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Abstract. We study evolution problems of the type esx∂tu+h(∂x)u = f where
h is a holomorphic function on a vertical strip around the imaginary axis, and
s > 0. If P is a second-order polynomial we give a complete characterization
of the spectrum of the parameter-dependent operator λesx + P (∂x) in Lp(R).
We show the surprising result that the spectrum is independent of λ whenever
| arg λ| < π. Moreover, we also characterize the spectrum of ∂te

sx + P (∂x),
and we show that this operator admits a bounded H∞-calculus. Finally, we
describe applications to free boundary problems with moving contact lines,
and we study the diffusion equation in an angle or a wedge domain with
dynamic boundary conditions. Our approach relies on the H∞-calculus for
sectorial operators, the concept of R-boundedness, and recent results for the
sum of non-commuting operators.

1. Introduction

In recent years the H∞-calculus for sectorial operators in Banach spaces, the con-
cept of R-boundedness, and the method of operator sums have become important
tools for proving existence and optimal regularity results for solutions of partial
differential and integro-differential equations, as well as for abstract evolutionary
problems. We mention here only the references [7, 8, 15, 16, 17] which document
some recent work by the authors. In the current paper we apply these techniques to
the study of certain operator-valued symbols which arise from elliptic or parabolic
equations on angles or wedges with dynamic boundary conditions. Another main
objective of this paper is to develop tools for the study of free boundary problems
with moving contact lines.

To describe the class of symbols we have in mind, let us first consider the
case of dynamic boundary conditions. It is shown in Section 5 that the boundary
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symbol for the Laplace equation ∆u = 0 on an angle G = {(r cosφ, r sinφ); r >
0, φ ∈ (0, α)} in R2 with Dirichlet condition u = 0 on φ = α and dynamic
boundary condition ∂tu+ ∂νu = g on φ = 0 is given by

∂te
x + ψ0(−(∂x + β)2), ψ0(z) =

√
z coth(α

√
z), z ∈ C.

Here β ∈ R is a number whose meaning is explained in Section 5. Similarly, if one
considers the one-phase quasi-stationary Stefan problem with surface tension (also
sometimes called the Mullins-Sekerka problem) in two dimensions with boundary
intersection and prescribed contact angle α ∈ (0, π], one is led to the boundary
symbol

∂te
3x − ψ1

(
∂x + β)2

)
(∂x + β + 1)(∂x + β + 2),

where this time ψ1(z) =
√
z tanh(α

√
z). The free boundary problem for the sta-

tionary Stokes equations with boundary contact and prescribed contact angle in
two dimensions leads to

∂te
x + ψ(∂x + β),

where

ψ(z) = (1 + z)
cos(2αz) − cos(2α)
sin(2αz) + z sin(2α)

,

in the slip case and

ψ(z) =
(1 + z)

4
sin(2αz) − z sin(2α)
z2 sin2(α) − cos2(αz)

in the non-slip case. This motivates the study of equations of the type

∂te
sx + h(∂x) (1.1)

and its parametric form
λesx + h(∂x), (1.2)

where s > 0, λ ∈ C, and h is a function holomorphic on a vertical strip around
the imaginary axis.

In higher dimensions, the boundary symbol for the Laplace equation in a
wedge with dynamic boundary condition is given by

∂te
x + ψ0

(
− ∆ye

2x − (∂x + β)2
)
,

where ∆y means the Laplacian in the variables y tangential to the edge, whereas
that of the quasi-stationary Stefan problem becomes

∂te
3x + ψ1

(
− ∆ye

2x − (∂x + β)2
)
[−∆ye

2x − (∂x + β + 1)(∂x + β + 2)].

Similarly,
∂te

x + ψ0

(
(∂t − ∆y)e2x − (∂x + β)2

)

represents the boundary symbol for the diffusion equation in a wedge with dynamic
boundary condition. Clearly, these symbols are considerably more complicated
than in the two-dimensional case. They also show the importance of the special case
h = P where P is a second-order polynomial. In the current paper we concentrate
on this case.
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It is our ultimate goal to identify function spaces such that the operators
defined by the symbols of type (1.1) and (1.2) become topological isomorphisms
between these spaces, i.e., to obtain optimal solvability results. We intend to do
this in the framework of Lp-spaces. Our main tools are very recent results on sums
of sectorial operators, their H∞-calculi, and R-boundedness of associated operator
families.

Once this goal is achieved, one can go on to study symbols of higher-dim-
ensional (or time-dependent) problems. We will do this here only for those aris-
ing from the problems with dynamic boundary conditions. The symbols for the
Mullins-Sekerka problem in higher dimensions, for the Stefan problem with sur-
face tension, and for the non-steady Stokes problem with free boundary will be
the subject of future work.

Observe that symbols of type (1.1) and (1.2) are highly degenerate, due to the
presence of the exponentials. They are not directly accessible by standard methods
for pseudo-differential operators. Moreover, the basic ingredients of these symbols,
namely ex and ∂x, do not commute and so the functional calculus in two variables
does not apply. Still, there is a close relation between these operators. In fact, esx

is an eigenfunction of ∂x with eigenvalue s, or to put it in a different way, the
commutator between esx and ∂x is sesx. It is this relation we base our approach
on. It allows us to apply abstract results on sums of non-commuting operators.

The plan for this paper is as follows. In Section 2 we introduce the necessary
notation and state some abstract results needed in the sequel. In Sections 3 and 4
we deal with the important special case where h is a second-order polynomial P .
By means of an explicit representation of the resolvent we derive a complete char-
acterization of the spectrum of the operators

λesx + P (∂x) in Lp(R)

and
∂te

sx + P (∂x) in Lp(J × R),

where J = (0, T ). We conclude the paper with applications to the Laplace equa-
tion and the diffusion equation in an angle or a wedge with dynamic boundary
condition. By means of our results we obtain the complete solvability behavior of
this problem in appropriately weighted Lp-spaces.

We mention here that the Laplace and the diffusion equation with dynamic
boundary conditions in domains with edges were previously studied in the frame-
work of weighted L2-spaces by Frolova and Solonnikov, see [10, 18] and the refer-
ences contained therein.

