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THE WILLMORE FLOW NEAR SPHERES

Gieri Simonett
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Abstract. The Willmore flow leads to a quasilinear evolution equation
of fourth order. We study existence, uniqueness and regularity of so-
lutions. Moreover, we prove that solutions exist globally and converge
exponentially fast to a sphere, provided that they are initially close to
a sphere.

1. Introduction

Let Γ0 be a compact, closed, immersed, orientable surface in R3. The
Willmore flow consists in finding a family Γ = {Γ(t) ; t ≥ 0} of smooth,
closed, immersed, orientable hypersurfaces in R3 which evolve according to
the law

V = ∆H + 2H(H2 −K), Γ(0) = Γ0. (1.1)
Here V denotes the normal velocity of Γ, while ∆, H and K stand for the
Laplace–Beltrami operator, the mean curvature, and the Gauss curvature of
Γ(t), respectively. That is, H = 1

2(k1 + k2) and K = k1k2, where k1, k2 are
the principal curvatures of Γ(t). If Γ(t) is embedded and encloses a region
Ω(t) we choose the orientation induced by the outer normal, so that V is
positive if Ω(t) grows, and so that H is positive if Γ(t) is a sphere.

It is easy to verify that any sphere in R3 is an equilibrium for the Willmore
flow. In this short note we shall study the stability of these equilibria.

In general, any equilibrium of (1.1), that is, any closed smooth surface
that satisfies the equation

∆H + 2H(H2 −K) = 0, (1.2)

is called a Willmore surface [15, p. 282]. There has been much interest over
the last years in characterizing Willmore surfaces in R3, as well as in the
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case that the ambient space is S3, the 3-dimensional unit sphere in R4; see
for instance [11, 15] and the references cited therein.

Willmore surfaces arise as the critical points of the functional

W (f) :=
∫

f(M)
H2 dS; (1.3)

see [14] or [15, Section 7.4]. Here, M denotes a smooth, closed, orientable
surface and f : M → R3 is a smooth immersion of M into R3. Associated
with this functional is a variational problem: Given a smooth, closed, ori-
entable surface Mg of genus g determine the infimum W (Mg) of W (f) over
all immersions f : Mg → R3 and classify all manifolds f(Mg) which minimize
W . It is known that W (M) ≥ 4π for any surface M and that the minimum
is attained if and only if f(M) is embedded as a round sphere [15, Theorem
7.7.2]. A characterization of all Willmore immersions f : S2 → R3 has been
obtained in [3]. The possible values of W (f) are 4πn where n = 1, or n ≥ 4
even, or n ≥ 9 odd. For the torus T 2 there is the long-standing “Willmore
Conjecture” asserting that W (T 2) = 2π2. The value 2π2 is attained by those
tori of revolution whose generating circles have ratio 1/

√
2; see for instance

[15, p. 274]. It is known that there exist embedded Willmore surfaces in
R3 of arbitrary genus. Such surfaces arise, for instance, as the images of
embedded minimal surfaces in S3 under stereographic projection of S3 into
R3. Examples of compact embedded Willmore surfaces that are not stereo-
graphic projections of compact embedded minimal surfaces in S3 were first
found in [10]. Lastly we mention that all surfaces of genus g that are absolute
minimizers of the functional W (if they exist) are necessarily embedded as
Willmore surfaces. We refer to [11, 15] and the references therein for more
details and interesting results.

In this paper, we show that the Willmore flow (1.1) admits a unique local
smooth solution for any initial surface Γ0 ∈ C2+β . Moreover, it is shown that
solutions that start out close to spheres with respect to the C2+β-topology
exist globally and converge exponentially fast to a sphere.

