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Abstract. In this note we describe a new approach to establish regular-
ity properties for solutions of parabolic equations. It is based on maximal

regularity and the implicit function theorem.

1. Introduction

In this note we describe a new approach to establish regularity properties for a
wide array of parabolic evolution equations. It is based on the theory of maximal
regularity. The thrust of this approach is manifold.

• It allows to solve a given partial differential equation without loss of deriva-
tives, thus permitting to handle fully nonlinear equations.
• It allows to resort to the implicit function theorem to study further prop-

erties of solutions, such as smooth dependence on given data.
• It allows to study the regularity of solutions by merely applying scaling

arguments in conjunction with the implicit function theorem.

In order to explain the main idea of our approach, let us consider the model
problem of a family of graphs {Γ(t) = graph(u(·, t)) ; 0 ≤ t ≤ T} over Rn, evolving
according to the mean curvature flow

∂tu−
(
δij −

∂iu∂ju

1 + |∇u|2

)
∂i∂ju = 0, u(0) = u0, (1.1)

where 1 ≤ i, j ≤ n, and where δij denotes the Kronecker delta. Equation (1.1) is
a quasilinear parabolic evolution equation of second order. To economize notation
we set

F (u) := −
(
δij −

∂iu∂ju

1 + |∇u|2

)
∂i∂ju

and restate equation (1.1) as

∂tu+ F (u) = 0, u(0) = u0. (1.2)

Let Ej := buc2j+s(Rn), j = 0, 1, be the little Hölder spaces defined in (2.8). The
mapping F is real analytic, that is,

F ∈ Cω(E1, E0). (1.3)
1
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Given that F is differentiable, one can consider the linearized problem

∂tv + F ′(u)v = f, v(0) = v0, (1.4)

where F ′(u) is the Fréchet derivative of F at u ∈ E1. Next we introduce the
anisotropic spaces

E0(I) := C(I, E0), E1(I) := C1(I, E0) ∩ C(I, E1),

where I = [0, T ] is a fixed interval. Clearly, the trace operator γ0 : E1(I) → E1,
v 7→ v(0) is linear and continuous. It can be shown, and this is the essential
part of the analysis, that the linear problem (1.4) enjoys the property of maximal
regularity. By definition, this means that

(∂t + F ′(u), γ0) ∈ Isom(E1(I),E0(I)× E1) (1.5)

for any function u ∈ E1. That is, the linear mapping (∂t+F
′(u), γ0) is a topological

isomorphism between the indicated spaces. It is here where maximal regularity
begins to unfold. It implies that the linear problem (1.4) has a unique solution
v ∈ E1(I) for any given right hand side (f, v0) ∈ E0(I) × E1. The solution v has
optimal regularity, and therefore, no loss of regularity can occur for the linearized
problem. Existence of a unique solution in E1(I) to the nonlinear problem (1.2)
can now be obtained by a reiteration argument and the contraction principle.
As an immediate outcome, one sees that there is also no ‘loss of derivatives’ for
the nonlinear problem. (This is also true if F is fully nonlinear). It should be
noted that iteration techniques based on the Nash-Moser implicit function theorem
usually result in a loss of derivatives.

We give a brief account on how the property of maximal regularity in conjunc-
tion with a scaling argument (or a parameter trick) will show that the solution
u ∈ E1(I) of (1.2) is real analytic in space and time for any positive time.

Let u be the unique solution of (1.2) defined on a maximal interval of existence
[0, t+(u0)). Let T ∈ (0, t+(u0)) be a fixed number and set I := [0, T ]. For any
given parameters (λ, µ) ∈ R× Rn with λ ∈ (−ε0, ε0) one can set

uλ,µ(t, x) := u(t+ tλ, x+ tµ), (t, x) ∈ I × Rn. (1.6)

It is easy to see that uλ,µ ∈ E1(I) for all (λ, µ), provided ε0 is sufficiently small.
Since the mapping F commutes with translations, that is,

τaF (u) = F (τau), u ∈ E1, a ∈ Rn, (1.7)

one finds that v := uλ,µ ∈ E1(I) satisfies the parameter dependent equation

∂tv + (1 + λ)F (v)− (µ|∇v) = 0, v(0) = u0,

or equivalently, that v := uλ,µ solves

Φ(v, (λ, µ)) = 0 (1.8)

where Φ(v, (λ, µ)) := (∂tv+ (1 + λ)F (v)− (µ|∇v), γ0v− u0). It follows from (1.3)
that the mapping

Φ : E1(I)× ((−ε0, ε0)× Rn)→ E0(I)× E1
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is real analytic. Moreover, Φ(ū, (0, 0)) = (0, 0), where ū := u|I . It is a consequence
of the maximal regularity property (1.5) that the Fréchet derivative D1Φ(ū, (0, 0))
of Φ with respect to v satisfies

D1Φ(ū, (0, 0)) = (∂t + F ′(ū), γ0) ∈ Isom(E1(I),E0(I)× E1). (1.9)

The implicit function theorem now allows to solve equation (1.8) for v in terms of
(λ, µ) in an open neighborhood U of (0, 0) ∈ R× Rn. One concludes that

[(λ, µ) 7→ uλ,µ] ∈ Cω(U,E1(I)). (1.10)

Consequently, the mapping

[(λ, µ) 7→ uλ,µ(t0, x0) = u(t0 + t0λ, x0 + t0µ)] : U → R (1.11)

is real analytic for any fixed (t0, x0) ∈ I × Rn with t0 > 0. Hence, the solution
u of the mean curvature flow (1.1) is analytic in space and time for any positive
time t ∈ (0, t+(u0)).

It is now clear that the only properties needed to carry through the arguments
are (1.3), (1.7), and the crucial maximal regularity property (1.5). The nature of
the mapping F is completely immaterial: it can be fully nonlinear, can act as a
nonlocal mapping, and it can be of any order.
The idea of using parameters to prove regularity properties of solutions goes back
to Angenent [3, 4]. The strategy of using translations to show analyticity in
space was first employed in [8] for a free boundary problem for the flow of an
incompressible fluid in a porous medium of infinite extent. In that context the
mapping F happens to be fully nonlinear, nonlocal, and of first order. Translations
were also used in [7] for the Stefan problem with surface tension in the case where
the free interface is represented as the graph of a function over Rn.

The advantage of applying maximal regularity lies in the fact that one can resort
to the implicit function theorem. The difficulty, of course, lies in establishing
maximal regularity for a given partial differential equation.

Our approach described so far relies on the fact that we can use translations on Rn,
and that the mapping F is equivariant with respect to translations. The approach
can be generalized in two directions. First, it can be generalized to parabolic
equations on a symmetric Riemannian manifold M , where one assumes that the
nonlinear mapping F is equivariant with respect to the Lie group which acts as
a transformation group on M . This has been done in [9]. In this note we show
how the translation-parameter trick can be localized. In order to do so, we pick
(t0, x0) ∈ J × Rn and choose smooth cut-off functions χ ∈ D(Rn) and ζ ∈ D(J)
with

supp (χ) ⊂ B(x0, ε0), supp (ζ) ⊂ (t0 − ε0, t0 + ε0), (1.12)

where ε0 can be chosen as small as we wish for. Instead of (1.6) we can now
consider the parameter-dependent function

uλ,µ(t, x) := u(t+ ζ(t)λ, x+ ζ(t)χ(x)µ), (t, x) ∈ J × Rn. (1.13)
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The function v := uλ,µ also satisfies a parameter-dependent equation

∂tv + Fλ,µ(v) = 0, v(0) = u0. (1.14)

The new difficulty now lies in showing that the mapping [(v, (λ, µ)) 7→ Fλ,µ(v)] is
analytic. This will be done in the following sections. The current note will serve
as the basis to establish regularity results for free boundary problems, such as the
Stefan problem with surface tension, and the Navier-Stokes equations with surface
tension.

