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1. Introduction. The Stefan problem is a model for phase transitions in solid-
liquid systems. In this paper, we consider the two-phase Stefan problem with the
modified Gibbs—Thomson law

(1.1) u=cH+6V on TI(t), >0, 6>0,
and the kinetic condition
(1.2) [dO,u] = (£ — [k]Ju)V  on T(¢).

Here T'(¢) denotes the unknown moving hypersurface that separates the liquid from
the solid phase, u is the temperature, H the mean curvature of I'(¢), o the surface
tension coefficient, ¢ the coefficient of kinetic undercooling, V' the normal velocity of
I'(t), ¢ the latent heat, [k] the jump of the heat capacities across I'(¢), and [dd,u] the
jump of the heat fluxes across I'(t). Note that in case 0 = § = 0, i.e., for the classical
Stefan problem, we have u = 0 at the interface, and then the kinetic condition becomes
the classical Stefan condition.

Under appropriate boundary conditions we will show that spheres (together with
constant temperature distributions) are the only equilibrium states for this system,
and we will characterize the stability of these equilibria in terms of dependence on
physical and geometric quantities.

In order to formulate the Stefan problem we introduce the following notation. Let
Q) be a smooth bounded domain in R™ whose boundary 92 consists of two disjoint
components, an “interior” part J; and an “exterior” part Jo. We think of 2 as a
homogeneous medium which is occupied by a liquid and a solid phase, say water and
ice, that initially occupy the regions Q} and Q3, and that are separated by a sharp
interface I'g. More precisely, we assume that Iy C €2 is a compact closed hypersurface,
and that Qf and Q2 are disjoint open sets such that O = Q} U Q2, and such that
098 = J; Ul for i = 1,2. For the sake of definiteness we consider the open set Qf as
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the region occupied by the liquid phase. Consequently, the component J; is in contact
with the liquid phase, and Js is in contact with the solid phase. The boundaries J;
and Jo, corresponding for instance to the walls of a container, are fixed, whereas I’
will change as time evolves, due to solidification or liquidation of the two different
phases.

Given t > 0, let T'(¢) be the position of T'y at time ¢, and let V(-,t) and H(-,t)
be the normal velocity and the mean curvature of I'(¢). Moreover, let Q4(t) and Q2(t)
be the two regions in 2 separated by I'(¢). According to our assumption, 2 (¢) is the
region occupied by the liquid phase, and T'(¢) is a sharp interface which separates the
liquid from the solid phase. Let v(-,¢) be the outer unit normal field on I'(¢) with
respect to 4(t). We shall use the convention that the normal velocity is positive
if Q1(t) is expanding, and that the mean curvature is positive if the intersection of
Q4 (t) with a small ball centered at I'(¢) is convex. Consequently, the normal velocity is
positive if the liquid region is growing, v points into the solid phase, and H is positive
for a water ball surrounded by ice, and negative for an ice ball surrounded by water.

Here we concentrate on the case J; = ). Let T'g and uf : Q) — R be given, where
up and u denote the initial temperatures of the liquid and solid phase, respectively.
The strong formulation of the two-phase Stefan problem with surface tension and
kinetic undercooling consists of finding a family T := {['(¢); ¢ > 0} of hypersurfaces
and functions w; : Up>o (€:(¢) x {t}) — R, satisfying

KiOu; — diAu; =0 in (),
O,us =0 on Jy,
u; = oHp 4+ 6V on I(t),
(1.3) [ddyu] = (= [{u)V  on T(t),
u;(0) = ué in Qg,
T(0) =Ty,

where x; > 0 is the heat capacity of phase i, d; is its thermal conductivity coefficient,
¢ > 0 is the latent heat per unit mass absorbed or released for melting or solidifying,
o > 0 is the surface tension, and § > 0 is the speed of kinetic undercooling. Moreover,

(K] : = Ko — K1,
[d&,u] L= dgay’U,Q — dl&,ul

denote the jump of the heat capacities and the heat fluxes, respectively, across the
interface I'(t). Note that [k] = k2 — k1 < 0 is physically reasonable since in the liquid
phase there are more degrees of freedom than in the solid phase; hence, the liquid
phase can absorb more energy per unit mass. However, we do not assume [k] < 0
in what follows. The condition u; = oHr on the free interface is usually called the
Gibbs—Thomson law, and uw; = o Hr + 6V the modified Gibbs—Thomson law, or the
Gibbs—Thomson law with kinetic undercooling; see [2, 3, 16, 17, 19, 21, 24, 25, 32| for
more information.