In order to state the main results we introduce some notation. Given an
open set U ⊂ Rn, let hs(U) denote the little Hölder spaces of order s > 0,
that is, the closure of BUC∞(U) in BUCs(U). Here BUCs(U) stands for
the Banach space of all functions which are bounded and uniformly Hölder
continuous of order s. If Σ is a (sufficiently) smooth submanifold of Rn then
the spaces hs(Σ) are defined by means of a smooth atlas for Σ. It is known
that BUCt(Σ) is continuously embedded in hs(Σ) whenever t > s.
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Theorem 1.1. Assume that 0 < β < 1, and let Γ0 be a compact, closed,
immersed, orientable hypersurface in Rn belonging to the class h2+β.

(a) The Willmore flow (1.1) has a unique local classical solution Γ =
{Γ(t) : t ∈ [0, T )} for some T > 0. Each hypersurface Γ(t) is of class C∞

for t ∈ (0, T ). Moreover, the mapping [t 7→ Γ(t)] is continuous on [0, T )
with respect to the h2+β-topology and smooth on (0, T ) with respect to the
C∞-topology.

(b) Suppose that the initial hypersurface Γ0 is a h2+β-graph in the normal
direction over some smooth, immersed, orientable hypersurface Σ. Then the
mapping [(t, Γ0) 7→ Γ(t)] induces a smooth local semiflow on an open subset
of h2+β(Σ).

The Willmore flow resembles the surface diffusion flow, which is governed
by the law

V = ∆H, Γ(0) = Γ0. (1.4)

This evolution equation has been studied in [8]. It should be mentioned that
the surface diffusion flow preserves the volume of the region enclosed by Γ(t)
and reduces the surface area of Γ(t). This is no longer true for the Willmore
flow. Moreover, the only equilibria of (1.4) are surfaces with constant mean
curvature (which leaves only the spheres in the case of embedded surfaces).
This provides some evidence that the dynamics for the Willmore flow might
be much more complex than for the surface diffusion flow. Nevertheless, we
prove that spheres still are exponentially attracting for (1.1), as they are for
(1.4).

Theorem 1.2. Let S be a fixed Euclidean sphere and let M denote the set
of all spheres which are sufficiently close to S. ThenM attracts all solutions
which are h2+β(S)-close to M at an exponential rate. In particular, if Γ0

is sufficiently close to S in h2+β(S) then Γ(t) exists globally and converges
exponentially fast to some sphere in M. The convergence is in the Ck-
topology for a fixed k ∈ N.

It would be interesting to know if a corresponding result also holds for
the tori of revolution described above. It is not known whether or not the
Willmore flow can develop singularities in finite time. In [9] a lower bound
on the lifespan of a smooth solution is given which depends on how much
the curvature of the initial surface is concentrated in space.
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2. Local existence of solutions

This section is devoted to the proof of Theorem 1.1. In the following, we
assume that Σ is a smooth, compact, closed, immersed, oriented hypersurface
in Rn, and that Γ0 is close to this fixed reference manifold. Let ν be the
unit normal field on Σ commensurable with the chosen orientation. Then
we can find a > 0 and an open covering {Ul : l = 1, . . . , m} of Σ such that
Xl : Ul × (−a, a) → Rn, Xl(s, r) := s + rν(s) is a smooth diffeomorphism
onto its image Rl := im(Xl); that is,

Xl ∈ Diff∞(Ul × (−a, a),Rl), 1 ≤ l ≤ m.

This can be done by selecting the open sets Ul ⊂ Σ in such a way that
they are embedded in Rn instead of only immersed, and then taking a > 0
sufficiently small so that each of the Ul has a tubular neighborhood of radius
a. It follows that R := ∪Rl consists of those points in Rn with distance less
than a to Σ. Let β ∈ (0, 1) be fixed. Then we choose numbers α, β0 ∈ (0, 1)
with α < β0 < β. Let

W := {ρ ∈ h2+β0(Σ) ; ||ρ||∞ < a}. (2.1)

Given any ρ ∈ W we obtain a compact, oriented, immersed manifold Γρ of
class h2+β0 by means of the following construction:

Γρ :=
m⋃

l=1

Im
(
Xl : Ul → Rn , [s 7→ Xl(s, ρ(s))]

)
.

