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Abstract

We present a numerical scheme for axisymmetric solutions to curvature driven moving bound-
ary problems governed by a local law of motion, e.g. the mean curvature flow, the surface dif-
fusion flow, and the Willmore flow. We then present several numerical experiments for the
Willmore flow. In particular, we provide numerical evidence that the Willmore flow can develop
singularities in finite time.

1 Introduction

In this paper we will construct a numerical method for axisymmetric solutions for some curvature
driven geometric evolution problems. These moving boundary problems arise from models in
physics, the material sciences, or differential geometry. Although our main focus will be on
the Willmore flow, our numerical method is presented in a more general context that applies
to other problems. The situation we consider is the following. Let Γ0 be a compact closed
immersed orientable surface in IR3. A curvature driven geometric evolution problem consists of
finding a family Γ = {Γ(t) : t ≥ 0} of smooth closed immersed orientable surfaces in IR3 which
evolve according to a law

V = f(κ1, κ2), Γ(0) = Γ0. (1)

Here V denotes the normal velocity of Γ, while κ1, κ2 are the principal curvatures of Γ(t). The
mean curvature is given through H = 1

2 (k1 + k2), and the Gauss curvature through K = k1k2.
We denote the Laplace–Beltrami operator of Γ(t) by ∆. One obtains the mean curvature flow
with this notation by setting f = −H, the surface diffusion flow by setting f = ∆H, and the
Willmore flow by setting

f = ∆H + 2H(H2 −K) . (2)

Throughout this paper we assume the free boundary to be an orientable connected compact
axisymmetric 2–dimensional surface Γ(t) immersed in IR3. We assume that the evolution is
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sufficiently smooth, that is, for small enough time τ we have

Γ(t+ τ) = {y ∈ IR3 : y = x+ ρ(x, t, τ)N(x, t), x ∈ Γ(t)}

for some smooth function ρ and unit (outer) normal N of Γ(t). Let V (x, t) =
∂ρ

∂τ
(x, t, τ)

∣∣∣
τ=0

denote the normal velocity of Γ(t). Then we will consider evolution laws of the form

V (x, t) = f(κ1(x, t), κ2(x, t)) , (3)

where f is a local operator. The signs are chosen in such a way that a sphere has positive
curvature with respect to the outer normal. By the definition of V a family of expanding
spheres has positive normal velocity.

Our approach leads to a first-order-accurate backward Euler time-discretization, with a spa-
tial discretization needed only of a generating curve of the axisymmetric surface. Due to the
local character of the evolution, the matrices involved in the computations explained below are
in fact matrices that have only entries on the main diagonal and on the two neighboring (modulo
n) diagonals. Such an n×n matrix can be inverted very fast, one needs O(n) operations. This is
very much different from the general three-dimensional case without symmetry, compare [15, 16].
To validate our numerical scheme we consider the test problem of a sphere evolving according to
the mean curvature flow, one of the rare cases where an exact solution is known. The findings
indicate that the proposed scheme is highly accurate, allowing for numerical simulation of the
evolution up to the time of singularity.

As the Willmore flow is our principal example, we list some of the known results relating to
this flow. The following result concerning existence, regularity, and uniqueness of solutions has
been recently established in [23].

Theorem.

(a) Suppose Γ0 is a compact closed immersed orientable C2,α-surface in IR3. Then the Will-
more flow admits a unique family Γ := {Γ(t) : t ∈ [0, T ]} of smooth surfaces Γ(t) which
evolve according to (1)–(2).

(b) If Γ0 is sufficiently close to a sphere in the C2,α-topology, then the solution exists globally
and converges exponentially fast towards a sphere.

We also refer to [12] for related results concerning global existence of solutions.
Having pointed out that solutions close to spheres converge to spheres then raises the question

about existence and stability of additional equilibria. In general, any equilibrium of (1), that is,
any closed smooth surface that satisfies the equation

∆H + 2H(H2 −K) = 0 (4)

is called a Willmore surface [27, p. 282]. Willmore surfaces arise as the critical points of the
functional

W (φ) :=
∫
φ(M)

H2 dS, (5)

see [24] or [27, Section 7.4]. Here, φ : M → IR3 is a smooth immersion of M into IR3. This
functional was proposed first around the year 1810 by Sophie Germain to model the elastic
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energy of an elastic surface, and enjoyed only periodic interest in the mathematical community
until T.J. Willmore’s work in the mid 1960’s brought it back to the forefront of mathematical
research [25, 26, 27].

The question of the limiting surfaces for the Willmore functional can then be rephrased
as a variational problem: Given a smooth closed orientable surface Mg of genus g determine
the infimum W (Mg) of W (φ) over all immersions φ : Mg → IR3 and classify all manifolds
φ(Mg) which minimize W . It is known that W (M) ≥ 4π for any surface M and that the
minimum is attained if and only if φ(M) is embedded as a round sphere [27, Theorem 7.7.2]. A
characterization of all Willmore immersions φ : S2 → IR3 has been obtained in [5]; the possible
values of W (φ) are 4πn where n = 1, or n ≥ 4 even, or n ≥ 9 odd. For the torus T 2 there is
the long-standing ‘Willmore Conjecture’ asserting that W (T 2) = 2π2. The conjecture has been
proved for some conformal classes [14, 18]. The conjecture is also known to be true for surfaces
whose images under stereographic projection are surfaces of revolution in IR3 [13]. In particular,
the value 2π2 is attained by those tori of revolution whose generating circles have ratio 1/