2. Parameter-dependent diffeomorphisms

In the following, we assume that X is an open set in Rn. Moreover, we assume
that x0 ∈ X is fixed. Let ε0 > 0 be chosen such that B(x0, 3ε0) ⊂ X and let
χ ∈ D(B(x0, 2ε0),R) be a smooth cut-off function with χ ≡ 1 on B(x0, ε0) and
with 0 ≤ χ ≤ 1. We define the parameter dependent mapping

Θµ(x) := x+ χ(x)µ, x ∈ Rn, µ ∈ Cn. (2.1)

Here and in the following, B(x0, r) denotes the ball of radius r and center x0 with
respect to the Euclidean norm in Rn, and BCn(x0, r) stands for the corresponding
ball in Cn.

Lemma 2.1. There exists a positive number r0 such that

(a) Θµ(B(x0, 3ε0)) ⊂ BCn(x0, 3ε0) for any µ ∈ BCn(0, r0).

(b) Θµ(B(x0, 3ε0)) ⊂ BCn(x0, 3ε0) for any µ ∈ BCn(0, r0).

(c) |Θµ(x)−Θµ0(y)| ≤ 3/2|x− y|+ |µ− µ0|, ∀x, y ∈ X, ∀µ, µ0 ∈ BCn(0, r0).

Proof. (a) Choose r0 < ε0 and let x ∈ B(x0, 2ε0) and µ ∈ BCn(0, r0) be given.
Then we have

|Θµ(x)− x0| ≤ |x− x0|+ χ(x) |µ| < 3ε0,

showing that Θµ(B(x0, 2ε0)) ⊂ BCn(x0, 3ε0). Since

Θµ(x) = x for x ∈ B(x0, 3ε0) \ B(x0, 2ε0)

we obtain the assertion in (a).

(b) is a consequence of (a).

(c) It follows from the mean value theorem that |χ(x)−χ(y)| ≤ ‖∇χ‖∞|x− y| for
x, y ∈ X. A simple computation then yields

|Θµ(x)−Θµ0(y)| ≤ |x− y|+ |χ(x)− χ(y)| |µ|+ |χ(y)| |µ− µ0|
≤ (1 + ‖∇χ‖∞ r0)|x− y|+ |µ− µ0|.

We can assume that r0 is already chosen small enough such that ‖∇χ‖∞ r0 ≤ 1/2
and this implies (c). �

Proposition 2.2. There exists a positive number r0 such that

Θµ ∈ Diff∞(X), µ ∈ B(0, r0).
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Proof. Let µ ∈ Rn be given. Clearly, the mapping Θµ is smooth in x. Its derivative
is given by

DΘµ = I +Rµ with Rµ(x) = [∇χ(x)⊗ µ]. (2.2)

Let r0 be the number of Lemma 2.1. We can assume that

sup
x∈X
‖Rµ(x)‖ ≤ 1/2, µ ∈ B(0, r0). (2.3)

Note that equations (2.2)–(2.3) imply that the derivative DΘµ(x) is invertible for
x ∈ X. Lemma 2.1(a) shows that Wµ := Θµ(B(x0, 3ε0)) ⊂ B(x0, 3ε0) for any
µ ∈ B(0, r0). We can then infer from the inverse function theorem, applied to the
mapping Θµ : B(x0, 3ε0)→ B(x0, 3ε0), that

Wµ ⊂ B(x0, 3ε0) is open, µ ∈ B(0, r0). (2.4)

We claim that Wµ = B(x0, 3ε0) and that Θµ is injective. Since B(x0, 3ε0) is convex,
we may apply the mean value theorem, yielding

x− y = Θµ(x)−Θµ(y)−
∫ 1

0

Rµ(y + τ(x− y)) dτ (x− y) (2.5)

for x, y ∈ B(x0, 3ε0). It follows from (2.3) that

|x− y| ≤ 2 |Θµ(x)−Θµ(y)| (2.6)

for every x, y ∈ B(x0, 3ε0) and every µ ∈ B(0, r0). We conclude that Θµ is injective
and that Wµ is closed in B(x0, 3ε0). Since B(x0, 3ε0) is connected, (2.4) implies
that Wµ coincides with B(x0, 3ε0). It follows from the inverse function theorem
that

Θµ ∈ Diff∞(B(x0, 3ε0)), µ ∈ B(x0, r0).

Since Θµ(x) = x for x ∈ X \ B(x0, 2ε0) and Θµ ∈ C∞(X) we obtain Θµ ∈
Diff∞(X), and the proof is now complete. �

Remarks 2.3. (a) It follows from Proposition 2.2 and the definition of Θµ that

Θµ ∈ Diff∞(B(x0, 2ε0)), µ ∈ B(0, r0).

(b) It is clear that Θµ ∈ Diff∞(U) for any open set U with B(x0, 3ε0) ⊂ U .

In the following we assume that U is an open set in Rn such that

• B(x0, 3ε0) ⊂ U,
• U is either bounded and has a smooth boundary, or U = Rn.

(2.7)

Let s ≥ 0. The little Hölder spaces are defined by

bucs(U) :=

{
BUCs(U), if s ∈ N
the closure of BUC [s]+1(U) in BUCs(U), if s /∈ N

(2.8)

where [s] denotes the integer part of s, and where BUCs(U) are the classical Hölder
spaces. Moreover, for 1 < p <∞ let W s

p (U) denote the Sobolev-Slobodecki spaces,
and let Hs

p(U) be the Bessel-potential spaces.
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Let m ∈ N be given and let s ∈ (0,m). The following interpolation results are well-
known, see [11, 13, 14], and also [1, Section I.2] for a short account of interpolation
theory,

(BUC(U), BUCm(U))s/m,∞ = BUCs(U), s /∈ N,
(BUC(U), BUCm(U))0

s/m,∞ = bucs(U), s /∈ N,
(Lp(U),Wm

p (U))s/m,p = W s
p (U), s /∈ N,

[Lp(U),Wm
p (U)]s/m = Hs

p(U).

(2.9)

Moreover, we have the interpolation inequalities

‖u‖Fs ≤ c(s)‖u‖1−s/mF0 ‖u‖s/mFm , s ∈ (0,m), u ∈ Fm, (2.10)

where F ∈ {buc(U), BUC(U),Wp(U), Hp(U) ; 1 < p <∞}. Our notation indicates
that we choose one of the symbols in {buc(U), BUC(U),Wp(U), Hp(U)}, and then
use this symbol exclusively throughout formula (2.10). We recall that

buc0(U) := buc(U) = BUC(U) =: BUC0(U), W 0
p (U) = H0

p (U) = Lp(U).

We also recall that

Fm ⊂ Fs is dense for F ∈ {buc(U),Wp(U), Hp(U) ; 1 < p <∞}. (2.11)

It is well-known that

∂j ∈ L(Fs+1,Fs), F ∈ {buc(U), BUC(U),Wp(U), Hp(U)}, s ≥ 0. (2.12)

Moreover, point-wise multiplication [(a, u) 7→ au] is bilinear and continuous for
the spaces

BUCρ(U)× Fs(U)→ Fs(U), F ∈ {buc,Wp, Hp}, 0 ≤ s < ρ,

BUCm(U)× Fm(U)→ Fm(U), F ∈ {BUC,Wp}, m ∈ N,
BUCs(U)×BUCs(U)→ BUCs(U), s ≥ 0,

bucs(U)× bucs(U)→ bucs(U), s ≥ 0.