Thus Γρ is a graph in the normal direction over Σ and ρ is the signed distance
between Σ and Γρ. For convenience we introduce the mapping

θρ : Σ→ Γρ, θρ(s) := Xl(s, ρ(s)) for s ∈ Ul , ρ ∈W.

It follows that θρ is a well-defined global (2 + β0)–diffeomorphism from Σ
onto Γρ. In the following ∆Γρ , HΓρ and KΓρ denote the Laplace-Beltrami
operator, the mean curvature and the Gauss curvature of Γρ, respectively.
Let θ∗ρ denote the pull-back operator induced by the diffeomorphism θρ. We
can then define the transformed operators ∆ρ, H(ρ) and K(ρ) :

∆ρ := θ∗ρ∆Γρ [θ
∗
ρ]
−1, H(ρ) := θ∗ρHΓρ , K(ρ) := θ∗ρKΓρ .

The Willmore flow (1.1) can now be expressed as an evolution equation for
the distance function ρ over the fixed reference manifold Σ,

∂tρ = G(ρ) , ρ(0) = ρ0, (2.2)
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where G(ρ) is given by

G(ρ) := Lρ

(
∆ρH(ρ) + 2H(ρ)

(
H2(ρ)−K(ρ)

))
(2.3)

for ρ ∈W ∩h4+α(Σ). Lρ is a factor that comes in by calculating the normal
velocity in terms of ρ; see [8] for more details.

In order to state our next result, let E1 and E0 be Banach spaces with
E1 ↪→ E0, and let H(E1, E0) be the set of all bounded linear operators
A ∈ L(E1, E0) which have the additional property that −A, considered
as an unbounded operator in E0, generates a strongly continuous analytic
semigroup on E0. It can be shown that H(E1, E0) is open in L(E1, E0);
cf. [2, Theorem 1.3.1]. It is always assumed that H(E1, E0) carries the cor-
responding relative topology.

Lemma 2.1. There exist mappings

A ∈ C∞(W,H(h4+α(Σ), hα(Σ))), F ∈ C∞(W, hβ0(Σ))

such that G(ρ) = −A(ρ)ρ + F (ρ), ρ ∈W ∩ h4+α(Σ).

Proof. It has been shown in [8, Lemma 2.1] that there exist mappings

A ∈ C∞(W,H(h4+α(Σ), hα(Σ))), F1 ∈ C∞(W, hβ0(Σ))

such that

Lρ∆ρH(ρ) = −A(ρ)ρ + F1(ρ), ρ ∈W ∩ h4+α(Σ).

By using well-known representations of H(ρ) and K(ρ) in local coordinates
we also infer that the mapping

[ρ 7→ F2(ρ) := 2LρH(ρ)
(
H2(ρ)−K(ρ)

)
] : W → hβ0(Σ)

is smooth. The assertion follows by setting F (ρ) := F1(ρ) + F2(ρ). ¤
Lemma 2.1 shows that the Willmore flow leads to a parabolic quasilinear

evolution equation of fourth order. We can now use the general results
of H. Amann for parabolic quasilinear equations to obtain existence and
uniqueness of solutions to (2.2).

Proposition 2.2. (a) Let ρ0 ∈Wβ := W∩h2+β(Σ) be given. Then there ex-
ists a positive constant T = T (ρ0) > 0 such that (2.2) has a unique maximal
solution ρ(·, ρ0) ∈ C([0, T ), Wβ) ∩ C∞((0, T ), C∞(Σ)).

(b) The map [(t, ρ0) 7→ ρ(t, ρ0)] defines a smooth local semiflow on Wβ.