2. Preliminaries

In the following, X = (X, | · |) always denotes a Banach space with norm | · |, and
B(X) stands for the space of all bounded linear operators on X , where we will
again use the notation | · | for the norm in B(X). If A is a linear operator on X ,
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then D(A), R(A), N(A) denote the domain, the range, and the kernel of A, whereas
ρ(A), σ(A) stand for the resolvent set, and the spectrum of A, respectively. An
operator A is called sectorial if

• D(A) and R(A) are dense in X ,
• (−∞, 0) ⊂ ρ(A) and |t(t+A)−1| ≤M for t > 0.

The class of all sectorial operators is denoted by S(X). If A is sectorial, then it
is closed, and it follows from the ergodic theorem that N(A) = 0. Moreover, by a
Neumann series argument one obtains that ρ(−A) contains a sector

Σφ := {z ∈ C : z �= 0, | arg(z)| < φ}.
Consequently, it is meaningful to define the spectral angle φA of A by means of

φA := inf{φ > 0 : ρ(−A) ⊃ Σπ−φ, Mπ−φ <∞},
where Mθ := sup{|λ(λ+A)−1| : λ ∈ Σθ}. Obviously we have

π > φA ≥ arg(σ(A)) := sup{| arg(λ)| : λ �= 0, λ ∈ σ(A)}.
If A is sectorial, the functional calculus of Dunford given by

ΦA(f) := f(A) :=
1

2πi

∫

Γ

f(λ)(λ −A)−1dλ

is a well-defined algebra homomorphism ΦA : H0(Σφ) → B(X), where H0(Σφ)
denotes the set of all functions f : Σφ → C that are holomorphic and that satisfy
the condition

sup
λ∈Σφ

(|λ−εf(λ)| + |λεf(λ)|) <∞ for some ε > 0 and some φ > φA.

Here Γ denotes a contour Γ = eiθ(∞, 0] ∪ e−iθ[0,∞) with θ ∈ (φA, φ). A is said
to admit an H∞-calculus if there are numbers φ > φA and M > 0 such that the
estimate

|f(A)| ≤M |f |H∞(Σφ), f ∈ H0(Σφ), (2.1)
is valid. In this case, the Dunford calculus extends uniquely to H∞(Σφ), see for
instance [6] for more details. We denote the class of sectorial operators which admit
an H∞-calculus by H∞(X). The infimum φ∞A of all angles φ such that (2.1) holds
for some constant M > 0 is called the H∞-angle of A.

Let T ⊂ B(X) be an arbitrary set of bounded linear operators on X . Then
T is called R-bounded if there is a constant M > 0 such that the inequality

E(|
N∑

i=1

εiTixi|) ≤ME(|
N∑

i=1

εixi|) (2.2)

is valid for every N ∈ N, Ti ∈ T , xi ∈ X , and all independent, symmetric {±1}-
valued random variables εi on a probability space (Ω,A, P ) with expectation E.
The smallest constant M in (2.2) is called the R-bound of T and is denoted by
R(T ). A sectorial operator A is called R-sectorial if the set

{λ(λ+A)−1 : λ ∈ Σπ−φ} is R-bounded for some φ ∈ (0, π).
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The infimum φRA of such angles φ is called the R-angle of A. We denote the class
of R-sectorial operators by RS(X). The relation φRA ≥ φA is clear. If X is a space
of class HT and A ∈ H∞(X) then it follows from a result of Clément and Prüss
[3] that A ∈ RS(X) with φRA ≤ φ∞A .

Finally, an operator A ∈ H∞(X) is said to admit an R-bounded H∞-calculus
if the set

{f(A) : f ∈ H∞(Σφ), |f |H∞(Σφ) ≤ 1}
is R-bounded for some φ ∈ (0, π). Again, the infimum φR∞

A of such φ is called the
RH∞-angle of A, and the class of such operators is denoted by RH∞(X).

If X enjoys the so-called property (α), see [2, Definition 3.11], then every
operator A ∈ H∞(X) already has an R-bounded H∞-calculus, that is, H∞(X) =
RH∞(X) and φR∞

A = φ∞A , see [12, Theorem 5.3]. In particular, the Lp-spaces with
1 < p <∞ have property (α), see [2].

We refer to the monograph of Denk, Hieber, and Prüss [6] for further infor-
mation and background material.

We now state a recent result on the existence of an operator-valued H∞-
calculus proved in [12], the general Kalton-Weis theorem.

Theorem 2.1. Let X be a Banach space, A ∈ H∞(X), F ∈ H∞(Σφ;B(X)) such
that

F (λ)(µ−A)−1 = (µ− A)−1F (λ), µ ∈ ρ(A), λ ∈ Σφ.
Suppose φ > φ∞A and R(F (Σφ)) <∞. Then

F (A) ∈ B(X) and |F (A)|B(X) ≤ CAR(F (Σφ))

where CA denotes a constant depending on A but not on F .

Given two sectorial operators A and B we define

(A+B)x := Ax+Bx, x ∈ D(A+B) := D(A) ∩ D(B).

A and B are said to commute if there are numbers λ ∈ ρ(A) and µ ∈ ρ(B) such
that

(λ−A)−1(µ−B)−1 = (µ−B)−1(λ−A)−1.

In this case, the commutativity relation holds for all λ ∈ ρ(A) and µ ∈ ρ(B).
In their famous paper [5] Da Prato and Grisvard proved the following result:

suppose A,B ∈ S(X) commute and the parabolicity condition φA + φB < π holds
true. Then A + B is closable and its closure L := A+B is again sectorial with
spectral angle φL ≤ max{φA, φB}.

The natural question in this context then is whether A+B is already closed,
i.e., if maximal regularity holds. There are many contributions to this question,
see for instance the discussion in Prüss and Simonett [17].

Applied to the functions F (z) = z(z+B)−1 and F (z) = f(z+B), Theorem 2.1
implies the following result on sums of commuting operators: suppose A ∈ H∞(X)
and B ∈ RS(X), A,B commute, and φ∞A + φRB < π. Then A + B is closed and
sectorial. If in addition B ∈ RH∞(X) and φ∞A + φR∞

B < π, then A + B has an
H∞-calculus as well.
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We now turn to the non-commuting case and we assume that A and B satisfy
the Labbas-Terreni commutator condition, which reads as follows.