√
2,

see for instance [27, p. 274]. It is known that there exists embedded Willmore surfaces in
IR3 of arbitrary genus. Such surfaces arise, for instance, as the images of embedded minimal
surfaces in S3 under stereographic projection of S3 into IR3. Examples of compact embedded
Willmore surfaces that are not stereographic projections of compact embedded minimal surfaces
in S3 were first found in [20]. Lastly we mention that all surfaces of genus g that are absolute
minimizers of the functional W are necessarily embedded as Willmore surfaces. The existence
of a minimizer for any g ≥ 1 follows from the work of Kusner [10] and Simon [22]. We refer to
[21, 22, 27] and the references therein for more details and interesting results.

The Willmore flow is the L2-gradient flow for the functional (5) on the moving boundary, see
for example [11], and also [15] for related work on gradient flows. Thus the Willmore flow has
the distinctive property that it evolves surfaces in such a way as to reduce the total quadratic
curvature (also called the Willmore energy). More precisely, let Γ0 be any surface that is C2,α-
smooth. Then ∫

Γ(t)

H2(t) dµ ≤
∫

Γ0

H2(0) dµ, 0 ≤ t ≤ T, (6)

where [0, T ] denotes the interval of existence guaranteed in the existence theorem quoted before,
and where H(t) denotes the mean curvature of Γ(t). This gradient flow structure has been
employed in [9] by using Brakke’s Surface Evolver (see [4]) to compute numerical solutions for
minimizers of the Willmore functional. Their approach is to start with polyhedral surfaces
with very few vertices, then to use the numerical evolution and to refine the triangulation as
needed to finally approach a numerically smooth limiting surface. Our focus here is not so
much on the limiting surfaces, but on the geometric behavior of solutions for various initial
geometries. Because of the use of the axisymmetry, we need considerably less computational
effort to simulate a smooth flow.

It is interesting to compare the Willmore flow with the surface diffusion flow given by f =
∆H. In the latter case it is well-known that hypersurfaces evolve in such a way as to reduce
surface area, while preserving the volume enclosed by Γ(t), see [6] for instance. It is therefore of
interest to compare and contrast the behavior of solutions for the Willmore flow and the surface
diffusion flow, as will be done in some of the subsequent numerical simulations.

Our numerical simulations include the evolution of a torus of revolution, of a dumbbell
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surface, of an erythrocyte-shaped surface, of a cylinder of revolution, and of an immersed surface
obtained by revolving parts of a limaçon curve around an axis. All these examples reveal
interesting, new properties of the Willmore flow. For instance, we establish numerically that
the Willmore flow drives dumbbell surfaces to a sphere, no matter how small the neck is. This
is in strict contrast to the surface diffusion flow which seems to lead to a pinch-off, see [16].
Our experiment with an erythrocyte-shaped surface indicates that the Willmore flow can lose
embeddedness, that is, can drive embedded surfaces to self-intersections. This property is shared
by the surface diffusion flow, but clearly not by the mean curvature flow, where the maximum
principle prevents self-intersections from forming. It is well-known that the mean curvature flow
preserves convexity. Our numerical simulation based on a cylindrical surface seems to indicate
otherwise for the Willmore flow, as is the case for the surface diffusion flow.

It is an open question whether or not the Willmore flow can develop singularities in finite
time. Our last example in Section 8.5 based on a limaçon curve provides numerical evidence that
this can indeed happen. We therefore conjecture that the Willmore flow can develop singularities
in finite time.
Conjecture. There exists a family Γ := {Γ(t) : t ∈ [0, T )} of smooth compact closed immersed
orientable surfaces in IR3 which evolve according to the Willmore flow given by (1)–(2) such that
the limiting surface Γ(T ) is singular, where T <∞.

2 Discretization

The proposed scheme for the moving free boundary problems involves essentially two steps.
First discretize in time, and then discretize the surface to deal with the spatial variables. We
assume that the considered surfaces are sufficiently smooth in both time and space, so that at
least all derivatives occurring in the following computations exist and are continuous. This is in
particular known to be true for the solutions to the Willmore flow (see [23]), which is our main
application.

2.1 Finite differences

The normal velocity is the temporal derivative of the surfaces Γ(t) in the normal direction and
thus the first order approximation of equation (3) is given by the finite difference equation

N(x, t) · Γ(x, t+ h)− Γ(x, t)
h

= f(κ1(x, t+ h), κ2(x, t+ h)) .

As the right-hand side is evaluated at the next time step, this is a first-order-accurate backward
Euler time-discretization.

One should actually write Γ̃ and so on because the above equation describes approximate
solutions; by a similar abuse of notation we will call the left side of the above equation V (x, t)
again and hence

Γ(x, t+ h) = Γ(x, t) + hV (x, t)N(x, t) ,

V (x, t) = f(κ1(x, t+ h), κ2(x, t+ h)) .
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Finally approximate the dependence of the curvature of the next time step by

κi(x, t+ h) ≈ κi(x, t) + h(LiV )(x, t)

where Li, i = 1, 2, is a linear operator which is formally defined via

(LiV )(x, t) =
d

dh
κi(Γ(x, t) + hV (x, t)N(x, t))

∣∣∣∣
h=0

. (7)

We use Taylor’s expansion to obtain the first order approximation

f(κ1(x, t+ h), κ2(x, t+ h)) ≈ f(κ1(x, t), κ2(x, t))

+D1f(κ1(x, t), κ2(x, t))
(
κ1(x, t+ h)− κ1(x, t)

)
(8)

+D2f(κ1(x, t), κ2(x, t))
(
κ2(x, t+ h)− κ2(x, t)

)
,

and thus (omitting the arguments for brevity),

f
∣∣∣
t+h
≈
(
f + hD1fL1V + hD2fL2V

)∣∣∣
t
.