Proof. The assertions follow from the results in [1, Section 12] and a boot-
strapping argument; see [8] for more details. ¤

It is now evident that Theorem 1.1 follows from Proposition 2.2.
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3. Global existence

In order to prove Theorem 1.2 we fix a Euclidean sphere S and set Σ = S
in the construction of Section 2. In order to simplify the notation we will
assume that S = S2, the unit sphere centered at 0. It follows from Lemma 2.1
that the mapping G : W ∩ h4+α(S) → hα, ρ 7→ G(ρ) is smooth. Hence we
can consider the derivative A := G′(0) of G at ρ = 0.

Lemma 3.1. A = −1
2∆S(∆S + 2), with ∆S the Laplace-Beltrami operator

on S.

Proof. In the following we fix g ∈ h4+α(S). Let ε0 > 0 be sufficiently
small such that ||ε0g||∞ < a, where the number a was introduced in Section
2. It follows that G(εg) is well-defined for all ε ∈ (−ε0, ε0). The Fréchet
derivative G′(0)g can be calculated as

G′(0)g =
d

dε
G(εg)

∣∣
ε=0

, (3.1)

and it immediately follows from [8, Lemma 2.1] that
d

dε
∆εgH(εg)

∣∣
ε=0

= −1
2
∆S(∆S + 2)g. (3.2)

Moreover,
d

dε
H(εg)

∣∣
ε=0

(H2(0)−K(0)) = 0 (3.3)

since H2(0)−K(0) = 0. We claim that
d

dε

(
H2(εg)−K(εg)

)∣∣
ε=0

= 0. (3.4)

For this we first note that 4H2−2K = |A|2, where |A|2 is the total curvature;
that is, |A|2 = k2

1 + k2
2, with k1 and k2 the principal curvatures. Hence we

also have the relation H2 −K = 1
2 |A|2 −H2. We shall now introduce local

coordinates on S. Let V ⊂ R2 be open and ϕ : V → U be a smooth
parametrization of an open chart U ⊂ S. For ε ∈ (−ε0, ε0), we set

φε : V → Rn, φε(x) := ϕ(x) + εg(ϕ(x))ν(ϕ(x)),

where ν denotes the outward-pointing unit-normal field on S. Thus φε pro-
vides a h4+α-parametrization of the manifold M(ε) := im(φε). Let

gij(ε) := (∂iφε|∂jφε), hij(ε) := −(∂i∂jφε|N(ε))

denote the components of the first and the second fundamental forms on
M(ε). Of course, N(ε) stands for the unit-normal field of M(ε) with the
orientation induced by ν. We write [gij(ε)] for the inverse matrix of [gij(ε)]
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and we set, as is usual in differential geometry, hi
j(ε) := gik(ε)hkj(ε) and

hij(ε) := gjk(ε)hi
k(ε). Finally, we just write gij for gij(0) and so on. The

total curvature |A(ε)|2 expressed in local coordinates is given by |A(ε)|2 =
hj

i (ε)h
i
j(ε), whereas the mean curvature is given by H(ε) = 1

2gij(ε)hij(ε).
The following formulas are well-known; see for instance [15, p. 281]:

d

dε
gik(ε)

∣∣
ε=0

= −2hikg,
d

dε
hkj(ε)

∣∣
ε=0

= −(∇j∇k − hl
khjl)g

d

dε
H(ε)

∣∣
ε=0

= −1
2
(gij∇i∇j + hj

ih
i
j)g,

(3.5)

where ∇j denote covariant derivatives. We obtain from the first two equa-
tions

d

dε
hi

j(ε)
∣∣
ε=0

=
d

dε
gik(ε)hkj(ε)

∣∣
ε=0

= [−2hikhkj − gik(∇j∇k − hl
khjl)]g

= −[gik∇j∇k + hi
kh

k
j ]g.

It is now easy to compute the derivative of hj
i (ε)h

i
j(ε) with the result

1
2

d

dε
hj

i (ε)h
i
j(ε)

∣∣
ε=0

= −(hij∇i∇j + hj
ih

i
kh

k
j )g.