(2.13)

Given a function u ∈ L1,loc(U) we define the pull-back and the push-forward
operator, respectively, induced by the diffeomorphism Θµ:

Θ∗µu := u ◦Θµ,

Θµ
∗u := u ◦ (Θµ)−1, µ ∈ B(0, r0).

(2.14)

In the following Proposition we collect some useful properties for the operators Θ∗µ.
We show that Θ∗µ induces an isomorphism on all the function spaces introduced
above, and we study the dependence on the parameter µ.

For future reference, the results are stated in a more general form than actually
needed in the present note.
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Proposition 2.4. Let m ∈ N and s ∈ [0,m].

(a) Suppose F ∈ {buc(U), BUC (U),Wp(U), Hp(U)}. Then

Θ∗µ ∈ Isom(Fs), [Θ∗µ]−1 = Θµ
∗ , µ ∈ B(0, r0).

Moreover, there exists a positive constant M = M(m) such that

‖Θ∗µ‖L(Fs) ≤M, µ ∈ B(0, r0). (2.15)

(b) Suppose F ∈ {buc(U),Wp(U), Hp(U)}. Then

[µ 7→ Θ∗µu] ∈ C(B(0, r0),Fs) for any u ∈ Fs. (2.16)

(c) Suppose F ∈ {buc(U),Wp(U), Hp(U)}. Then

[µ 7→ Θ∗µu] ∈ C1(B(0, r0),Fs) for any u ∈ Fs+1. (2.17)

The partial derivatives are given by

∂µj [Θ∗µu] = χ[Θ∗µ∂ju], u ∈ Fs+1, j ∈ {1, · · · , n}. (2.18)

Proof. (a) (i) Pick µ ∈ B(0, r0) and u ∈ BUC(U). We conclude from Lemma 2.1(c)
and from Proposition 2.2 that

Θ∗µu ∈ BUC(U), ‖Θ∗µu‖BUC(U) ≤ ‖u‖BUC(U), µ ∈ B(0, r0). (2.19)

Next, let u ∈ BUCm(U). It is evident that Θ∗µu ∈ Cm(U), and a straightforward
computation shows that

∂β [Θ∗µu] =
∑
|γ|≤|β|

bβ,γ(µ, ·) [Θ∗µ∂
γu], |β| ≤ m, (2.20)

where bβ,γ ∈ BUC(B(0, r0)× U). (We have, in fact, bβ,γ ∈ BUC∞(B(0, r0)× U)).
We conclude from (2.19) and (2.20) that

Θ∗µu ∈ BUCm(U), ‖Θ∗µu‖BUCm(U) ≤M‖u‖BUCm(U), µ ∈ B(0, r0),

for an appropriate constant M . Clearly, Θ∗µ is linear for every fixed µ ∈ B(0, r0),
and it follows from (2.19)-(2.20) that

Θ∗µ ∈ L(BUCl(U)), ‖Θ∗µ‖L(BUCl(U)) ≤M, l ∈ [0,m] ∩ N. (2.21)

It is clear that [Θ∗µ]−1 = Θµ
∗ , and the open mapping theorem yields Θ∗µ ∈ BUCl(U)

for l ∈ [0,m] ∩ N. The case Fs ∈ {bucs(U), BUCs(U)} for s ∈ (0,m) \ N follows
from (2.9) and (2.21) by interpolation.

(ii) It is a consequence of the transformation rule, Remark 2.3, and equations
(2.2)–(2.3) that

Θ∗µ ∈ L(Lp(U)), ‖Θ∗µ‖L(Lp(U)) ≤M1, µ ∈ B(0, r0). (2.22)

It is not difficult to show (by approximating) that formula (2.20) remains valid for
u ∈Wm

p (U). One can then conclude that

Θ∗µ ∈ L(Wm
p (U)), ‖Θ∗µ‖L(Wm

p (U)) ≤M2, µ ∈ B(0, r0). (2.23)

As in (i) we obtain the assertion for Fs ∈ {W s
p (U), Hs

p(U)} by interpolation.
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(b) (i) We first consider u ∈ BUC(U). Since u is uniformly continuous we find for
every ε > 0 a number δ > 0 such that |u(y) − u(z)| < ε whenever y, z ∈ U and
|y − z| < δ. Lemma 2.1(c) then shows that

|(Θ∗µu)(x)− (Θ∗µ0
u)(x)| < ε,

whenever x ∈ U , µ, µ0 ∈ B(0, r0) and |µ− µ0| < δ. We have, thus, proved that

[µ 7→ Θ∗µu] ∈ C(B(0, r0), BUC(U)), u ∈ BUC(U). (2.24)

The assertion in (b) follows now from (2.20) and (2.24) for Fl = BUCl, l ∈ {0,m}.
Suppose that s ∈ (0,m) and let u ∈ bucs(U). Let ε > 0 be given. According to
(2.11) we find a function v such that

v ∈ BUCm(U), ‖u− v‖s < ε/3M, (2.25)

where M is the constant of equation (2.15). Equations (2.15) and (2.10) yield

‖Θ∗µu−Θ∗µ0
u‖s ≤ ‖Θ∗µ(u− v)‖s + ‖Θ∗µv −Θ∗µ0

v‖s + ‖Θ∗µ0
(u− v)‖s

≤ 2M‖u− v‖s + c‖Θ∗µv −Θ∗µ0
v‖s/mm ‖Θ∗µv −Θ∗µ0

v‖1−s/m0

≤ 2M‖u− v‖s + c(2M‖v‖m)s/m‖Θ∗µv −Θ∗µ0
v‖1−s/m0

for any µ, µ0 ∈ B(0, r0), where we use ‖ ·‖s := ‖ ·‖BUCs(U). The case Fs = bucs(U)
is now a consequence of (2.24) and (2.25).

(ii) Let u ∈ Lp(U) and let ε > 0 be given. There exists a function v with

v ∈ Cc(U), ‖u− v‖p ≤ ε/3M. (2.26)

Using Lemma 2.1 and Proposition 2.2 it is easy to see that there exists a compact
set K contained in U such that supp (Θ∗µv) ⊂ K for any µ ∈ B(0, r0). We conclude
that

‖Θ∗µv −Θ∗µ0
v‖p ≤ (λn(K))1/p‖Θ∗µv −Θ∗µ0

v‖BUC(U) (2.27)

where λn(K) denotes the Lebesgue measure of K. It follows from (2.15) that

‖Θ∗µu−Θ∗µ0
u‖p ≤ ‖Θ∗µ(u− v)‖p + ‖Θ∗µv −Θ∗µ0

v‖p + ‖Θ∗µ0
(u− v)‖p

≤ 2M‖u− v‖p + ‖Θ∗µv −Θ∗µ0
v‖p

and we infer from (2.24) and (2.26)-(2.27) that

[µ 7→ Θ∗µu] ∈ C(B(0, r0), Lp(U)), u ∈ Lp(U). (2.28)

The case Fs ∈ {W s
p (U), Hs

p(U)} follows in the same way as in step (b)(i).

(c) Pick u ∈ Fs+1. We infer from (2.12)–(2.13) and from part (b) that

[µ 7→ χΘ∗µ∂ju] ∈ C(B(0, r0),Fs), j ∈ {1, · · · , n}. (2.29)

Let µ ∈ B(0, r0) be fixed, and choose ε > 0 small enough such that µ + hej ∈
B(0, r0) for h ∈ (−ε, ε).
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(i) Let us temporarily assume that u ∈ C∞(U) ∩ Fs+1. It follows from (3.7) that

1

h
[Θ∗µ+heju−Θ∗µu]−χΘ∗µ∂ju=

∫ 1

0

(
χΘ∗µ+τhej∂ju−χΘ∗µ∂ju

)
dτ in Fs. (2.30)

(ii) An approximation argument shows that the statement in (2.30) is also valid
for u ∈ Fs+1. The assertion in (c) can now be obtained from (2.29) by analogous
arguments as in step (i) of the proof of Proposition 3.2. �

Remarks 2.5.
(a) The assumption that U be a ‘smooth’ open set is not indispensable. It is only
required for the interpolation and and multiplier results (2.9)–(2.13) which are
used in the proof of Proposition 2.4.
(b) The proof of Proposition 2.4 shows that the assertions are valid in the case

Fl ∈ {BUCl(U),W l
p(U)}, l ∈ N,

for any open set U with B(x0, 3r0) ⊂ U .
(c) The assertions of Proposition 2.4 also remain valid if

Fs ∈ {bucs(U), BUCs(U),W s
p (U)}

for any open set U with B(x0, 3r0) ⊂ U .