Writing Df = (D1f,D2f) and L =
( L1

L2

)
, we arrive at the first order approximation

V = f + hDf LV ,

or equivalently,
(id− hDf L)V = f . (9)

Note that for this semi-implicit scheme only the dependency of f with regards to V at the next
time step is linearized, we still use the full non-linear f for evaluation at the current time.

2.2 Spatial discretization

The surface Γ is generated by rotation of a curve γ. The curve will be subdivided into a finite
collection of disjoint arcs γi. Choose points zi ∈ γi; we write xi and yi for the x and y-coordinate
of zi, respectively.

We assume f to be a local operator. Hence for m = 1, 2 there are numbers smij associated
with Dmf (possibly depending locally on the current position and shape of γ) so that for any
suitable function w one has

(Dmf(κ1, κ2)w)(zi) ≈
i+1∑
j=i−1

smijw(zj) .

In order to keep the notation simple we have suppressed the time variable t in our notation.
Note that we have restricted to local operators f so that Dmf can be approximated at any
given point by only using data at that point and at the immediate neighbors. This is why the
sum above runs from i− 1 to i+ 1. To give a specific example, let us consider the function f of
(2) which can also be written as

f(κ1, κ2) =
1
2

∆(κ1 + κ2) +
1
2

(κ1 + κ2)(κ1 − κ2)2 .
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In this case one obtains

Dmf(κ1, κ2)w =
1
2

∆w +
1
2

(κ1 − κ2)2w + (−1)m−1(κ1 + κ2)(κ1 − κ2)w .

In the same fashion, since Lm from (7) is a local linear mapping as well, we have

(LmV )(zi) ≈
i+1∑
j=i−1

lmijV (zj) (10)

for some coefficients lmij depending on Γ(t) but independent of V (x, t). Finally we obtain a linear
system for the unknown velocity

∀i :
i+2∑
j=i−2

(
δij +

i+1∑
k=i−1

h(s1
ikl

1
kj + s2

ikl
2
kj)
)
V (zj , t) = f(κ1(zi, t), κ2(zi, t)) . (11)

The evaluation of f on the right-hand side here is assumed to be of local character. That is, it
might need more data than just evaluation at the point zi, but no more than the data at zi and
the two neighboring points. Other than this there is no restriction on f , provided the general
assumptions of the set-up are satisfied. Finally, the sum on the left-hand side runs from i − 2
to i+ 2 because of the product of two sums inside the parentheses.

3 Approximation of the curvature

3.1 Approximation of the first principal curvature

The curvature is considered to be located at the vertices. The motivation of the formula used
is as outlined below. Our surface is given through rotation of a curve γ. The curvature of this
curve is of course a principal curvature of the surface. There is a well-known formula for the
change of the length L of a simple curve under normal variations φν, with ν the outer unit
normal of γ,

δL(γ, φ) :=
d

dτ
L(γ + τφν)

∣∣∣∣
τ=0

=
∫
γ

κ1φds , (12)

where κ1 is the signed curvature of the positively oriented curve. Let ηε be a piecewise linear
function of one real variable with ηε(0) = 1 and ηε(t) = 0 for |t| > ε. Pick a point z on a smooth
curve γ embedded in IR2 and consider the variation of γ with variation function φε = ηε(| · −z|)
supported on an ε-interval about z. Then by (12)

δL(γ, φε) =
∫
Iε(z)

(1− 1
ε
|x− z|)κ1(x) dsx ≈ 2κ1(z)

∫ ε

0

(1− ρ

ε
) dρ = εκ1(z) . (13)

On the discretized curve the same effect of this variation can be achieved by the (normal)
movement of one vertex. We choose ε from above to be the average distance from zi to its two
neighbors. Consider the length of the discretized curve as a function of the position of zi, while
all other vertices are fixed, that is, consider the function

Li(z) = C + |zi+1 − z|+ |z − zi−1| .
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Replacing just one of the vertices zi by zi + τνi (index i fixed, vector νi fixed) leads to

d

dτ
Li(zi + τνi)

∣∣∣∣
τ=0

=
( zi − zi−1

|zi − zi−1|
− zi+1 − zi
|zi+1 − zi|

)
· νi . (14)

One can now immediately read off the gradient of Li as being

∇Li := ∇Li(zi) =
zi − zi−1

|zi − zi−1|
− zi+1 − zi
|zi+1 − zi|

. (15)

Recall that ∇Li(zi) points in the direction of the largest increase of Li. On the other side, it
is easy to see that the biggest increase of Li occurs for variations in normal direction of zi. We
conclude that the unit outer normal νi of the curve at the vertex zi is given by

νi = ±∇Li/|∇Li| . (16)

The sign in (16) is “+” if ∇Li points towards the outside of γ, and “−” otherwise. From
(13)–(15), together with our choice of ε, we obtain the approximation

κ1(zi) ≈ κ1i :=
∇Li · νi

(|zi − zi−1|+ |zi+1 − zi|)/2
. (17)

If ∇Li happens to be zero we see that the two vectors zi+1 − zi and zi − zi−1 are parallel, and
we normalize one of them and turn it clockwise by 90o to get the outside unit normal, and in
this case we have of course κ1(zi) = 0.