We refer to [12, 13, 14, 22, 23, 28, 29] for existence and regularity results for
the Stefan problem with the Gibbs—Thomson law u; = ocHr in case k1 = ko. The
Stefan problem with surface tension and kinetic undercooling in case k1 = ko has
been studied in [5, 28, 29, 31]; see also [20] for the one-phase case.

It will be shown in [26] that the Stefan problem (1.3) has a unique local solution
which is analytic in space and time, provided that the well-posedness condition

(1.4) ¢—ol[k]Hr, >0 incase 6=0
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is satisfied. On the other hand, if § = 0 and k1 > kg, problem (1.3) is not well-posed if
Hr, is too negative, that is, in case the solid region sharply protrudes into the liquid.
Associated to the Stefan problem (1.3) is the energy functional

(1.5)  E(u(t),T'(¢)) :://iudx+€|f21(t)|= /mul dx—!—/mqua:—&—NQl(t)L
Q Qq(t) Qo (t)

where |Q1(¢)] is the volume of the region Q1(¢). If (u,I") is a sufficiently smooth
solution of (1.3), then we obtain

%E(u(t),l"(t)) = /mlatul dx + / K10pus dx — [K] /quS +/ /Vds

(1.6) Q1 (2) Qa(t) I'(t) I'(t)

_ / (= [d0u] ~ [WJuV + V) ds =0,
(1)

thus showing that energy is conserved.

If k1 = k3 = 0 and 6 = 0, then the resulting problem is the quasi-stationary Stefan
problem with surface tension, which has also been termed the Mullins—Sekerka model
(or the Hele-Shaw model with surface tension). Existence, uniqueness, regularity,
and global existence of solutions for the quasi-stationary approximation have been
investigated in [1, 4, 6, 8, 9, 10, 11, 15]. Existence and global existence of classical
solutions for the quasi-stationary approximation with ¢ > 0 and § > 0 have been
studied in [33, 20].

A major difficulty in the mathematical treatment of the Stefan problem (1.3)
is due to fact that the boundary I'(¢), and thus the geometry, is unknown and ever
changing. A widely used method to overcome this inherent difficulty is to choose a
fixed reference surface 3 and then represent the moving surface I'(¢) as the graph of
a function (which we will denote by p = p(s,t)) in normal direction of . In this way,
one obtains a time-dependent (unknown) diffeomorphism from ¥ onto I'(¢), and in
the next step this diffeomorphism is extended to a diffeomorphism of fixed reference
regions D? onto the unknown domains €;(¢). The treatment of the moving boundary
problem (1.3) then proceeds by transforming the equations into a new system of
equations defined on the fixed domain D; U Dy from which both the solution and
the parameterizing function p have to be determined. In the context of the Stefan
problem this approach has first been used by Hanzawa [18].

The same approach has also been used in [10, 11] for the quasi-stationary ap-
proximation of the Stefan problem with surface tension, and in [26] for the Stefan
problem with surface tension. Once the transformed system has been obtained, one
can study the mapping properties of the nonlinearities involved, and in particular,
one can determine their linearizations; see [26] for more details.

In this paper, we assume that I'(¢) does not touch the fixed boundary J, = 99.
Under this assumption, we will characterize all of the equilibrium states (u1, ug, %) of
(1.3). In fact, it is easy to see that the equilibria are precisely given by

m

EZUSR(J?]'), ulquza/R,

j=1

where S (z;) denotes disjoint spheres of the same radius R and centers z;. This can be
seen by the following arguments: the equilibria (ug, ug, ¥) of the Stefan problem (1.3)
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are given by the system of equations

—d;Au; =0 in
Oyus =0 on 0,
u; =cHy on X,
[dO,u] =0 on X.