3. Higher Regularity

In this section we show that the mapping [µ 7→ Θ∗µu] enjoys more regularity than
stated in Proposition 2.4, provided the function u has better regularity properties.
In the following, U and X are open sets as considered in section 2. We begin with
a technical Lemma.

Lemma 3.1. Let m ∈ N and k ∈ N∗ ∪ {∞}. Suppose that a ∈ Cm+k(X). Then

[µ 7→ χ|α|Θ∗µ∂
αa] ∈ C(B(0, r0), BUCm(U)), 0 < |α| ≤ k.

Proof. Since supp (χ) ⊂ B(x0, 3ε0) ⊂ U ∩X, the assertion of the Lemma is mean-
ingful. Let v ∈ C(X) be given, and let ζ ∈ D((B(x0, 2ε0),R). Since v is uniformly
continuous on B(x0, 3ε0) we find for every given ε > 0 a number δ > 0 such that

|v(y)− v(z)| < ε, y, z ∈ B(x0, 3ε0), |y − z| < δ.

We can now deduce from Lemma 2.1(b)–(c) that

|(ζΘ∗µv)(x)− (ζΘ∗µ0
v)(x)| = |ζ(x)| |v(Θµ(x))− v(Θµ0

(x))| < ε,

whenever x ∈ U , µ, µ0 ∈ B(0, r0) and |µ− µ0| < δ. We have shown that

[µ 7→ ζΘ∗µv] ∈ C(B(0, r0), BUC(U)). (3.1)

Now let a ∈ Cm+k(X). Let η ∈ Nn be a fixed multi-index with |η| ≤ m. If follows
from Leibniz’ rule and from (2.20) that

∂η(χ|α| [Θ∗µ∂
αa]) =

∑
β≤η

∑
|γ|≤|β|

(
η

β

)
bβ,γ(µ, ·)(∂η−βχ|α|)[Θ∗µ∂α+γa]. (3.2)
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Note that v := ∂α+γa ∈ C(U) and ζ := ∂η−γχ|α| ∈ D((B(x0, 2ε0),R). The claim
in (c) follows from (3.1) and (3.2). �

Proposition 3.2. Let m ∈ N and k ∈ N ∪ {∞, ω}. Suppose that

a ∈ Cm+k(X) ∩BUCm(U).

Then we have
[µ 7→ Θ∗µa] ∈ Ck(B(0, r0), BUCm(U)) (3.3)

and
∂αµ [Θ∗µa] = χ|α|[Θ∗µ∂

αa], |α| ≤ k.

Proof. Lemma 2.4 shows that the mapping

g := [µ 7→ Θ∗µa] ∈ C(B(0, r0), BUCm(U))

is well-defined. Moreover, Lemma 3.1 shows that

[µ 7→ χ|α|Θ∗µ∂
αa] ∈ C(B(0, r0, BUC

m(U)), 0 < |α| ≤ k. (3.4)

(i) Let µ ∈ B(0, r0) be fixed, and choose ε > 0 small enough such that µ + hej ∈
B(0, r0) for h ∈ (−ε, ε). Let x ∈ X be given. Then the mean value theorem yields

1

h
[(Θ∗µ+heja)(x)− (Θ∗µa)(x)] =

∫ 1

0

(χΘ∗µ+τhej∂ja)(x) dτ. (3.5)

Note that both sides of equation (3.5) vanish if x /∈ supp (χ). Consequently,
formula (3.5) is also valid for any x ∈ U . It is not difficult to verify (by resorting
to Riemann sums, for instance) that∫ 1

0

(χΘ∗µ+τhej∂ja)(x) dτ =
(∫ 1

0

χΘ∗µ+τhej∂ja dτ
)

(x), x ∈ U, (3.6)

where the integral
∫ 1

0
(χΘ∗µ+τhej

∂ja) dτ exists in BUCm(U). We conclude that

1

h
[g(µ+ hej)−g(µ)]−[χΘ∗µ∂ja]=

∫ 1

0

(
χΘ∗µ+τhej∂ja−χΘ∗µ∂ja

)
dτ (3.7)

in BUCm(U). Lemma 3.1 implies that(
χΘ∗µ+τhej∂ja− χΘ∗µ∂ja

)
→ 0 in BUCm(U) as ε→ 0,

uniformly in τ ∈ [0, 1]. It follows that∫ 1

0

(
χΘ∗µ+τhej∂ja−χΘ∗µ∂ja

)
dτ → 0 in BUCm(U) as ε→ 0. (3.8)

Consequently, also the left side of equation (3.7) converges to 0 in BUCm(U) as
ε → 0. We have, thus, proved that the partial derivative ∂µj

g(µ) exists and is
given by ∂µj

g(µ) = χΘ∗µ∂ja. In addition, Lemma 3.1 shows that

g ∈ C1(B(0, r0), BUCm(U)).

(ii) We can now repeat the steps above with a replaced by χΘ∗µ∂ja to obtain

∂µi
∂µj

[Θ∗µa] = χ2[Θ∗µ∂i∂ja].
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An induction argument yields

g ∈ Ck(B(0, r0), BUCm(U)) and ∂αµg(µ) = χ|α|Θ∗µ∂
αa

for |α| ≤ k, where k ∈ N ∪ {∞}.
(iii) Suppose now that k = ω. Since a is (real) analytic, there exists an open
neighborhood UC of U in Cn and a (unique) mapping

aC ∈ Cω(UC,C) such that UC ∩ Rn = U and aC|U = a. (3.9)

We can assume without loss of generality that ε0 is small enough such that
BCn(x0, 3ε0) ⊂ UC. It follows from Lemma 2.1(a) and the definition of Θµ that
Θµ(U) ⊂ UC for any µ ∈ BCn(0, r0), and consequently, the mapping

gC(µ)(x) := (Θ∗µaC)(x) := aC(Θµ(x)), (3.10)

is well-defined for x ∈ U and µ ∈ BCn(0, r0).
(iv) Since aC ∈ Cω(UC,C), it is clear that Θ∗µaC ∈ Cm(U,C). We claim that

[µ 7→ Θ∗µaC] ∈ C(BCn(0, r0), BUCm(U,C)). (3.11)

Let ζ ∈ D(B(x0, 3ε0)) be a smooth cut-off function with ζ ≡ 1 on supp(χ). As in
the proof of Lemma 3.1 one shows that

[µ 7→ ζΘ∗µaC] ∈ C(BCn(0, r0), BUCm(U,C)). (3.12)

In more detail, we have

∂βx [Θ∗µaC](x) =
∑
|γ|≤|β|

bβ,γ(µ, x) [Θ∗µ∂
γ
xaC](x), x ∈ U, |β| ≤ m, (3.13)

with appropriate functions bµ,γ ∈ BUC(BCn(0, r0)× U,C). Let γ ∈ Nn be a fixed
multi-index with |γ| ≤ m. We know that the real partial derivatives ∂γxaC are
continuous on UC, and therefore are uniformly continuous on the compact set
BCn(x0, 3ε0). That is to say that for any ε > 0 there is a number δ > 0 such that

|∂γxaC(z1)− ∂γxaC(z2)| < ε, z1, z2 ∈ BCn(x0, 3ε0), |z1 − z2| < δ.