0 ∈ ρ(A). There are constants c > 0, 0 ≤ α < β < 1,
ψA > φA, ψB > φB, ψA + ψB < π,
such that for all λ ∈ Σπ−ψA , µ ∈ Σπ−ψB

|A(λ +A)−1[A−1(µ+B)−1 − (µ+B)−1A−1]| ≤ c/(1 + |λ|)1−α|µ|1+β .
(2.3)

Assuming this condition we have the following generalization of the Kalton-Weis
theorem on sums of operators to the non-commuting case proved recently by the
authors in [17].

Theorem 2.2. Suppose A ∈ H∞(X), B ∈ RS(X) and suppose that (2.3) holds for
some angles ψA > φ∞A , ψB > φRB with ψA + ψB < π.
Then there is a number ω0 ≥ 0 such that ω0 + A + B is invertible and sectorial
with angle φω0+A+B ≤ max{ψA, ψB}. Moreover, if in addition B ∈ RH∞(X) and
ψB > φR∞

B , then
ω0 +A+B ∈ H∞(X) and φ∞ω0+A+B ≤ max{ψA, ψB}.

This result will be one of the main tools for the theory developed below.
If A and B are sectorial operators on X , their product is defined by

(AB)x := ABx, D(AB) := {x ∈ D(B) : Bx ∈ D(A)}.
Closedness of the product is easier to obtain than for sums, as AB is closed as
soon as A is invertible or B is bounded. On the other hand, it is in general not
a simple task to prove that AB is again sectorial. The following assertive result
is a consequence of the general Kalton-Weis theorem: suppose that A and B are
sectorial commuting operators in X , that A is invertible, and suppose that A ∈
H∞(X), B ∈ RS(X) such that φ∞A + φRB < π. Then AB is sectorial with angle
φAB ≤ φ∞A + φRB. If moreover B ∈ RH∞(X) and φ∞A + φR∞

B < π, then

AB ∈ H∞(X) and φ∞AB ≤ φ∞A + φR∞
B .

This result was recently extended in [11] to the case of non-commuting operators.

3. Parametric second-order symbols

In this section we consider the case where h is a second-order polynomial, that is,
we consider the parametric problem

µu+ λe2sxu− (∂x + β)2u = f, x ∈ R, (3.1)

where λ ∈ Σπ, µ ∈ C, β ∈ R, s ∈ R \ {0} are fixed parameters. In this case we
have

h(iξ) = −(iξ + β)2 = ξ2 − β2 − 2iβξ, ξ ∈ R.

The spectrum σ(h(∂x)) of the operator h(∂x) in Lp(R) is given by

σ(h(∂x)) = Pβ := h(iR) = {ξ2 − β2 − 2iβξ : ξ ∈ R},
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a parabola with vertex in −β2 opening to the right symmetric with respect to the
real axis. We are going to derive an explicit characterization of the spectrum of
λe2sx + h(∂x) as well as an integral representation of the solutions of (3.1). Note
that the change of variables y = −x transforms (3.1) into itself, when replacing s
by −s and β by −β. Therefore we assume s > 0 in the sequel.

We introduce the variable transformation

u(x) = e−βxw(
√
λesx/s), x ∈ R.

Setting z =
√
λesx/s and ν2 = µ/s2, problem (3.1) transforms to

(z2 + ν2)w(z) − z2w′′(z) − zw′(z) = g(z), Re z > 0, (3.2)

where
g(z) = zβ/ssβ/s−2λ−β/2sf(s−1 ln(sz/

√
λ)).

(3.2) is nothing but the modified Bessel equation with parameter ν. A fundamental
system of this equation is given by the modified Bessel function Iν(z) and the
McDonald function Kν(z). The general solution of (3.2) is given by

w(z) = aIν(z) + bKν(z) +Kν(z)
∫ z

0

Iν(σ)g(σ)dσ/σ + Iν(z)
∫ ∞

z

Kν(σ)g(σ)dσ/σ,

(3.3)
where so far a, b are arbitrary numbers.

We are going to compute the spectrum of Aλ,β = λe2sx − (∂x + β)2. Let us
first look for eigenfunctions of Aλ,β , i.e., for the point spectrum σp(Aλ,β). So we
have from (3.3) that −µ ∈ σp(Aλ,β) if and only if a function of the form

u(x) = e−βx[aIν(
√
λesx/s) + bKν(

√
λesx/s)], x ∈ R,

belongs to Lp(R) and e2sxu does so as well, since then we also have u ∈ H2
p (R)

since ω+h(∂x) ∈ B(H2
p(R), Lp(R)) is an isomorphism for ω > β2. In the sequel we

are employing the asymptotics for Iν(z) and Kν(z) near zero and infinity which,
for example, may be found in Abramowitz and Stegun [1]. For Re ν > 0 these read

Iν(z) ∼ ez/
√

2πz, Kν(z) ∼ e−z
√
π/2z, Re z > 0, |z| → ∞, (3.4)

and

Iν(z) ∼ 2−νzν/Γ(ν + 1), Kν(z) ∼ 2ν−1Γ(ν)z−ν , Re z > 0, z → 0. (3.5)

The estimates are uniform for | arg(z)| ≤ θ < π/2. From these asymptotics we may
conclude a = 0, and set b = 1. Since Kν(z) is exponentially decaying at infinity,

∫ ∞

0

epγx|u(x)|pdx = c

∫ ∞

1

t(γ−β)p/s|Kν(eiϕt)|pdt/t <∞,

for each p ∈ (1,∞), β, γ ∈ R and s > 0 since |ϕ| = | argλ/2| < π/2. On the other
hand,

∫ 0

−∞
epγx|u(x)|pdx = c

∫ 1

0

t(γ−β)p/s|Kν(eiϕt)|pdt/t
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is finite if and only if

Re νp+ (β − γ)p/s < 0, that is, iff Re
√
µ < γ − β.

Choosing γ = 0 and γ = 2s we see that the function

uµ(x) = e−βxKν(
√
λesx/s), x ∈ R,

is an eigenfunction corresponding to the eigenvalue −µ of Aλ,β if and only if
Re

√
µ < −β. Note that this property is independent of λ ∈ Σπ, s > 0 and

p ∈ (1,∞).
Next observe that the dual operator A∗

λ,β of Aλ,β in Lp(R)∗ = Lp′(R) is
precisely A∗

λ,β = Aλ,−β . Therefore we see from the above argument that −µ is an
eigenvalue of A∗

λ,β if and only if Re
√
µ < β. A dual eigenfunction is

u∗µ(x) = eβxKν(
√
λesx/s), x ∈ R.