Altogether we obtain in local coordinates
d

dε

(1
2
|A(ε)|2−H2(ε)

)∣∣∣
ε=0

=[−(hij∇i∇j + hj
ih

i
kh

k
j )+H(gij∇i∇j + hj

ih
i
j)]g.

(3.6)
This formula is, of course, true for any immersed manifold M in R2 for
variations with respect to the vector field gν. In the particular case M = S2

we obtain hij = −(∂i∂jϕ|ν) = −(∂i∂jϕ|ϕ) = (∂iϕ|∂jϕ) = gij . We conclude
that hi

j = δi
j and that hij = gij , where δi

j denotes the Kronecker symbol.
Thus it follows that the expression on the right side of formula (3.6) vanishes,
and we have proved claim (3.4). It remains to observe that L0 = 1 and
d
dεLεg|ε=0 = 0; see [8, p. 1425] for a representation of Lρ. Lemma 3.1 now
follows from (3.1)–(3.4). ¤

Remark 3.2. If S = rS2, a sphere of radius r centered at the origin, then the
same proof also shows that

A = −1
2
∆S

(
∆S +

2
r2

)
.

Lemma 3.3. The spectrum of A consists of a sequence {µk : k ∈ N} of real
eigenvalues with µk < µk−1 < · · · < µ1 < µ0 = 0. µ0 is an eigenvalue of
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geometric multiplicity 4 and ker(A) = span{1, Y1, Y2, Y3}, where Y1, Y2, Y3

are spherical harmonics of degree 1 in R3.

Proof. This follows as in [8, Lemma 3.2] ¤
Proof of Theorem 1.2. The proof follows along the lines of the corre-
sponding proof in [8]. For the reader’s convenience we shall indicate some
steps of the proof. We first show that the nonlinear equation (2.2) admits a
stable 4-dimensional local center manifold Mc. This implies, in particular,
that Mc contains all small global solutions of (2.2). In a second step we
then prove that Mc coincides with the manifold M of the theorem. It is
well-known that local center manifolds are not unique in general. However,
since each local center manifold of (2.2) consists of equilibria this implies
uniqueness in our case.

Under suitable spectral assumptions for the linearization, the existence
of center manifolds is well-known for finite-dimensional dynamical systems.
The corresponding construction for quasilinear infinite-dimensional semi-
flows is considerably more involved. The basic technical tool here is the
theory of maximal regularity, due to G. Da Prato and P. Grisvard [5]. In
particular, these results allow us to treat (2.2) as a fully nonlinear pertur-
bation of a linear evolution equation; see [6, 13].

(i) In a first step we briefly sketch the construction of a locally invariant
center manifold Mc over N := ker(A). Let Y0 := |S|−11, and let Pg :=∑3

k=0(g|Yk)Yk for g ∈ hr(S). Then P is a continuous projection of hr(S)
onto N parallel to ker(P ), and it is easy to verify that P commutes with A;
that is, PAg = APg = 0 for every g ∈ h4+α(S). Therefore, N = im(P ) and
ker(P ) are complementary subspaces of h4+α(S) that reduce A. To simplify
the notation we write πc = P and πs = (1 − P ), and we define h4+α

s (S) :=
πs(h4+α(S)). It follows that σ(πcA) = {0} and σ(πsA) ⊂ (−∞, 0). We can
now apply Theorem 4.1 in [13]; see also [6]. These results imply that, given
m ∈ N∗, there exists an open neighborhood U0 of 0 in N and a mapping