Lemma 2.1(b)-(c) then implies that

|Θ∗µ∂γxaC(x)−Θ∗µ∂
γ
xaC(y)| < ε, x, y ∈ B(x0, 3ε0), |x− y| < (2/3)δ, (3.14)

and µ ∈ BCn(0, r0), as well as

|Θ∗µ∂γxaC(x)−Θ∗µ0
∂γxaC(x)| < ε, µ, µ0 ∈ BCn(x0, r0), |µ− µ0| < δ, (3.15)

uniformly in x ∈ B(x0, 3ε0). Equation (3.12) follows now from Leibniz’ rule and
from (3.13)–(3.15). Recall that Θµ(x) = x for x /∈ supp(χ). If follows from the
fact that ζ ≡ 1 on supp(χ) and from (3.9) that

(1− ζ)Θ∗µaC = (1− ζ)a, µ ∈ BCn(0, r0). (3.16)

Since a ∈ BUCm(U) by assumption, we evidently have

[µ 7→ (1− ζ)Θ∗µaC] ∈ C(BCn(0, r0), BUCm(U)) (3.17)

and the assertion in (3.11) follows from (3.12) and (3.17).
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(v) Let ∂zjaC denote a complex partial derivative of aC, where we use the notation
z = (z1, · · · , zj , · · · , zn) ∈ Cn. Since ∂zjaC ∈ Cm(UC,C) we can conclude as in (i)
that

[µ 7→ χΘ∗µ∂zjaC] ∈ C(BCn(0, r0), BUCm(U,C)). (3.18)

(vi) Next we show that

gC ∈ C1(BCn(0, r0), BUCm(U,C)) and ∂µjgC = χΘ∗µ∂zjaC. (3.19)

In fact, the assertion follows by the same arguments as in step (i) of the proof.
We now have µ ∈ BCn(0, r0), h ∈ BC(0, ε), and we replace g and a by gC and aC,
respectively.

(vii) We infer from step (iii) – and the well-known fact that a holomorphic function
is complex analytic – that gC ∈ Cω(BCn(0, r0), BUCm(U,C)). Consequently,

g = gC|B(0, r0) ∈ Cω(B(0, r0), BUCm(U))

and the proof is now complete. �

In order to be able to treat differential operators in various function spaces, we
present the following result, which generalizes Proposition 3.2.

Theorem 3.3. Let m ∈ N and k ∈ N ∪ {∞, ω}. Suppose that

a ∈ Cm+k(X) ∩ Fs

where F ∈ {buc(U),Wp(U), Hp(U) ; 1 < p <∞}, s ∈ [0,m]. Then we have

[µ 7→ Θ∗µa] ∈ Ck(B(0, r0),Fs).

Proof. (i) Let k ∈ N ∪ {∞}. Lemma 2.4 asserts that the mapping

g := [µ 7→ Θ∗µa] ∈ C(B(0, r0),Fs)

is well-defined. Next, observe that equation (3.8) remains valid in the present
context, since the proof only relies on the property that a ∈ Cm+k(X). We
conclude from

supp
(∫ 1

0

(
χΘ∗µ+τhej∂ja−χΘ∗µ∂ja

)
dτ
)
⊂ supp(χ), µ ∈ B(0, r0),

and from (3.8) that∫ 1

0

(
χΘ∗µ+τhej∂ja−χΘ∗µ∂ja

)
dτ → 0 in Fs as ε→ 0 (3.20)

and the assertions follow from (3.7) and (3.20).

(ii) Suppose k = ω. An inspection of step (iii) in the proof of Proposition 3.2 shows
that equations (3.12) and (3.17) are also satisfied for the spaces Fs(U,C). The proof
proceeds now along the lines of steps (v)–(vii) of the proof of Proposition 3.2. �

The following result shows that our method can be used to characterize smooth-
ness.
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Theorem 3.4. Let X ⊂ Rn be an open set and let k ∈ N ∪ {∞, ω}. Suppose that
u ∈ BUC(X). Then u ∈ Ck(X) iff for any x0 ∈ X there exists r0 := r0(x0) > 0
such that

[µ 7→ Θ∗µu] ∈ Ck(B(0, r0), BUC(X)).

Proof. (i) Assume that u ∈ Ck(X). Let x0 be fixed and choose ε0 > 0 such that
B(x0, 3ε0) ⊂ X. The assertion follows now from Remark 2.5 and Theorem 3.3.

(ii) Let x0 ∈ X be fixed and suppose that

[µ 7→ Θ∗µu] ∈ Ck(B(0, r0), BUC(X)), (3.21)

for some number r0 > 0, where Θµ is defined in (2.1). Let E : BUC(X) → R,
Ev := v(x0), and observe that E ∈ L(BUC(X),R). Hence E ∈ Cω(BUC(X),R)
and we conclude from (3.21) that

[µ 7→ (Θ∗µu)(x0) = u(x0 + µ)] ∈ Ck(B(0, r0),R). (3.22)

Equation (3.22) means that u ∈ Ck(B(x0, r0),R). Since this is true for any point
x0 ∈ X we have proved that u ∈ Ck(X), and the proof is now complete. �

4. Differential operators

For later use we study how differential operators transform under a change of
coordinates induced by Θµ.
We will first consider differential operators with constant coefficients and we set

Aα(µ) := Θ∗µ
(
∂α
(
Θµ
∗ ·
))
, α ∈ Nn, µ ∈ B(0, r0). (4.1)

Proposition 4.1. Suppose that F ∈ {buc(U), BUC(U),Wp(U), Hp(U)}. Let l ∈
N. Then

[µ 7→ Aα(µ)] ∈ Cω(B(0, r0),L(Fs+l,Fs)), |α| ≤ l.

Proof. (i) Let Aj(µ) := Θ∗µ
(
∂j
(
Θµ
∗ ·
))

. An easy computation shows that

Aj(µ)u = ((DΘµ)−1ej |∇u), u ∈ C1(U), µ ∈ B(0, r0), (4.2)

where ej is the j-th canonical basis vector in Rn, and where (· | ·) denotes the
inner product in Rn. It is not difficult to see that formula (4.2) holds true for any
u ∈ Ft with t ≥ 1. In fact, this is evident for F ∈ {buc,BUC}, and follows by
approximation in the other cases. It follows from (2.2)–(2.3) and from Cramer’s
rule (for instance) that

[µ 7→ (DΘµ)−1] ∈ Cω(B(0, r0), BUCm(U,L(Rn))) (4.3)

where we take m = [s] + l. We conclude from (2.12) and (2.13) that

[B 7→ (Bej |∇ · )] ∈ Cω(BUCm(U,L(Rn)),L(Ft,Ft−1)), 1 ≤ t ≤ s+ l, (4.4)

since all the operations involved are linear [or bilinear] and continuous. It is now
a straightforward consequence of (4.2)–(4.4) that

[µ 7→ Aj(µ)] ∈ Cω(B(0, r0),L(Ft,Ft−1)), 1 ≤ t ≤ s+ l. (4.5)
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(ii) Suppose α = ej + ek. Then we have

Aα(µ)u = Θ∗µ
(
∂k∂j

(
Θµ
∗u
))

= Θ∗µ
(
∂kΘµ

∗Θ
∗
µ∂j
(
Θµ
∗u
))

=
(
Ak(µ)Aj(µ)

)
u. (4.6)

The mapping

L(Ft,Ft−1)× L(Ft−1,Ft−2)→ L(Ft,Ft−2), (A,B) 7→ BA (4.7)

is bilinear and continuous, and hence it is analytic. We infer from (4.5)–(4.7) that

[µ 7→ Aα(µ)] ∈ Cω(B(0, r0),L(Ft,Ft−2)), 2 ≤ t ≤ s+ l.