Thus the set Re
√−µ ≤ |β| belongs to the spectrum of Aλ,β for all s > 0, 1 <

p < ∞, and λ ∈ Σπ, as long as β �= 0. For β = 0 the point spectra of Aλ,β
and of A∗

λ,β are both empty. We still claim that the set Re
√−µ = 0, i.e., the

set µ ∈ R+, belongs to the spectrum of Aλ,β . In fact these values of −µ are
approximate eigenvalues. Suppose on the contrary that µ+Aλ,0 is invertible. Then
µ+Aλ,β must be invertible for small |β| as well, since Aλ,β is a small perturbation
of Aλ,0.

It is easy to identify the set Re
√−µ ≤ |β|. It is the filled up parabola Pβ ,

defined by
Pβ = {ξ2 − β2 + σ − 2iβξ : ξ ∈ R, σ ≥ 0}.

The main result of this section is the following theorem which states that σ(Aλ,β) =
Pβ , for all p ∈ (1,∞), λ ∈ Σπ, s > 0, and β ∈ R.

This is truly a remarkable result since the spectrum of λ − (∂x + β)2 is the
shifted parabola λ+ Pβ instead!

Theorem 3.1. Let λ ∈ Σπ, β ∈ R, s > 0, 1 < p < ∞, and let Aλ,β in Lp(R) be
defined according to

Aλ,β = λe2sx − (∂x + β)2,
with domain D(Aλ,β) = H2

p (R) ∩ Lp(R; e2sxpdx). Then we have

σ(Aλ,β) = Pβ = {ξ2 − β2 + σ − 2iβξ : ξ ∈ R, σ ≥ 0}.

If β < 0 then σp(Aλ,β) = P̊β and σr(Aλ,β) = ∅, while for β > 0 we have σr(Aλ,β) =
P̊β and σp(Aλ,β) = ∅. The resolvent of Aλ,β has the integral representation

(µ+Aλ,β)−1f(x) =
∫

R

kλ,β,µ(x, y)f(y)dy, x ∈ R, f ∈ Lp(R),

where the kernel kλ,β,µ is given by

kλ,β,µ(x, y) = s−1e−β(x−y)
{
K√

µ/s(
√
λesx/s)I√µ/s(

√
λesy/s) for x > y

I√µ/s(
√
λesx/s)K√

µ/s(
√
λesy/s) for x < y.
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Finally, for every fixed φ ∈ (0, π) and µ /∈ −Pβ there exists a positive constant M
such that

|(µ+Aλ,β)−1|B(Lp) + |λe2sx(µ+Aλ,β)−1|B(Lp) ≤M, λ ∈ Σφ.

Proof. We first derive estimates for the kernel kλ,β,µ for fixed µ �∈ −Pβ. From the
asymptotics of Iν and Kν given in (3.4) and (3.5) we obtain for each θ < π/2 a
constant cν,θ > 0 such that

|Iν(z)| ≤ cν,θ
|z|Re νeRe z

(1 + |z|)Re ν+1/2
, | arg(z)| ≤ θ,

and

|Kν(z)| ≤ cν,θ
|z|−Re νe−Re z

(1 + |z|)−Re ν+1/2
, | arg(z)| ≤ θ.

With ν2 = µ/s2 these estimates yield for x > y

|kλ,β,µ(x, y)| ≤ C
e−(β+sRe ν)(x−y)

1 + |
√
λ|esx/s

·
(1 + |

√
λ|esx/s

1 + |
√
λ|esy/s

)Re ν+1/2

e−s
−1Re

√
λ(esx−esy).

The elementary inequality
(1 + a

1 + b

)γ
≤ ceε(a−b),

with c > 0 depending on ε > 0 and γ > 0 but not on a > b > 0, and the relation
Re

√
λ ≥ c′|

√
λ|, valid for | argλ| ≤ φ < π, then imply

|kλ,β,µ(x, y)| ≤ C
e−(β+sRe ν)(x−y)

1 + |
√
λ|esx

· e−c1|
√
λ|(esx−esy), x > y,

with some constants C = C(ν, φ) > 0 and c1 = c1(φ) > 0. In a similar way we
obtain for x < y

|kλ,β,µ(x, y)| ≤ C
e−(−β+sRe ν)(y−x)

1 + |
√
λ|esy

· e−c1|
√
λ|(esy−esx), x < y.

Combining these estimates leads to

|kλ,β,µ(x, y)| ≤ C
e−(sRe ν−|β|)|x−y|

1 + |
√
λ|esmax{x,y} · e−c1|

√
λ||esx−esy |, x, y ∈ R.

This shows |kλ,β,µ(x, y)| ≤ Cκ(x−y) with κ(x) = e−(sRe ν−|β|)|x|, that is, the kernel
kλ,β,µ is dominated by a convolution kernel. Convolution with κ is Lp-bounded if
κ ∈ L1(R), which is precisely the condition Re νs > |β|, which in turn is equivalent
to µ �∈ −Pβ. This shows that the resolvent of Aλ,β is well-defined and Lp-bounded
for all µ �∈ Pβ.

It remains to estimate λe2sxkλ,β,µ to conclude σ(Aλ,β) = Pβ . Let

γ := Re νs− |β| > 0 and α := c1|
√
λ| > 0.

Then we have

|λe2sxkλ,β,µ(x, y)| ≤ Ce−γ|x−y|[1 + αesmin{x,y}e−α|e
sx−esy|].
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This is clear in case x < y and for x > y it follows from

αesxe−α(esx−esy) = αesye−α(esx−esy) + α(esx − esy)e−α(esx−esy)

≤ αesye−α(esx−esy) + 1.

Thus we obtain

|λe2sxkλ,β,µ(x, y)| ≤ Ce−γ|x−y| + Cαesmin{x,y}e−α|e
sx−esy |, x, y ∈ R.

The first kernel on the right yields convolution with an L1-function which is Lp-
bounded, as before. The second one is symmetric, and we have

∫

R

sαesmin{x,y}e−α|e
sx−esy |dy

≤ e−αe
sx

∫ x

−∞
sαesyeαe

sy

dy + eαe
sx

∫ ∞

x

sαesye−αe
sy

dy ≤ 2.