γ ∈ Cm(U0, h
4+α
s (S)) with γ(0) = 0, ∂γ(0) = 0

such that Mc := graph(γ) is a locally invariant manifold for the semiflow
generated by the quasilinear evolution equation (2.2). Mc is a 4-dimensional
submanifold of h4+α(S). Moreover,Mc attracts solutions of (2.2) that start
in a sufficiently small h2+β(S)-neighborhood W0 ⊂ Wβ of 0 at an expo-
nential rate, and Mc contains all small equilibria of (2.2); see [13, Theo-
rems 4.1 and 5.8].
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(ii) Step (i) shows thatMc contains all small equilibria of (2.2). We show
thatMc in fact coincides withM near 0. Suppose that S′ is a sphere which
is sufficiently close to S. Let (z1, z2, z3) be the coordinates of its center
and let r be its radius. Recall that S ⊂ R3 is the unit sphere centered
at the origin and let z0 := 1 − r. If ρ measures the distance of S to S′

in the normal direction with respect to S, then it can be verified by some
elementary geometric considerations that

(1 + z0)2 =
3∑

k=1

(
(1 + ρ)Yk − zk

)2
.

Here we used that the spherical harmonics Yk, k = 1, 2, 3, are given as the
restrictions of the harmonic coordinate functions [x 7→ xk]. Let Y0 := 1.
Solving the above identify for ρ, we obtain that S′ can be parametrized over
S by the distance function

ρ(z) =
3∑

k=1

zkYk − Y0 +

√√√√( 3∑
k=1

zkYk

)2 + (1 + z0)2 −
3∑

k=1

z2
k, (3.7)

where z := (z0, . . . , z3) ∈ R4. If O is a sufficiently small neighborhood of 0 in
R4, then it is clear that any sphere S′ which is close to S can be characterized
by (3.7) with z ∈ O. The mapping [z 7→ ρ(z)] : O → h4+α(S) is one to one
and smooth. LetM := {ρ(z) : z ∈ O}. We conclude thatM⊂Mc, sinceM
consists of spheres, which are equilibria for the Willmore flow. We intend to
show thatM =Mc. This follows, for instance, if we can verify that πc(M)
is an open neighborhood of 0 in N . In order to show this we investigate
the mapping F : O → N , F (z) := πcρ(z). It is easy to see that the partial
derivatives of F with respect to zj at 0 ∈ O are given by ∂z0F (0) = 1
and ∂zk

F (0) = Yk for 1 ≤ k ≤ 3. We conclude that the Fréchet derivative
∂F (0) of F at 0 is given by ∂F (0)h =

∑3
k=0 hkYk for h ∈ R4. Since the set

{Yk : 0 ≤ k ≤ 4} is a basis of N , we conclude that ∂F (0) ∈ L(R4, N) is an
isomorphism. Consequently, the inverse function theorem implies that F is
a smooth diffeomorphism from O onto its image V := im(F ), provided O is
small enough. Therefore, πc(M) is an open neighborhood of 0 in N which
can be assumed to coincide with the open neighborhood U0 constructed in
step (i).

(iii) It follows from step (ii) that the reduced flow of (2.2) onMc consists
exactly of equilibria. Therefore, 0 is a stable equilibrium for the reduced
flow and we conclude that 0 is also stable for the evolution equation (2.2);
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see Theorem 3.3 in [12]. In particular, there exists a neighborhood W0 of
0 in h2+β(S) such that solutions of (2.2) exist globally and converge toMc

exponentially fast for every initial value ρ0 ∈W0.
(iv) As in [7, Theorem 6.5 and Proposition 6.6], one shows the following

result. Given k ∈ N and ω ∈ (0,−µ1) there exists a neighborhood W0 =
W0(k, ω) of 0 in h2+β(S) with the following property: Given ρ0 ∈ W0, the
solution ρ(·, ρ0) of (2.2) exists globally and there exist T = T (k, ω) > 0,
c = c(k, ω) > 0, and a unique z0 = z0(ρ0) ∈ U0 such that

‖
(
πcρ(t, ρ0), πsρ(t, ρ0)

)
−

(
z0, γ(z0)

)
‖Ck ≤ ce−ωt‖πsρ0 − γ(πcρ0)‖h2+β

for t > T. According to step (ii), (z0, γ(z0)) is a sphere, and the proof is now
complete. ¤
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