The starting and the end points of the curves are on the coordinate axes if we do not have a
closed loop. In particular the starting point z0 is always on the x-axis in this case. We can define
for computations’ sake z−1 = (x1,−y1), and compute all the expressions as outlined before. In
particular

κ1(z0) ≈ κ10 := ± |∇L0|
|z0 − z1|

where
∇L0 =

z0 − z−1

|z0 − z−1|
− z1 − z0

|z1 − z0|
=

2z0 − z1 − z−1

|z1 − z0|
.

The formulas above of course also apply with suitably changed indices for the last point zn−1,
which is also on a coordinate axis in case we do not have a loop. Similarly, we can take advantage
of possible symmetry to the y-axis, and then need only half the computational effort for the
simulations. This reasoning also applies without mentioning in the following sections.

3.2 Approximation of the second principal curvature

We assume that the curve under consideration is rotated about the x-axis, positively oriented,
and parameterized by arc length, that is, we have a parameterization s 7→ (x(s), y(s)). Then
the second principal curvature is given by

κ2(s) = − x′(s)
y(s)

, (18)
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provided y(s) 6= 0, and κ2(s) = κ1(s) if y = 0 (see the appendix). As mentioned before, we
write xi for the x-coordinate of the vertex zi, etc. The derivative is approximated as usual by
a finite difference,

x′i ≈
1
2
·
(
xi+1 − xi
|zi+1 − zi|

+
xi − xi−1

|zi − zi−1|

)
. (19)

As mentioned before, the starting and the end points of the curves are on the coordinate axes
if we do not have a closed loop, and in this case we have κ2 = κ1.

4 Linearization of the curvature

4.1 Linearization of the first principal curvature

Use Vi to denote the velocity of the vertex zi. In this section we will compute coefficients l1ij
such that for the operator L1 as defined in (7) we have

L1V (zi, t) ≈
∑
j

l1ijVj .

We will use equation (17). We write Di = (|zi+1 − zi| + |zi − zi−1|)/2. Let tildes denote
quantities referring to the configuration at the next time step. In particular, the vertices are
given by z̃i = zi + hViνi and the first principal curvature is given by κ̃1i = (∇L̃i(z̃i) · ν̃i)/(D̃i),
compare Section 3.1. Also, ∇L̃i(z̃i) · ddh ν̃i = 0 because ν̃i is a unit vector and ∇L̃i(z̃i) is parallel
to ν̃i. Hence we define the coefficients l1ij via

∑
j

l1ijVj =
d

dh
κ̃1i

∣∣∣∣
h=0

=
d
dh (∇L̃i(z̃i))

∣∣∣
h=0
· νi

Di
− Li · νi

D2
i

· d
dh
D̃i

∣∣∣∣
h=0

. (20)

Starting out with

∇L̃i(z̃i) =
zi + hViνi − zi−1 − hVi−1νi−1

|zi + hViνi − zi−1 − hVi−1νi−1|
− zi+1 + hVi+1νi+1 − zi − hViνi
|zi+1 + hVi+1νi+1 − zi − hViνi|

,

standard computations lead to

d

dh
(∇L̃i(z̃i))

∣∣∣∣
h=0

· νi =
( ((zi − zi−1) · νi)((zi − zi−1) · νi−1)

|zi − zi−1|3
− νi−1 · νi
|zi − zi−1|

)
Vi−1

+
( 1
|zi − zi−1|

+
1

|zi+1 − zi|
− ((zi − zi−1) · νi)2

|zi − zi−1|3

− ((zi+1 − zi) · νi)2

|zi+1 − zi|3
)
Vi

+
( ((zi+1 − zi) · νi)((zi+1 − zi) · νi+1)

|zi+1 − zi|3
− νi+1 · νi
|zi+1 − zi|

)
Vi+1 .

Similarly, as

D̃i =
1
2

(
|zi + hViνi − zi−1 − hVi−1νi−1|+ |zi+1 + hVi+1νi+1 − zi − hViνi|

)
,
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we obtain

d

dh
D̃i

∣∣∣∣
h=0

= − (zi − zi−1) · νi−1

2|zi − zi−1|
Vi−1

+
(1

2
(
zi − zi−1

|zi − zi−1|
− zi+1 − zi
|zi+1 − zi|

) · νi
)
Vi

+
(zi+1 − zi) · νi+1

2|zi+1 − zi|
Vi+1 .

Grouping terms according to Vi−1, Vi, and Vi+1 finally leads to expressions for l1i,i−1, l1ii, and
l1i,i+1, while all the others are zero,

l1i,i−1 =
1
Di

( ((zi − zi−1) · νi)((zi − zi−1) · νi−1)
|zi − zi−1|3

− νi−1 · νi
|zi − zi−1|

+ κ1i
(zi − zi−1) · νi−1

2|zi − zi−1|

)
,

l1ii =
1
Di

( 1
|zi − zi−1|

+
1

|zi+1 − zi|
− ((zi − zi−1) · νi)2

|zi − zi−1|3

− ((zi+1 − zi) · νi)2

|zi+1 − zi|3
− κ1i

2
(
zi − zi−1

|zi − zi−1|
− zi+1 − zi
|zi+1 − zi|

) · νi
)
,

l1i,i+1 =
1
Di

( ((zi+1 − zi) · νi)((zi+1 − zi) · νi+1)
|zi+1 − zi|3

− νi+1 · νi
|zi+1 − zi|

− κ1i
(zi+1 − zi) · νi+1

2|zi+1 − zi|

)
.