This shows that the second kernel defines an integral operator which is simul-
taneously bounded in L1(R) and in L∞(R), with bound independent of α. By
the Riesz-Thorin interpolation theorem it is also bounded in Lp(R), uniformly in
α > 0, i.e., in λ ∈ Σφ with φ < π.

These arguments show that

(µ+Aλ,β)−1Lp(R) ⊂ Lp(R; (1 + e2sxp)dx).

Since we know that the spectrum of −(∂x + β)2 is the parabola Pβ , we may
conclude that (µ+Aλ,β)−1Lp(R) ⊂ H2

p (R), again with bound uniform in λ ∈ Σφ.
This concludes the proof of the theorem. �
One should observe that our estimates are not uniform in µ, but they are of course
so when µ is bounded. This then implies that near a point µ0 ∈ Pβ we have an
estimate of the form

|(µ−Aλ,β)−1|B(Lp(R)) ≤ C/dist(µ, Pβ), µ �∈ Pβ,

which is optimal besides the constant C. However, we do not know whether a
resolvent estimate of the form

|µ(µ−Aλ,β)−1|B(Lp(R) ≤ Cρ, dist(µ,Pβ) ≥ ρ,

for ρ > 0, uniformly in λ ∈ Σφ, is valid. We are able to show this only for λ > 0.

4. Operator-valued symbols of second order

Having established uniform bounds for the operator families

K0 = {(µ+Aλ,β)−1 : λ ∈ Σφ}, K1 = {λe2sx(µ+Aλ,β)−1 : λ ∈ Σφ} ⊂ B(Lp(R))

for every fixed φ ∈ (0, π), let us consider R-boundedness of K0 and K1. Suppose
we have established this property. Then holomorphy in λ permits to employ Theo-
rem 2.1. We may replace λ by any sectorial operator D with bounded H∞-calculus
and angle φ∞D < π which commutes with e2sx and ∂x. In particular, we are allowed
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to plug in D = ∂t, or D = ∂αt for α ∈ (0, 2) or, more generally, an anomalous
diffusion operator D = ∂αt − ∆y. The result then is that for all these different
operators the spectrum of L = De2sx− (∂x + β)2 is contained in the parabola Pβ .

To prove R-boundedness of K0 and K1 we use the domination theorem for
kernel operators in Lp(R) which says the following: if each of the kernels kλ,β,µ for
λ ∈ Σφ, β ∈ R and µ �∈ −Pβ fixed is pointwise bounded by a kernel κα and the set
of kernel operators Kα, for α belonging to some index set, is R-bounded then the
family K = {Kα} is so as well, see [6] for instance. Recall also that R-boundedness
is additive.

In our situation we have bounds for K1 in terms of a single convolution kernel
e−γ|x|, for some γ > 0, plus the family L := {αsesmin{x,y}e−α|e

sx−esy| : α > 0}.
Therefore, it is enough to show R-boundedness in Lp(R) of the family of kernel
operators L. To prove this the following lemma will be useful. We first introduce
some more notation. Given any function f ∈ L1,loc(R), the maximal function Mf
of f is defined by

(Mf)(x) := sup
a>0

1
2a

∫ x+a

x−a
|f(s)| ds, x ∈ R.

The result now reads as

Lemma 4.1.

(a) Suppose φ ∈ C2(R) is positive, nondecreasing and convex with xφ′(x) → 0 as
x→ −∞. Then the integral operator Tφ defined on D(R) by

Tφf(x) = φ(x)−1

∫ x

−∞
φ′(y)f(y)dy, x ∈ R,

satisfies |Tφf(x)| ≤ 2(Mf)(x) for all x ∈ R.
(b) Suppose ψ ∈ C2(R) is positive, nonincreasing and lnψ is concave with xψ(x)

→ 0 as x→ ∞. Then the integral operator Sψ defined on D(R) by

Sψf(x) =
−ψ′(x)
ψ(x)2

∫ ∞

x

ψ(y)f(y)dy, x ∈ R,

satisfies |Sψf(x)| ≤ 2(Mf)(x) for all x ∈ R.

Proof. (a) Let f ∈ D(R) be given. Then we have

|Tφf(x)| ≤ φ(x)−1

∫ x

−∞
φ′(y)|f(y)|dy = φ(x)−1

∫ x

−∞
φ′′(y)

∫ x

y

|f(s)|dsdy

≤ 2(Mf)(x)φ(x)−1

∫ x

−∞
φ′′(y)(x− y)dy

= 2(Mf)(x)φ(x)−1

∫ x

−∞
φ′(y)dy ≤ 2(Mf)(x).

These estimates can be justified by first integrating over a finite interval and then
letting the lower limit go to −∞. It should be noted that

∫ x
−∞ φ′(y) dy ≤ φ(x)

since φ is positive and nondecreasing.
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(b) Similarly we obtain

|Sψf(x)| ≤ −ψ′(x)
ψ(x)2

∫ ∞

x

ψ(y)|f(y)|dy =
ψ′(x)
ψ(x)2

∫ ∞

x

ψ′(y)
∫ y

x

|f(s)|dsdy

≤ 2(Mf)(x)
ψ′(x)
ψ(x)2

∫ ∞

x

ψ′(y)(y − x)dy

= 2(Mf)(x)
−ψ′(x)
ψ(x)2

∫ ∞

x

ψ(y)dy

≤ 2(Mf)(x)ψ(x)−1

∫ ∞

x

−ψ′(y)dy = 2(Mf)(x),

where in the last inequality we used that −ψ′(x)/ψ(x) = −(d/dx) lnψ(x) is in-
creasing, since lnψ(x) is concave by assumption. �

Now we can prove the following result.

Proposition 4.2. Let β ∈ R, s > 0, 1 < p < ∞, and suppose µ �∈ −Pβ. Then the
operator families

K0 = {(µ+Aλ,β)−1 : λ ∈ Σφ} ⊂ B(Lp(R))

and
K1 = {λe2sx(µ+Aλ,β)−1 : λ ∈ Σφ} ⊂ B(Lp(R))

are R-bounded for every fixed φ ∈ (0, π).

Proof. The proof uses the characterization of R-boundedness of integral operators
in Lp-spaces by means of square function estimates and proceeds like the proof of
Theorem 4.8 in Denk, Hieber and Prüss [6]; see also Clément and Prüss [3] where
this argument appears for the first time.

