈q,−[
zg(z)− wg(w)

z − w
]〉

= 〈−PM⊥g − zg(z)− wg(w)

z − w
,−[

zg(z)− wg(w)

z − w
]〉

= 〈PM⊥g, [
zg(z)− wg(w)

z − w
]〉+ ‖[zg(z)− wg(w)

z − w
]‖2

= −〈PM⊥ [
zg(z)− wg(w)

z − w
], [
zg(z)− wg(w)

z − w
]〉+ ‖[zg(z)− wg(w)

z − w
]‖2

= −‖PM⊥ [
zg(z)− wg(w)

z − w
]‖2 + ‖[zg(z)− wg(w)

z − w
]‖2

= −‖PM⊥g‖2 + ‖[zg(z)− wg(w)

z − w
]‖2.
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The fifth equality and the last equality follow from

0 = PM⊥f

= PM⊥ [−PHg −
zg(z)− wg(w)

z − w
]

= −PM⊥g − PM⊥ [
zg(z)− wg(w)

z − w
].

Therefore

〈(B∗MB)−1q, q〉+ 〈(BB∗M)q, q〉 − 2〈q, q〉

= ‖g‖2 + ‖[zg(z)− wg(w)

z − w
]‖2 + ‖PM[

g(z)− g(w)

z − w
]‖2

+2‖PM⊥g‖2 − 2‖[zg(z)− wg(w)

z − w
]‖2

= −‖[g(z)− g(w)

z − w
]‖2 + ‖PM[

g(z)− g(w)

z − w
]‖2 + 2‖PM⊥g‖2

= 2‖PM⊥g‖2 − ‖PM⊥ [
g(z)− g(w)

z − w
]‖2.

The second equality follows from

‖[zg(z)− wg(w)

z − w
]‖2 = ‖g‖2 + ‖[g(z)− g(w)

z − w
]‖2.

The above identity comes directly from the computation by using the Fourier series
expansion of the function g(z) and the fact that {pn(z,w)√

n+1
}∞n=0 form an orthonormal basis

ofH. Since

B[
g(z)− g(w)

z − w
] = [

zg(z)− wg(w)

z − w
]− PHg

= −f − 2PHg,

and f is inM, we have

PM⊥B[
g(z)− g(w)

z − w
] = −2PM⊥g.

Thus

‖PM⊥g‖2 =
1

4
‖PM⊥B[

g(z)− g(w)

z − w
]‖2

=
1

4
‖PM⊥BPM⊥ [

g(z)− g(w)

z − w
]‖2.

The last equality follows from that BPM[g(z)−g(w)
z−w

] is inM. So we obtain

〈(B∗MB)−1q, q〉+ 〈(BB∗M)q, q〉 − 2〈q, q〉

=
1

2
‖PM⊥BPM⊥ [

g(z)− g(w)

z − w
]‖2 − ‖PM⊥ [

g(z)− g(w)

z − w
]‖2.
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Step 9. Finally we show that N = {0}.
For each q in N , by Step 1, we write q =

∑
n=0 z

nun with ‖q‖2 =
∑∞

n=0 ‖un‖2, for
un inM00. Let qk = (B∗M)kq. Step 8 gives that

〈(B∗MB)−1qk, qk〉+ 〈(BB∗M)qk, qk〉 − 2〈qk, qk〉 ≤ 0.

By Steps 5 and 6, we have
‖uk−1‖2 − ‖uk‖2 ≤ 0,

to get that the sequence {‖uk‖2} of nonnegative numbers increases, but is summable.
Hence ‖uk‖2 = 0 for k ≥ 0. This implies that q = 0, to complete the proof.
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