At the starting point, if on the x-axis, we have set z−1 = (x1,−y1), and thus it is easily seen
that

(z1 − z0) · ν0 = −(z0 − z−1) · ν0 ,

(z1 − z0) · ν1 = −(z0 − z−1) · ν−1 ,

ν1 · ν0 = ν−1 · ν0 ,

and hence
l101 = l10,−1 .

As clearly κ11 = κ1,−1 we may for the computations replace l101 by twice its value, and we set
l10,−1 = 0.

4.2 Linearization of the second principal curvature

As in the previous section we write tildes for the quantities after moving all vertices by hViνi.
We also write νi,x for the x-coordinate of νi, etc. Then formulas (18) and (19) yield

κ̃2i = − 1
2(yi + hViνi,y)

·
(xi+1 + hVi+1νi+1,x − xi − hViνi,x
|zi+1 + hVi+1νi+1 − zi − hViνi|

+
xi + hViνi,x − xi−1 − hVi−1νi−1,x

|zi + hViνi − zi−1 − hVi−1νi−1|

)
.

Computing the derivative leads to

d

dh
κ̃2i

∣∣∣
h=0

= −Viνi,y
yi

κ2i −
1

2yi

(Vi+1νi+1,x − Viνi,x
|zi+1 − zi|

+
Viνi,x − Vi−1νi−1,x

|zi − zi−1|
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− xi+1 − xi
|zi+1 − zi|3

(zi+1 − zi) · (Vi+1νi+1 − Viνi)

− xi − xi−1

|zi − zi−1|3
(zi − zi−1) · (Viνi − Vi−1νi−1)

)
.

Reading off the coefficients of Vi−1, Vi, and Vi+1 yields l2i,i−1, l2ii, and l2i,i+1. All the other l2ij
are zero. Notice that when yi = 0 we have κ2i = κ1i and so we simply copy the linearization:
l2ij = l1ij .

If the starting point is on the x-axis, then the linearization of κ20 is the same as the one of
κ10, because we use κ2 = κ1 at the starting point.

5 Discretization of the Laplace-Beltrami operator

5.1 Discretization of the Laplacian in two dimensions

If n= 2 the Laplace-Beltrami operator reduces to taking the second derivative with respect to
arc length, ∆ = ∂ss. For any function w we discretize this with

∂ssw(zi) ≈
1
Di

(w(zi+1)− w(zi)
|zi+1 − zi|

− w(zi)− w(zi−1)
|zi − zi−1|

)
,

where as before Di = (|zi+1 − zi|+ |zi − zi−1|)/2. That is, we have

∂ssw(zi) ≈ d1
i,i−1w(zi−1) + d1

iiw(zi) + d1
i,i+1w(zi+1)

with

d1
i,i−1 =

1
Di|zi − zi−1|

,

d1
ii = − 1

Di

( 1
|zi+1 − zi|

+
1

|zi − zi−1|

)
,

d1
i,i+1 =

1
Di|zi+1 − zi|

.

If the starting point is on the x-axis, then because of z−1 = (x1,−y1) the formulas are symmetric,
so here we replace d1

01 by twice its value, and set d1
0,−1 = 0. Hence

−d1
00 = d1

01 =
1

|z1 − z0|2
, d1

0,−1 = 0 .

The second term in the Laplace-Beltrami operation in three dimensions is equal to the first term
because y0 = 0.

5.2 Discretization of the Laplacian in three dimensions

For a function w that is radially symmetric on a radially symmetric surface one computes for
any parameterization by arc length

∆w = ∂ssw +
y′

y
∂sw ,

10



provided y 6= 0, and ∆w = 2∂ssw if y = 0 (see the appendix). Discretization leads to

y′

y
∂sw(zi) ≈

1
4yi

( yi+1 − yi
|zi+1 − zi|

+
yi − yi−1

|zi − zi−1|

)(w(zi+1)− w(zi)
|zi+1 − zi|

+
w(zi)− w(zi−1)
|zi − zi−1|

)
,

so that as in the previous section one has

y′

y
∂sw(zi) ≈ d2

i,i−1w(zi−1) + d2
iiw(zi) + d2

i,i+1w(zi+1)

with

d2
i,i−1 = − 1

4yi|zi − zi−1|

( yi+1 − yi
|zi+1 − zi|

+
yi − yi−1

|zi − zi−1|

)
,

d2
ii =

( 1
4yi|zi − zi−1|

− 1
4yi|zi+1 − zi|

)( yi+1 − yi
|zi+1 − zi|

+
yi − yi−1

|zi − zi−1|

)
,

d2
i,i+1 =

1
4yi|zi+1 − zi|

( yi+1 − yi
|zi+1 − zi|

+
yi − yi−1

|zi − zi−1|

)
.