Take any functions fi ∈ Lp(R) and any numbers λi ∈ Σφ and let Ki denote
the integral operator with kernel λie2sxkλi,β,µ(x, y). Then with φi(x) = eαie

sx

,
ψi(x) = e−αie

sx

, αi = c1|
√
λi| > 0, Lemma 4.1 yields

|Kifi(x)| ≤ C(Mfi)(x), for a.a. x ∈ R,

hence ∑

i

|Kifi(x)|2 ≤ C
∑

i

|Mfi(x)|2, for a.a. x ∈ R,

where C > 0 denotes a constant that is independent of fi and λi. Since the maximal
operator M is bounded in Lp(R; l2) for 1 < p < ∞, see [19, Theorem II.1.1], we
may continue

|(
∑

i

|Kifi|2)1/2|Lp(R) ≤ C|(
∑

i

|Mfi|2)1/2|Lp(R) ≤ C|(
∑

i

|fi|2)1/2|Lp(R).

This implies that the family K1 satisfies a square function estimate, and it fol-
lows from [6, Remark 3.2(4)] that K1 is R-bounded. K0 is R-bounded since it
is dominated by a single Lp-bounded kernel operator, see [6, Proposition 3.5] for
instance. �
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We can now state the following result, alluded to in the introduction to this section.

Theorem 4.3. Let β ∈ R, s > 0, 1<p<∞, and let D denote an invertible sectorial
operator on a Banach space X with bounded H∞-calculus and angle φ∞D < π. Let
L on Lp(R;X) be defined by means of

Lu = De2sx − (∂x + β)2,

with natural domain

D(L) = {u ∈ H2
p (R;X) : e2sxu ∈ Lp(R; D(D))}.

Then σ(L) ⊂ Pβ, and for any ω > β2, ω +L is invertible, sectorial, and admits a
bounded H∞-calculus in Lp(R;X).

Proof. We may conclude from Theorem 3.1 and Proposition 4.2 that σ(L) ⊂ Pβ ,
see the arguments given at the beginning of the current section. Consequently

µ+ L is invertible for every µ �∈ −Pβ . (4.1)

We now consider the operator A given by

A := De2sx, D(A) := {u ∈ Lp(R, X) : e2sxu ∈ Lp(R,D(D)}.
A is the product of D with the multiplication operator M := e2sx, which has an
R-bounded H∞-calculus with φR∞

M = 0 on Lp(R), and hence also on Lp(R, X).
It follows from the remarks at the end of Section 2 that A ∈ H∞(R, X) with
φ∞A ≤ φ∞D . Next we consider the operator B, defined by

B := δ0 − (∂x − β)2, D(B) = H2
p (R),

where δ0 > β2. It follows from Mikhlin’s theorem that B is sectorial and admits
an H∞-calculus on Lp(R). Moreover, we can also conclude that δ0 > β2 can be
chosen in such a way that φ∞D + φ∞B < π. Since Lp(R) has property α we obtain,
in addition, that φ∞D +φR∞

B < π. This result also holds for the canonical extension
of B to Lp(R, X). The same arguments as in [17, Section 5] now show that there
exists a number ω0 ≥ 0 such that

ω0 +A+B is sectorial and admits an H∞-calculus on Lp(R, X). (4.2)

The remaining assertions of Theorem 4.3 are now a consequence of (4.1)–(4.2) and
[6, Proposition 2.7]. �

Remarks 4.4. (a) Suppose D = ∂t, with domain D(∂t) = {u ∈W 1
p (J) : u(0) = 0}.

Then it can be shown that, in fact, σ(L) = Pβ . This follows from the property
that every number −µ ∈ P̊β is an eigenvalue of either Aλ,β or its dual, with
eigenfunction

uµ(λ, x) = e±βxKν(
√
λesx/s), λ ∈ Σπ, x ∈ R,

see Section 3. Taking the inverse Laplace transform with respect to λ over an
appropriate contour will provide an eigenfunction of L, or its dual, with eigen-
value −µ.
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(b) A correspondig result to Theorem 4.3 can also be stated for operators of the
form D + (ω − (∂x + β)2)e−2sx, but we leave this to the interested reader.

5. Parabolic equations with dynamic boundary conditions
on wedges and angles

In this section we consider an application of our main results to the diffusion
equation on a domain of wedge or angle type, that is, on the domain G = Rm×Cα,
where m ∈ N0, and for α ∈ (0, 2π), Cα denotes the angle

Cα = {x = (r cosφ, r sinφ) : r > 0, φ ∈ (0, α)}.
The boundary Γ = ∂G then consists of two faces

Γ0 = {(y, r, 0); y ∈ R
m, r > 0}, Γα = {(y, r cosα, r sinα) : y ∈ R

m, r > 0}.
We consider the problem






∂tu− ∆u = f1 in G× (0, T )
u = f2 on Γα × (0, T )

∂tu+ ∂νu = f3 on Γ0 × (0, T )
u|t=0 = u0 on G.

(5.1)

Here m ∈ N0 and ν denotes the outer normal for G at Γ. The function f1 is given
in a weighted Lp-space, i.e.,

f1 ∈ Lp(J × R
m;Lp(Cα; |x|γdx)),

where γ ∈ R will be chosen appropriately, and J = (0, T ). The functions f2 and
f3 are supposed to belong to certain trace spaces.
It is natural to introduce polar coordinates in the x-variables, x=(r cosφ, r sinφ)
where φ ∈ (0, α) and r > 0. Then the diffusion operator ∂t − ∆ transforms into

∂t − ∆y − [∂2
r +

1
r
∂r] −

∂2
φ

r2
,

where y denotes the variable in Rm, and ∆y is the Laplacian in the y-variables.
The underlying space for the function f1 now is

f1 ∈ Lp(J × R
m × (0, α);Lp(R+; rγ+1dr)).

It is also natural to employ the Euler transformation r = ex where now x ∈ R.
Setting

u(t, y, φ, r) = rβv(t, y, φ, ln r),

we arrive at the following problem for the unknown function v.





e2x(∂t − ∆y)v + P (∂x)v − ∂2
φv = g1 in (0, T ) × Rm × (0, α) × R

v = g2 on (0, T )× Rm × {α} × R

ex∂tv − ∂φv = g3 on (0, T )× Rm × {0} × R

v|t=0 = v0 on Rm × (0, α) × R

(5.2)
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where g1(t, y, φ, x) = e(2−β)xf1(t, y, φ, ex) and

g2(t, y, x) = e−βxf2(t, y, ex), g3(t, y, x) = e(1−β)xf3(t, y, ex).