(iii) Let α = (α1, · · · , αn). Then

Aα(µ) = (A1(µ))α1 · · · (An(µ))αn

and the claim follows from (4.5) and (4.7) by induction. �

We will now consider differential operators with variable coefficients. That is,
we consider the differential operator

A :=
∑
|α|≤l

aα ∂
α, aα ∈ C(U,R), |α| ≤ l, (4.8)

where l is a positive integer. The parameter-dependent family of diffeomorphisms
{Θµ ; µ ∈ B(0, r0)} generate a parameter-dependent family {Aµ ; µ ∈ B(0, r0)} of
differential operators (the transformed differential operators), given by

Aµ :=
∑
|α|≤l

(Θ∗µaα)Θ∗µ(∂α(Θµ
∗ · )), µ ∈ B(0, r0). (4.9)

We shall show that regularity properties of the coefficients aα translate into regu-
larity properties for the map [µ 7→ Aµ].

Theorem 4.2. Let m ∈ N and k ∈ N ∪ {∞, ω}.
(a) Suppose that aα ∈ Cm+k(X) ∩BUCm(U) for every |α| ≤ l. Then

[µ 7→ Aµ] ∈ Ck(B(0, r0),L(Fs+l(U),Fs(U))),

where F ∈ {buc,BUC,Wp, Hp} and s ∈ [0,m].

(b) Suppose that aα ∈ Cm+k(X) ∩ bucs(U) for every |α| ≤ l, where s ∈ [0,m]
is fixed. Then

[µ 7→ Aµ] ∈ Ck(B(0, r0),L(Fs+l(U),Fs(U))),

where Fs(U) = bucs(U).

Proof. (a) It follows from (2.13) that the mapping

f : BUCm(U)× L(Fs+l(U),Fs(U))→ L(Fs+l(U),Fs(U)),

f(a, T )(u) := a(Tu)
(4.10)
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is bilinear and continuous, and hence analytic. We can now conclude from (3.3)
and Proposition 4.1 that

[µ 7→
∑
|α|≤l

f(Θ∗µaα, A
α(µ))] ∈ Ck(B(0, r0),L(Fs+l(U),Fs(U))), (4.11)

and this is exactly the assertion in (a).

The proof of (b) follows from (2.13) and Theorem 3.3 by analogous arguments. �

5. Time dependence

We will now consider the situation where time is an additional variable.

In the following we use the notation I := [0, T ], where T is a fixed positive number.
Let J be an open interval in (0, T ). Let t0 ∈ J be fixed and choose ε0 such that
[t0− 3ε0, t0 + 3ε0] ⊂ J . Moreover, let ζ ∈ D(t0− 2ε0, t0 + 2ε0) be a smooth cut-off
function with ζ ≡ 1 on [t0 − ε0, t0 + ε0] and with 0 ≤ ζ ≤ 1. Of course, we can –
and we will – assume that the number ε0 also satisfies the assumptions stated at
the beginning of section 2.

It turns out to be convenient to introduce the mapping

θλ(t) := t+ ζ(t)λ, t ∈ I, λ ∈ R. (5.1)

Proposition 2.2 shows that there is a positive number r0 such that

θλ ∈ Diff∞(J), λ ∈ (−r0, r0). (5.2)

In order to obtain regularity results in time and space for parabolic equations, we
define the parameter-dependent mapping

Φλ,µ(t, x) := (t+ ζ(t)λ, x+ ζ(t)χ(x)µ), (t, x) ∈ J × U, (λ, µ) ∈ Rn+1. (5.3)

A straightforward modification of the proof of Proposition 2.2 shows that there
exists a number r0 > 0 such that

Φλ,µ ∈ Diff∞(J × U), (λ, µ) ∈ Bn+1(0, r0). (5.4)

We can assume that all the results of sections 2 and 3 remain valid for the same
number r0. Given a function u : I × U → R we set

uλ,µ := Φ∗λ,µu, (λ, µ) ∈ Bn+1(0, r0). (5.5)

The parameter-dependent function uλ,µ can also be written as

uλ,µ(t) = Tµ(t)θ∗λu(t, ·) where Tµ(t) := Θ∗ζ(t)µ, t ∈ I. (5.6)

It is important to note that

uλ,µ(0, ·) = u(0, ·) for any function u and any (λ, µ). (5.7)

We will first prove the following useful extension result.
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Lemma 5.1. Let E be a Banach space. Suppose that

[µ 7→ f(µ)] ∈ Ck(B(0, r0), E), k ∈ N∗ ∪ {∞, ω}.
Let F (µ)(t) := f(ζ(t)µ) for µ ∈ B(0, r0) and t ∈ I. Then we have

[µ 7→ F (µ)] ∈ Ck(B(0, r0), C(I, E)).

Proof. To shorten the notation we set W := B(0, r0). Since 0 ≤ ζ ≤ 1 we see that
F (µ) ∈ C(I, E) for each µ ∈W . We will focus on the case k = ω. It will be clear
from the proof how to proceed for k ∈ N∗ ∪ {∞}.
Let us assume that f ∈ Cω(W,E). Then there exists an open neighborhood WC
of W in Cn and a unique mapping

fC ∈ Cω(WC, EC) such that WC ∩ Rn = W and fC|W = f,

where EC is the complexification of E. We can assume without loss of generality
that WC = BCn(0, r0). This implies that ζ(t)µ ∈WC whenever µ ∈WC and t ∈ I.
It is then clear that

FC(µ) := fC(ζ(·)µ) ∈ C(I, EC), µ ∈WC.

Let µ ∈WC be fixed and choose ε > 0 such that µ+hej ∈WC for all h ∈ BC(0, ε).
It follows from the mean value theorem that

1

h
[FC(µ+ hej)− FC(µ)](t) =

∫ 1

0

ζ(t)∂zjfC(ζ(t)(µ+ τhej)) dτ.

It is easy to see that the quotient on the left side converges to ζ(t)∂zjfC(ζ(t)µ)
uniformly in t ∈ I as h → 0, and we conclude that the partial derivatives ∂µj

FC
exist in C(I, EC) and are given by

∂µj
FC = ζ(·)∂zjfC(ζ(·)µ) µ ∈WC, j ∈ {1, . . . , n}.

A moment of reflection shows that

[µ 7→ ζ(·)∂zjfC(ζ(·)µ)] ∈ C(W,C(I, EC)).

Therefore, the mapping FC is (continuously) complex differentiable and we obtain

[µ 7→ FC(µ)] ∈ Cω(WC, C(I, EC)).

We conclude that F = FC|W ∈ Cω(W,C(I, E)), and this completes the proof. �

Proposition 5.2.

(a) Let m ∈ N and k ∈ N ∪ {∞, ω}. Suppose that

a ∈ Cm+k(X) ∩ Fs (5.8)

where F ∈ {buc(U),Wp(U), Hp(U) ; 1 < p < ∞}, s ∈ [0,m]. Then we
have

[µ 7→ Tµa] ∈ Ck(B(0, r0), C(I,Fs)).

Moreover, ∂αµ [Tµa] = (ζχ)|α|[Tµ∂
αa] for every |α| ≤ k.
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(b) Suppose F ∈ {buc(U), BUC(U),Wp(U), Hp(U)}. Then

[µ 7→ Tµ∂
αT−1

µ ] ∈ Cω
(
B(0, r0), C(I,L(Fs+l,Fs))

)
, |α| ≤ l.