Of course, if yi = 0 we set d2
ij = d1

ij , this in particular applies if the starting point is on the
x-axis.

6 Adaptive re-meshing

The evolution tends to move some of the points closer to their neighbors, as compared to other
points and their neighbors. It is therefore necessary to every once in a while readjust the position
of the points. The idea is to move each point to a location equidistant to its two neighbors.
A second, more drastic measure to be taken is the insertion of new points in case points move
too far apart, or the removal of points if points cluster too much. The moving to the middle,
insertion, and deletion are all done with the same algorithm as described below, so as to preserve
the curvature as much as possible.

Let z̃i be the new location of zi, and keep zi+1 and zi−1 fixed. Then di = |z̃i − zi−1| =
|z̃i − zi+1|. Let ν̃i be the normalized vector zi+1 − zi−1 turned clockwise by 90o, then z̃i =
1
2 (zi+1 + zi−1) + εν̃i for some yet to be determined ε. For the periodic movement of the points
to the middle of their segments, we compute the location of all z̃i first, and then move them all
at once.

Using the equation for z̃i in (17) we obtain κ1i =
2ε
d2
i

. If κ1i = 0 then clearly ε = 0. Otherwise,

setting li = | 12 (zi+1 − zi−1)|, we also have ε2 + l2i = d2
i by the Pythagorean theorem. Solving

these equations for ε yields

ε =
1−

√
1− l2i κ2

1i

κ1i
,

where we have already chosen the minus sign in front of the square root. This choice comes
about as follows. Finding the location of z̃i that preserves the curvature does in fact exactly
correspond to finding a circular arc through zi+1 and zi−1 of prescribed signed curvature. There
will be of course two such circular arcs, one shorter than a semi-circle, and one longer than a

11



semi-circle. Choosing a minus sign in the equation for ε above amounts to choosing the shorter
arc.

It is certainly possible that we numerically have computed a curvature value κ1i for which
no such circular arc can be found (this is the case when κ1i > 1/li). In this case the point zi
will not be moved.

0
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time step = 0.001
time step = 0.01
time step = 0.1

0
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0 0.5 1 1.5 2

average
minimum
maximum

Figure 1: These curves display the reciprocals of the surface-integral average of
the numerical mean curvatures (i.e. 1/H(t)) of the simulation of the a sphere driven
by the mean curvature flow. The spatial resolution is 0.01 to 0.05. The graphs in
the plot on the left show the results of varying the time step, where the curve for
∆t = 0.001 is essentially visually indistinguishable from the exact solution. The
graphs in the plot on the right are for a time step of ∆t = 0.001, where we have
plotted maxx(1/H(x, t)), minx(1/H(x, t)), and 1/H(t) as functions of time t. See
the main text for further description.

7 A test example for the mean curvature flow

While the main focus of this paper is the application of the proposed scheme to the Willmore
flow, we present here our numerical results for the mean curvature flow of a 2-dimensional
sphere. Because of the radial symmetry the evolution equation V = −H reduces to a separable
ordinary differential equation for the radius: ṙ = −1/r. Solving this equation leads to

1
H(t)

= r(t) =
√
r2(0)− 2t .

12



We have run a series of computations on this specific problem. We have chosen r(0) = 2 and
a spatial resolution of 0.01 to 0.05, and have run the proposed numerical scheme with various
time steps. Because of the symmetry only a quarter-circle needs to be considered.

The graphs on the right-hand side of Figure 1 illustrate several features of the numerical
scheme. Considering only the reciprocal of the surface-integral average of the mean curvature is
not sufficient to judge the scheme. We thus consider the maximum as well as the minimum of
the reciprocal of the discretized mean curvature, and plot these versus time, exhibiting thus the
largest deviations of the resulting curve from generating a sphere upon rotation. Note that this
results in an exaggerated view of the non-smoothness of the discretized curve, if plotted into a
diagram together with an exact quarter circle, the curves are visually indistinguishable from the
quarter circle. Initially the quarter circle needed for the simulation had 256 points, which for
an initial radius of 2 results in a spatial resolution of about 0.012, well in the mandated range
of 0.01 to 0.05. In order to save computational cost, we set the simulation to check only every
100 iterations for the allowed spatial resolution range. After 700 time steps, which corresponds
to t = 0.7, the radius had dropped to about 1.613, and the proximity of the points fell under
the threshold of 0.01, so that half of the points got removed. This led to a smoothing of the
resulting curve, and is clearly visible in the plot. The same effect happens once more at about
t = 1.7, when the radius falls to about 0.773, and the proximity of the points falls again under
the allowed threshold of 0.01.

As can be seen in the plot on the left side of Figure 1, the numerical scheme is extremely
accurate, in fact, for this second-order problem the numerical solution is already a good ap-
proximation for a time step equal to the spatial resolution, while one usually expects to need
time steps of quadratic magnitude. Also worth pointing out is the good approximation near the
singularity.

8 Numerical experiments for the Willmore flow

8.1 A torus

As mentioned in the introduction, there are stationary tori for the Willmore flow, namely those
where the ratio of the two principal radii is 1/

√
2. We chose as starting surfaces several tori that

are not stationary. It turned out that the Willmore flow evolves all tori we looked at towards
a stationary torus. This is quite in contrast to the surface diffusion flow (V = ∆f), where a
torus cinches the inner hole [16]. Due to the symmetry of the torus we need to use only half of a
generating circle to capture the full experiment, see Figure 2. The time step for the experiment
was 10−3, with spatial distances of the vertices ranging from 0.01 to 0.05.