The differential operator P (∂x) is given by the polynomial P (z) = −(z+ β)2, as a
simple computation shows. The resulting equations are now defined in a smooth
domain, but they contain the (non-standard) differential operators esx∂t, s = 1, 2,
and e2x∆y. We observe that these operators do not commute with P (∂x).

Next we note that
∫

R

|g1(t, y, φ, x)|pdx =
∫ ∞

0

|r2−βf1(t, y, φ, r)|pdr/r <∞,

in case we choose p(2 − β) = γ + 2, that is, β = 2 − (γ + 2)/p. Making this choice
of β, we can remove the weight and work in the unweighted base space

X := Lp(J × R
m × (0, α) × R).

We want to extract the boundary symbol for problem (5.2). For this purpose
we define an operator Aβ in X = Lp(J × Rm × R), J = (0, T ), by means of

(Aβu)(t, y, x) = ((∂t − ∆y)e2x − (∂x + β)2)u, (t, y, x) ∈ J × R
m × R,

with domain

D(Aβ) = Lp(J × R
m;H2

p (R)) ∩ 0H
1
p(J ;Lp(Rm;Lp(R; e2xpdx)))

∩H2
p (R

m;Lp(J ;Lp(R; e2xpdx))).

Then the solution of the homogeneous problem





e2x(∂t − ∆y)v + P (∂x)v − ∂2
φv = 0 in (0, T )× Rm × (0, α) × R

v = 0 on (0, T ) × Rm × {α} × R

v = ρ on (0, T ) × Rm × {0} × R

v|t=0 = 0 on Rm × (0, α) × R

with Dirichlet datum v = ρ on J × Rm × {0} × R is given by

v(φ) = ϕ(Aβ , φ)ρ, ϕ(z, φ) = sinh((α− φ)
√
z)/ sinh(α

√
z), φ ∈ (0, α).

Evaluating the normal derivative and inserting into the dynamic boundary condi-
tion yields

ex∂tρ+ ψ(Aβ)ρ = g, ρ|t=0 = 0, (t, y, x) ∈ J × R
m × R (5.3)

where ψ(z) =
√
z coth(α

√
z).

We want to study the boundary symbol ex∂t + ψ(Aβ) in the base space X :=
Lp(J × Rm × R). For this purpose we note that according to Theorem 4.3 the
operator Aβ + δ admits a bounded H∞-calculus for each δ > β2. Moreover, it is
not difficult to see that Aβ + δ is m-accretive on X whenever δ > β2. The function
ψ is meromorphic on C with poles in

{zk = −r2k := −k2(π/α)2 : k ∈ N}
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and ψ(z) ∼
√
z as z → ∞, provided |arg z| ≤ θ < π. It follows that ψ(Aβ) is

a well-defined, closed linear operator with D(ψ(Aβ)) = D((Aβ + δ)1/2), see [6,
Section 2.1] for more details.
The function ψ admits the following representation as a series

ψ(z) =
1
α

[
1 + 2z

∞∑

k=1

1
z + r2k

]
, z �∈ {−r2j : j ∈ N}.

Inserting Aβ into this representation we obtain

αψ(Aβ) = 1 + 2
∞∑

k=1

Aβ(Aβ + r2k)
−1

= 1 + 2
∞∑

k=1

(Aβ + β2)(Aβ + r2k)
−1 − 2β2

∞∑

k=1

(Aβ + r2k)
−1.

Employing the semi-inner product (· , ·) in X we estimate as follows.

α
(
ψ(Aβ)u, u

)
≥ |u|2 + 2

∞∑

k=1

(
(Aβ + β2)(Aβ + β2 + (r2k − β2))−1u, u

)

− 2β2
∞∑

k=1

|(Aβ + β2 + (r2k − β2))−1u||u|

≥
[
1 − 2β2

∞∑

k=1

(r2k − β2)−1
]
|u|2

≥
[
1 − α|β|

π − α|β|

]
|u|2 =

π − 2α|β|
π − α|β| |u|

2,

provided 1
(k+1)π−α|β| ≤

1
kπ+α|β| for all k ∈ N, which is equivalent to |β| ≤ π/2α.

Thus if β is restricted to the range |β| < π/2α then ψ(Aβ) is strictly accretive
in X .

We remark that the condition |β| < π/2α is also necessary for ψ(Aβ) to be strictly
accretive. In order to see this, recall that ψ(σ(Aβ)) ⊂ σ(ψ(Aβ)) according to
the (weak) spectral mapping theorem. Thus for ψ(Aβ) to be strictly accretive,
ψ(σ(Aβ)) must be contained in the set [Re z ≥ c] with c > 0. Note that the curves
−(η + iξ)2 with 0 ≤ η ≤ |β| fill up the parabola Pβ , the spectrum of Aβ . The
function

Reψ(−(η + iξ)2) =
ξ sinh(2αξ) + η sin(2αη)
cosh(2αξ) − cos(2αη)

is strictly positive for all ξ ∈ R and 0 ≤ |η| ≤ |β| if and only if sin(2α|η|) > 0, the
latter condition being equivalent to |β| < π/2α. Thus ψ(Pβ) ⊂ [Rez > 0] if and
only if |β| < π/2α.
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It should also be observed that in case we assume a Neumann condition on φ = α,
ψ(z) =

√
z tanh(α

√
z). In this case

Reψ(−(η + iξ)2) =
ξ sinh(2αξ) − η sin(2αη)
cosh(2αξ) + cos(2αη)

,

which does not have positive real part for ξ ∈ R, for no values of η. Thus in this
case, ψ(Aβ) fails to be accretive.

We will now show that there exists a sufficiently large positive number ω0 such
that ω0 + ∂te

x + ψ(Aβ), with domain D(∂tex) ∩ D(ψ(Aβ)), is invertible, sectorial
and admits a bounded H∞-calculus on X . Since ex∂t+ψ(Aβ) is strictly accretive,
we can conclude that ex∂t+ψ(Aβ) is in fact invertible and m-accretive, and hence
sectorial on X . It then follows from [6, Proposition 2.7] that ∂tex + ψ(Aβ) admits
a bounded H∞-calculus on X as well.