Proof. (a) Let E = Fs and define f(µ) := Θ∗µa. The assertions follow from Theo-
rem 3.3 and Lemma 5.1.

(b) Let E := L(Fs+l,Fs) and let f(µ) := Aα(µ), where Aα(µ) is defined in (4.1).
We can now apply Proposition 4.1 and Lemma 5.1. �

Proposition 5.3. Let l ∈ N∗ be fixed and let F ∈ {buc(U),Wp(U), Hp(U)}.
(a) Suppose u ∈ C1(I,Fs) ∩ C(I,Fs+l). Then uλ,µ ∈ C1(I,Fs) ∩ C(I,Fs+l).
(b) Suppose u ∈W 1

p (I,Fs)∩Lp(I,Fs+l). Then uλ,µ ∈W 1
p (I,Fs)∩Lp(I,Fs+l).

In both cases, the time derivative is given by

∂tuλ,µ = (1 + ζ ′λ)Tµθ
∗
λ∂tu+Bµuλ,µ , (5.9)

where
[µ 7→ Bµ] ∈ Cω(B(0, r0), C(I,L(Fs+l,Fs))). (5.10)

Proof. (i) We first observe that the parameter-dependent mapping θλ has the same
properties as the mapping Θµ of section 2, where the set U is now replaced by the
interval I. The fact that I is closed does not create any additional difficulties. It
is clear that the proof of Proposition 2.4(a) also works for the vector-valued spaces
BUCm(I, E) and Wm

p (I, E), where E is some Banach space. Note that we have
Cm(I, E) = BUCm(I, E) due to the fact that I is compact. We conclude that

θ∗λu ∈ E1(I) and ∂tθ
∗
λu = (1 + ζ ′ λ)θ∗λ∂tu for any u ∈ E1(I), (5.11)

where E1(I) ∈ {C1(I,Fs) ∩ C(I,Fs+l),W 1
p (I,Fs) ∩ Lp(I,Fs+l)}.

(ii) Let v ∈ C1(I,Fs) ∩ C(I,Fs+l).

We obtain from (2.15)–(2.18) that Tµv ∈ C1(I,Fs) ∩ C(I,Fs+l), and also that

∂tTµv = Tµ∂tv +
∑
j

ζ ′χµj Tµ∂jv. (5.12)

(iii) Let v ∈ Lp(I,Fs+l). It follows from (2.16) that Tµ : I→ L(Fs+l) is strongly
continuous. A well-known property then asserts that Tµv : I → Fs+l is measurable
and (2.15) implies that Tµv ∈ Lp(I,Fs+l).
(iv) Suppose that v ∈ W 1

p (I,Fs) ∩ Lp(I,Fs+l). Based on the property that v
is absolutely continuous and has a derivative in Lp(I,F

s) almost everywhere, we
obtain by similar arguments as in (ii) that

Tµv ∈W 1
p (I,Fs), ∂tTµv = Tµ∂tv +

∑
j

ζ ′χµjTµ∂jv. (5.13)

(v) Let

Bµv :=

n∑
j=1

ζ ′ χµj [Tµ∂jT
−1
µ ]v, µ ∈ B(0, r0), v ∈ E1(I). (5.14)



18 J. ESCHER, J. PRÜSS, AND G. SIMONETT

Proposition 5.3 follows now from (5.11)–(5.14) and Proposition 5.2. �

Proposition 5.4. Let k ∈ N∗ ∪ {∞, ω}.
Suppose that a ∈ Cm+k(J ×X) ∩BUCm(I × U). Then

[(λ, µ) 7→ aλ,µ] ∈ Ck(Bn+1(0, r0), BUCm(I × U)). (5.15)

Proof. The proof follows by the same arguments as in the proof of Proposition 3.2.
�

6. Examples

In this section we collect four simple examples which show the flexibility and
power of our approach.

In our first example we show how the results in sections 2 and 3 can be used to
prove regularity properties for elliptic equations.

Let us consider the second order elliptic equation

a∆u = f in X, (6.1)

where X is an open set in Rn. We assume that the differential operator A := a∆ is
uniformly strongly elliptic, that is, we assume that there exists a positive number
δ such that a(x) ≥ δ for every x ∈ X.

Example 6.1. Suppose that (a, f) ∈ Cω(X) and that u ∈ C2(X) is a solution of
(6.1). Then u ∈ Cω(X).

Proof. Pick x0 ∈ X. Choose ε0 > 0 with B(x0, 3ε0) ⊂ X. Let {Θµ ; µ ∈ B(0, r0)}
be the family of diffeomorphisms introduced in section 2. Let U := B(x0, 3ε0) and
observe that

u ∈W 2
p (U), a ∈ Cω(U) ∩BUC(U), f ∈ Cω(U) ∩ Lp(U). (6.2)

Next set g := γu, where γ ∈ L(W 2
p (U),W

2−1/p
p (Γ)) denotes the trace operator for

Γ := ∂U , see [13, 14]. Clearly, u solves the elliptic boundary value problem

Au = f in U, γu = g on Γ.

For later use we note that

(A, γ) ∈ Isom(W 2
p (U), Lp(U)×W 2−1/p

p (Γ)) (6.3)

see [14, Theorem 4.3.3.(ii)], for instance. We introduce the transformed quantities

uµ := Θ∗µu, Aµ := Θ∗µ(AΘµ
∗ · ), fµ := Θ∗µf, µ ∈ B(0, r0). (6.4)

It follows from (6.2), from Theorem 3.3 and from Theorem 4.2(a) that

[µ 7→ (Aµ, fµ)] ∈ Cω(B(0, r0),L(W 2
p (U), Lp(U))× Lp(U)). (6.5)
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Moreover, we know from Proposition 2.4 that uµ ∈ W 2
p (U) for µ ∈ B(0, r0). We

note that equation (6.4) yields Aµuµ = Θ∗µ(Au) = Θ∗µf, and that γuµ = γu = g.
We conclude that uµ solves the transformed elliptic problem

(Aµv, γv) = (fµ, g), µ ∈ B(0, r0). (6.6)

We finally introduce the function

Φ : W 2
p (U)× B(0, r0)→ Lp(U)×W 2−1/p

p (Γ),

Φ(v, µ) := (Aµv − fµ, γv − g).

It is a consequence of (6.5) that

Φ ∈ Cω(W 2
p (U)× B(0, r0), Lp(U)×W 2−1/p

p (Γ)) (6.7)

and it follows from equations (6.3) and (6.6) that

Φ(uµ, µ) = (0, 0), µ ∈ B(0, r0),

D1Φ(u0, 0) = (A, γ) ∈ Isom(W 2
p (U), Lp(U)×W 2−1/p

p (Γ)
(6.8)

where, of course, u0 = u. We conclude from (6.7)–(6.8) and the implicit function
theorem that there exists a number r = r(x0) ∈ (0, r0) such that

[µ 7→ uµ] ∈ Cω(B(0, r),W 2
p (U)).

Let us assume that p is chosen large enough such that W 2
p (U) ↪→ BUC(U). Since

x0 can be taken arbitrary we obtain that u ∈ Cω(X) from Theorem 3.4. �

In our second example we consider the linear parabolic equation

∂tu− a∆u = 0 in Rn, u(0) = u0. (6.9)

We assume that X is an open subset of Rn, that

a ∈ Cω(X) ∩BUC(Rn), (6.10)

and that the differential operator A := a∆ is uniformly strongly elliptic.

Let T > 0 be fixed and set I := [0, T ] and J := (0, T ). Finally, let p ∈ (1+n/2,∞).

Example 6.2. Let u0 ∈W 2−2/p
p (Rn) be given. Then equation (6.9) has a unique

solution u ∈W 1
p (I, Lp(Rn)) ∩ Lp(I,W 2

p (Rn)) with u ∈ Cω(J ×X).