Also of interest is the decrease of the total quadratic curvature
∫

Γ(t)
H2 dµ, see (6). The

integral levels off at about 19.73878, which is merely about −0.02% away from the theoretical
minimum of 2π2, see Figure 3. Surface area is not necessarily decreased under the Willmore
flow, and for this experiment surface area grows initially in order to decrease

∫
Γ(t)

H2 dµ, see
also Figure 3.

At t = 1000 the curvature of the generating curve ranges from 0.33969 to 0.37628, with an
average of 0.36017, while the y-coordinate of the center of mass of the curve is at 3.9404. Using
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Figure 2: The generating curves of an evolving torus. Reflect the graphs in the
y-axis and rotate about the x-axis for the full surface.
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Figure 3: On the left side: The total quadratic curvature
∫

Γ(t)
H2 dµ of an evolving

torus. Notice that the graph ends at t = 200, as to display better the interesting
part. On the right side: The surface area of an evolving torus. The surface area
grows initially to decrease the total quadratic curvature.
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Figure 4: The generating curves of a dumbbell. Reflect the graphs in the y-axis
and rotate about the x-axis for the full surface. A dumbbell does not pinch off
under the Willmore flow, but evolves towards a sphere.

the reciprocal of the average of the plane curvature as the average radius of the generating
curve, one obtains r1 = 2.776466, and using the y-coordinate of the center of mass as the second
radius r2 of the torus of revolution, we obtain a ratio of r2/r1 = 1.41921, about 0.35% from
the theoretically established ratio of

√
2 for a stationary Willmore torus. The numerical normal

velocity (at t = 1000) is less than 7 · 10−5. Combined with a time step of 10−3 this results in a
movement of less than 7 ·10−8, which is already close to the realm of rounding and discretization
errors. On the other hand, the numerical simulation is not quite stationary yet, as can be seen
in the still decreasing surface area (see Figure 3), and at the not yet constant first principal
curvature.

8.2 A dumbbell

The question arises whether the Willmore flow will like the related surface diffusion flow (V =
∆H) drive a suitable dumbbell to a pinch-off at the neck [16]. At the neck one certainly has
the effects of the surface diffusion flow. On the other hand, H is positive (the smaller the neck,
the bigger is H), and by the arithmetic-geometric inequality we know that |H| ≥ |K|, so that
at the neck the term 2H(H2 −K) is positive. The point is, while the ∆H term can contribute
to a movement inwards, it is not expected to overcome the contribution by 2H(H2−K), which
would become positive infinite at a pinching. The numerical solution supports this reasoning,
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Figure 5: The graphs on the left show the generating curves of what is initially an
erythrocyte, reflection in the y-axis and rotation about the x-axis generates the full
surface. The figure on the right shows half of the generated surface at t = 0.003. The
erythrocyte becomes first immersed, and then evolves towards a sphere. Notice that
for t = 0.003 the generating curve is to the left of the y-axis, which upon reflection
and rotation results in the non-embeddedness. The non-embeddedness is clearly
visible in the center of the figure on the right.

the dumbbells evolve towards the unit sphere. We tested various neck profiles of the shape
y = xn + c, n = 1.1, 2, 4, 5, with c taking a range of (small) values. The graphs in Figure 4
are for the case of n = 4 and c = 0.01, with a time step of 10−5 and a spatial resolution of
0.01− 0.05.

8.3 An erythrocyte

If the curve from the previous section is rotated about its other symmetry axis, one obtains
a surface that looks like a red blood cell (i.e. an erythrocyte). Such a surface has been used
previously to show that the surface diffusion flow can drive an embedded surface to become
immersed [7, 17, 16]. This is also true for the Willmore flow, see Figure 5. The graphs in Figure 5
are for a time step of 10−6 and a spatial resolution of 0.01 − 0.05. The initial center profile is
given through y = x4 + 0.01, which results in an initial center separation of 0.02 units.
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Figure 6: The generating curves of a tube with spherical end caps, reflection in the
y-axis and rotation about the x-axis generates the full surface. Under the Willmore
flow, a (convex) tube becomes first nonconvex, and then evolves towards a sphere.

8.4 A tube

It is known that the surface diffusion flow can evolve convex surfaces into nonconvex ones [2, 8,
16]. This numerical experiment shows that the same is true for the Willmore flow. The graphs
in Figure 6 are for a time step of 10−5 and a spatial resolution of 0.01− 0.05.

8.5 A singular example

It is an open problem whether the Willmore flow can drive a smooth surface to a singularity
in finite time. Our numerical experiments seem to indicate that this is the case. For this we
take a surface generated by rotation of the part of a limaçon that contains the smaller loop.
The Willmore flow pulls that small loop shut. For a related result for the mean curvature flow
see [1]. The graphs of the generating curves in Figure 8 are for a time step of 10−5 and a
spatial resolution of 0.01−0.05. For graphs of the resulting surface see Figure 9. The figure was
displayed using the Geomview package [19], the necessary image format conversions were done
with the XV program [3].