To prove the remaining statement we use, once more, the result on sums
of non-commuting operators, Theorem 2.2. For this purpose we have to estimate
the relevant commutator in the Labbas-Terreni condition (2.3). We will need the
following auxiliary result for the commutator of (z−Aβ)−1 with the multiplication
operator ex.

Lemma 5.1. Suppose z ∈ ρ(Aβ) ∩ ρ(Aβ−1). Then

[(z −Aβ)−1, ex]e−x =
(
(z −Aβ)−1 − (z − Aβ−1)−1

)
on X.

Proof. An easy computation shows that (z − Aβ−1)exv = ex(z − Aβ)v for every
function v ∈ D := D((0, T ] × Rm × R). Applying (z − Aβ−1)−1 to this equation
gives

exv = (z −Aβ−1)−1ex(z −Aβ)v, v ∈ D.
Substituting v = (z−Aβ)−1(z−Aβ)v on the left side and then replacing (z−Aβ)v
by e−x(z −Aβ)v yields

ex(z −Aβ)−1e−x(z −Aβ)v = (z −Aβ−1)−1(z −Aβ)v, v ∈ D.
The assertion now follows from the fact that {(z−Aβ)v : v ∈ D} is dense in X . �

In order to check the commutator condition (2.3) we first remove some poles from
ψ such that the remainder ψ0 is holomorphic in a sector −a+ Σφ, where

−a < −b := min{−(β − 1)2,−β2}, φ ∈ (0, π).

Observing that ψ has first-order poles at −r2k with corresponding residues −(2/α)r2k
we can take

ψ0(z) := ψ(z) +
2r21
α

· 1
z + r21

+ c ,

with c a constant. The condition |β| < π/α ensures that ψ0 is in fact holomorphic
on an open set containing the closure of −a + Σφ for −a ∈ (−r22 ,−b) and any
φ ∈ (0, π). By choosing c big enough we can, moreover, arrange that ψ0 maps
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the sector −a + Σφ, with φ < π, into a sector Σθ with θ < π/2. The difference
ψ(Aβ)−ψ0(Aβ) is bounded, as one easily verifies. Then we fix η > 0 and compute

(η + ∂te
x)(λ + η + ∂te

x)−1[(η + ∂te
x)−1, (µ+ ψ0(Aβ))−1]

= (λ+ η + ∂te
x)−1[(µ+ ψ0(Aβ))−1, ex]e−x · ∂tex(η + ∂te

x)−1,

which gives
∣
∣(η + ∂te

x)(λ + η + ∂te
x)−1[(η + ∂te

x)−1, (µ+ ψ0(Aβ))−1]
∣
∣
B(X)

≤ Cη (1 + |λ|)−1 ·
∣
∣[(µ+ ψ0(Aβ))−1, ex]e−x

∣
∣
B(X)

.

Next taking Γ = −a+∂Σφ, the boundary of the sector −a+Σφ, with φ appropriate,
and using Lemma 5.1 we get
∣
∣[(µ+ ψ0(Aβ))−1, ex]e−x

∣
∣
B(X)

=
∣
∣
∣∣

1
2πiµ

∫

Γ

ψ0(z)
µ+ ψ0(z)

[(z −Aβ)−1, ex]e−x dz
∣
∣
∣∣
B(X)

≤ C

|µ|

∫

Γ

∣
∣
∣
∣

ψ0(z)
µ+ ψ0(z)

∣
∣
∣
∣ ·

∣
∣(z −Aβ)−1 − (z −Aβ−1)−1

∣
∣
B(X)

|dz|.

Since Aβ −Aβ−1 = −2∂x − 2β + 1 we obtain
∣
∣(z −Aβ)−1 − (z −Aβ−1)−1

∣
∣
B(X)

≤
∣
∣(z −Aβ)−1(Aβ −Aβ−1)(z −Aβ−1)−1

∣
∣
B(X)

≤ C(1 + |z|)−3/2.

This implies
∣∣[(µ+ ψ0(Aβ))−1, ex]e−x

∣∣
B(X)

≤ C

|µ|

∫

Γ

∣
∣∣
∣

ψ0(z)
µ+ ψ0(z)

∣
∣∣
∣

|dz|
(1 + |z|)3/2

≤ C

|µ|

∫

Γ

|dz|
(|µ| + |z|1/2)(1 + |z|) ≤ Cε

|µ|2−ε ,

since ψ0(z) ∼
√
z. Thus the assumptions of Theorem 2.2 are satisfied for

A := η + ∂te
x and B := ψ0(Aβ),

with α = 0 and β = 1− ε, for each ε > 0. Indeed, observe that ψ0(Aβ) is sectorial
with angle strictly smaller than π/2. This follows from the fact that ψ0 maps the
sector −a + Σφ into a sector Σθ with θ < π/2. Hence the parabolicity condition
holds. Moreover, it is clear that ψ0(Aβ) admits a bounded H∞-calculus on X since
Aβ+δ does so according to Theorem 4.3. We may conclude that there is a number
ω0 > 0 such that ω0 + ∂te

x + ψ0(Aβ) with natural domain is closed, invertible,
sectorial, and admits an H∞-calculus on X . Perturbing by the bounded linear
operator ψ(Aβ)−ψ0(Aβ) we see that the same result holds for ω0 + ∂te

x+ψ(Aβ),
possibly after choosing a larger number ω0.

We summarize our considerations in

Theorem 5.2. Let 1 < p < ∞ and assume |β| < π/2α. Then for each g ∈ X :=
Lp(J × Rm × R), (5.3) admits a unique solution ρ in

Lp(J×R
m;Hr

p(R))∩Lp(J ;H1
p (R

m;Lp(R; expdx)))∩H1
p (J ;Lp(Rm;Lp(R; expdx))).
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There is a constant M > 0, independent of g, such that

|esx∂tρ|X + |ρ|Lp(J×Rm;Hr
p(R)) + |ρ|Lp(J;H1

p(Rm;Lp(R;expdx))) ≤M |g|X .

The operator L = ∂te
sx+ψ((∂t−∆y)e2x−(∂x+β)2) admits a bounded H∞-calculus

on X.
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