Proof. The proof is based on the maximal regularity result

(∂t + (ν −A), γ0) ∈ Isom (E1(I),E0(I)×W 2−2/p
p (Rn)) (6.11)

where ν > 0 is an appropriate constant, where γ0v := v(0), and where

E1(I) := W 1
p (I, Lp(Rn)) ∩ Lp(I,W 2

p (Rn)), E0(I) := Lp(I, Lp(Rn)),

see [6, Corollary 6.2] and [1, Theorem III.4.10.7].

Let v ∈ E1(I) be the (unique) solution of

(∂tv + (ν −A)v, γ0v) = (0, u0). (6.12)
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Pick (t0, x0) ∈ J ×X and let

vλ,µ(t, x) := v(t+ ζ(t)λ, x+ ζ(t)χ(x)µ), (t, x) ∈ I × Rn.
It follows from Proposition 5.3 that vλ,µ ∈ E1(I). We conclude from (5.9) and
(6.12) that

∂tvλ,µ = −(1 + ζ ′λ) [ν − (Tµa)Tµ∆T−1
µ ]Tµθ

∗
λv +Bµvλ,µ

= −(1 + ζ ′λ) [ν − (Tµa)Tµ∆T−1
µ ]vλ,µ +Bµvλ,µ.

(6.13)

Consequently, vλ,µ is a solution of the parameter-dependent equation

(∂tw +Aλ,µw, γ0w) = (0, u0),

where
Aλ,µw := (1 + ζ ′λ) [ν − (Tµa)Tµ∆T−1

µ ]w −Bµw.
We infer from (5.10) and Proposition 5.2 that

[(λ, µ) 7→ Aλ,µ] ∈ Cω(Bn+1(0, r0),L(E1(I),E0(I))).

The implicit function theorem shows that

[(λ, µ) 7→ vλ,µ] ∈ Cω(Bn+1(0, r0),E1(I)).

Since E1(I) ↪→ BUC(I × Rn) we conclude that

[(λ, µ) 7→ vλ,µ(t0, x0) = v(t0 + λ, x0 + µ)] ∈ Cω(Bn+1(0, r0),R),

showing that v is in fact analytic on a neighborhood of (t0, x0). Since (t0, x0) can
be chosen anywhere in J ×X we have shown that v ∈ Cω(J ×X). It remains to
observe that u(t) := eνtv(t) solves the parabolic equation (6.9) and that u has the
same regularity properties as v. �

Remarks 6.3. (a) By relying on maximal regularity results in little Hölder spaces
of negative order [2], the regularity assumptions on the initial value u0 can be
considerably relaxed (at the expense of imposing slightly more regularity on the
coefficient a).

(b) It is clear that we can also treat much more general parabolic systems which
satisfy the condition of normal ellipticity, see [2, 6]. In addition, we can also admit
time dependent coefficients and time dependent source terms.

In our next example we presuppose existence of a classical solution for the
non-autonomous parabolic equation

∂tu− a∆u = f in J ×X, (6.14)

where X is an arbitrary open subset of Rn and J = (0, T ) for some T > 0, and we
will be concerned with the regularity properties of u. We assume that

(a, f) ∈ Cω(J ×X), (6.15)

and that the differential operator A := a∆ is uniformly strongly elliptic.

Example 6.4. Suppose that u is a classical solution of the parabolic equation
(6.14). Then u ∈ Cω(J ×X).
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Proof. Let (t0, x0) ∈ J ×X be fixed and choose ε0 > 0 such that B(x0, 3ε0) ⊂ U
as well as [t0 − 3ε0, t0 + 3ε0] ⊂ J. In addition, choose τ small enough such that
τ /∈ supp (χ) and define I := [0, T0 − τ ] where T0 is slightly smaller than T . Let
U := B(x0, 3ε0) and let Γ := ∂U . Moreover, let p ∈ (1 + n/2,∞). The basic
maximal regularity result for the present situation is

(∂t − b∆, γΓ, γ0) ∈ Isom(E1(I),E0(I)), (6.16)

where we set b(t, x) = a(τ + t, x) for t ∈ I, and where

E1(I) := W 1
p (I, Lp(U)) ∩ Lp(I,W 2

p (U)),

E0(I) := {(g1, g2, w0) ∈ F0(I) ∩W 2−2/p
p (U) ; g2(0) = w0|Γ},

F0(I) := Lp(I, Lp(U))×
(
W 1−1/2p
p (I, Lp(Γ))

)
∩ Lp(I,W 2−1/p

p (Γ))

see [10, Section IV.9], and also [5, 12]. Next we set

v0 := u(τ), f1(t) := f(t+ τ)|U , f2(t) := u(t+ τ)|Γ, t ∈ I.

Since u is classical solution of equation (6.14), we obtain (f1, f2, v0) ∈ E0(I). Let
v(t) := u(t+ τ). We conclude that v ∈ E1(I), and that v is the (unique) solution
of (∂t − b∆, γΓ, γτ )v = (f1, f2, v0). Let

vλ,µ(t, x) := v(t+ ζ(t)χ(x)λ, x+ ζ(t)χ(x)µ), (t, x) ∈ I × U.

It can be shown that the pertinent results of section 5 do also hold for the transfor-
mation Φ̂(t, x) := (t+ ζ(t)χ(x)λ, x+ ζ(t)χ(x)µ) and we can, once again, conclude
that

[(λ, µ) 7→ vλ,µ] ∈ Cω(Bn+1(0, r0),E1(I)).

The assertion follows as in the previous example. �

In our last example we consider the nonlinear parabolic equation

∂tu− a
(
δij −

∂iu∂ju

1 + |∇u|2

)
∂i∂ju = 0 on Rn, u(0) = u0. (6.17)

We assume that the coefficient a satisfies the assumptions

a ∈ bucs(Rn) ∩ Cω(X), a(x) ≥ δ, x ∈ X, (6.18)

where X is an open subset of Rn, and where δ > 0. Equation (6.17) coincides with
the mean curvature flow described in the introduction in case that a ≡ 1.

Example 6.5. Let u0 ∈ buc2+s(Rn) be given. Then there exists a number T > 0
such that equation (6.17) has a unique solution

u ∈ C1([0, T ], bucs(Rn)) ∩ C([0, T ], buc2+s(Rn)). (6.19)

The solution has the additional regularity property u ∈ Cω((0, T )×X).
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Proof. Let

F (v) := −a
(
δij −

∂iv∂jv

1 + |∇u|2

)
∂i∂jv.

One can show that (1.5) remains valid for our new function F . Based on equa-
tion (1.5) we obtain a unique solution u in the class (6.19) for the parabolic equa-
tion (6.17). Let (t0, x0) ∈ (0, T )×X be fixed and set

uλ,µ(t, x) := u(t+ ζ(t)λ, x+ ζ(t)χ(x)µ), (t, x) ∈ I × Rn,
where I := [0, T ]. It follows from Proposition 5.3 that v = uλ,µ satisfies the
parameter dependent equation

∂tv + Fλ,µ(v) = 0, v(0) = u0,

where
Fλ,µ(v) := (1 + ζ ′λ)TµF (T−1

µ v)−Bµv.
Based on Proposition 5.2 we conclude that

[(v, (λ, µ)) 7→ Fλ,µ(v)] ∈ Cω(E1(I)× Bn+1(0, r0),E0(I))),

where the spaces E1(I) and E0(I) have the same meaning as in the introduction.
The implicit function theorem lets us once more conclude that

[(λ, µ) 7→ uλ,µ] ∈ Cω(Bn+1(0, r0),E1(I))

and we obtain as in the previous examples that u ∈ Cω(J ×X). �
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