The Willmore flow decreases the Willmore energy
∫

Γ(t)
H2 dµ. The initial surface has an

energy of about 43.83, which is more than 8π, the latter quantity being the total energy of
two (disconnected) spheres. This provides the evolving surfaces with an opportunity to move
towards a configuration consisting of two spheres. This is indeed what we observe numerically.
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At the time of the singularity the Willmore energy, that is, the total quadratic curvature, has
evolved to about 25.23, which is about 0.4% away from 8π, see Figure 7. As for the torus, the
surface area grows initially in order to decrease the Willmore energy, see also Figure 7.
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Figure 7: On the left side: The total quadratic curvature of the surface evolving
towards a singular limit consisting of two spheres. On the right side: The surface
area of the same evolving surface.
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Figure 8: The generating curves of a surface that develops a singularity under the
Willmore flow, reflection in the y-axis and rotation about the x-axis generates the
full surface, see Figure 9. The Willmore flow pulls the smaller loop shut and creates
a singularity. The singular limit consists of two spheres connected tangentially at a
single point.
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Figure 9: These figures depict half of the surface generated by the curves of Fig-
ure 8. The computations use more points than the grid on the surface indicates,
the grid has been drawn to aid the display only. The initial radii are 1 and 2,
respectively. The order is top left at t = 0, top right at t = 0.05, bottom left at
t = 0.3, and bottom right at t = 0.68. The Willmore flow pulls the smaller loop
shut and creates a singularity. The singular limit consists of two spheres connected
tangentially at a single point.
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Appendix: some elementary differential geometry

Let s 7→ (x(s), y(s)) be a parameterization of a curve by arc length, that is (x′(s))2+(y′(s))2 = 1
for all s. Assume y(s) > 0 and x′(s) < 0, so that the curve runs from right to left. This last
assumption is not essential, but helps explaining a few things further down. Rotation of this
curve about the x-axis results in a surface, with a natural parameterization given as

φ(s, θ) = (x(s), y(s) cos θ, y(s) sin θ) .

In the following we will cease to write the arguments when there is no danger of confusion. We
proceed to compute the first fundamental form, for this we compute first

φs = (x′, y′ cos θ, y′ sin θ) ,

φθ = (0,−y sin θ, y cos θ) .

Hence

g11 = <φs, φs> = (x′)2 + (y′)2 cos2 θ + (y′)2 sin2 θ = 1 ,

g12 = <φs, φθ> = −yy′ cos θ sin θ + yy′ sin θ cos θ = 0 ,

g22 = <φθ, φθ> = y2 cos2 θ + y2 sin2 θ = y2 ,

and

((g)) =
(

1 0
0 y2

)
, ((g))−1 =

(
1 0
0 1

y2

)
, det ((g)) = y2 .

We proceed to compute the outer normal (to say outer we use x′ < 0 and y > 0)

Ñ = φs ∧ φθ = (yy′,−x′y cos θ,−x′y sin θ) .

The norm of this vector is

|Ñ | = (y2(y′)2 + (x′)2y2 cos2 θ + (x′)2y2 sin2 θ)1/2 = y ,

so that the unit outer normal is given by

N = (y′,−x′ cos θ,−x′ sin θ) .

Now we compute the matrix of the second fundamental form II = −<dN., .>, for this we will
need

φss = (x′′, y′′ cos θ, y′′ sin θ) ,

φsθ = (0,−y′ sin θ, y′ cos θ) ,

φθθ = (0,−y cos θ,−y sin θ) .

Using this we obtain the coefficients of II

h11 = −<∂sN,φs> = <N,φss> = x′′y′ − x′y′′ cos2 θ − x′y′′ sin2 θ = x′′y′ − x′y′′ ,
h12 = <∂sN,φθ> = <N,φsθ> = x′y′ cos θ sin θ − x′y′ sin θ cos θ = 0 ,

h22 = −<∂θN,φθ> = <N,φθθ> = x′y cos2 θ + x′y sin2 θ = x′y .
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The matrix of differential of the Gauß map dN = −((h))((g))−1 therefore is(
x′y′′ − x′′y′ 0

0 −x
′

y

)
,

and the two eigenvalues are the two principal curvatures,

κ1 = x′y′′ − x′′y′ , κ2 = − x′

y
.

Of these two formulas we only use the second one for the computations.
The Laplace-Beltrami operator is defined as ∆u = div gradu for any scalar function u defined

on the surface. In local coordinates {xi : i = 1, . . . n} the gradient is given by

gradu =
∑
ik

gik∂ku
∂

∂xi
,

and for any vector field X =
∑
j Xj

∂
∂xj

the divergence is defined as

divX =
∑
j

1√
det ((g))

(∂j
√

det ((g))Xj) .

Now assume u = u(s) is a function that only depends on the first coordinate, then

gradu = (g11us, g
21us) = (us, 0) ,

and

∆u = div gradu = div(us, 0) =
1√

det ((g))
(∂s
√

det ((g))us) =
1
y
∂s(yus) = uss +

y′

y
us .

This of course is only true if y 6= 0. If in fact y(s0) = 0 and we have a smooth surface obtained
by rotation then

∆u(s0) = 2uss(s0) .

This can be seen as follows. By the rotational symmetry one must have us(s0) = 0. The curve
must be perpendicular to the x-axis and so ys(s) = 1+O(s−s0) and y(s) = s−s0 +O((s−s0)2),
so that

lim
s→s0

ys
y
us = lim

s→s0
(1 +O(s− s0))

us(s)− us(s0)
s− s0 +O((s− s0)2)

= uss(s0) .
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