(1.7)

Taking the inner product of (1.7); with w;, the divergence theorem and condition
(1.7), yield

/ |Vu,|? de = 0;
Q;

hence u; is constant on §2;. Equation (1.7)3, in turn, shows that u; = us and also
that H = u/o is constant on ¥. But then, since 2 is bounded, ¥ must be a sphere
Sr(zo) centered at some point xg € 2 with radius R > 0, if the phases are connected.
Otherwise, again due to the boundedness of 2, ¥ is the union of finitely many spheres
of the same radius R > 0. Here we concentrate on the case of connected phases.
Thus there is an (n + 1)-parameter family of equilibria, the parameters being the n
coordinates of the center xy and the radius R.

We want to discuss the stability of those equilibria. The linearized problem (as-
sociated to the transformed equations) at such an equilibrium state is given by

kO — dAv = f in (2\X) xRy,
Oyv =0 on 002 xRy,
(1.8) v=0Asp+60:p+g on X xRy,
10ip — [dO,v] = h on Y xRy,
v(0) = v in Q\X,
p(0) = po on ¥

see [26]. Here, | = ¢ — [k]o /R, and the operator Ay is given by

As = 1 <M+Ag>,

n—1\ R2

where Ay, denotes the Laplace—Beltrami operator on Y. This is the linearization of
the mean curvature H'(0) at the sphere ¥; cf., e.g., Escher and Simonett [11]. Here
we use the notation v = v1xq, +vaxaq,, where xg denotes the characteristic function
of a set GG, and similarly k = k1 xq, + K2Xq, and d = dixa, + d2xq,. Associated to
the linearization (1.8) is the following eigenvalue problem:

Akv —dAv =0 in Q\%,
v =0 on 0,
(1.9)
v=o0Asp+ \op on X,
Alp — [dO,v] =0 on X,

where as before | = £ — [k]o/R. We will now state the main results of this paper. We
will formulate our results for a domain in R” for n € N, n > 1, although the physically
relevant dimensions, naturally, are n = 2, 3.
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THEOREM 1.1. Suppose that the phases in the Stefan problem are connected. Then
the following assertions hold:
(a) The equilibrium states (without boundary contact) for problem (1.3) are given

by
(u,X), where ¥ = Sg(zg) and u=0/R,

with Sr(xg) C Q being the sphere with radius R and center x.

(b) Forl > 0, the eigenvalue problem (1.9) has countably many real eigenvalues
of finite algebraic multiplicity.

(c) 0is an eigenvalue of (1.9) with geometric multiplicity (n+1). The (geometric)
eigenspace is spanned by

(_17Y0>7 (07Y1)7 LR} (07 Yn)7

where Yo = R?/o, and where Y;, 1 < j < n, are the spherical harmonics of
degree 1 (normalized by the orthogonality condition (Y;|Y;)s, = 6;;).
(d) If o(k]1)q < I|X|R?, then (1.9) has no positive eigenvalues.
(e) If o(k|1)q > UZ|R% > 0, then (1.9) has exactly one positive, algebraically
simple eigenvalue.
(f) If 1 <0 and 6 > 0, then (1.9) has at least one positive eigenvalue.
(g) If 1 <0 and 6 = 0, then the linearized problem (1.8) is not well-posed.
Proof. The assertion in (a) has been proved above. We refer to Theorem 2.1 for
a proof of assertions (b)—(e), and for additional information about the eigenvalue
problem (1.9), for the case [ > 0. The proof of (f) is given at the end of section 5, and
(g) follows from [7]. O
Remark 1.2. (a) If | < 0, then all equilibrium states are linearly unstable (and the
linearized problem (1.8) is not even well-posed in case § = 0). Therefore we mainly
concentrate on the case [ > 0. Define then

o(k[1)a olx]
= ISR where lzﬁ—?, (k|1)a ::/Q/-@dx.

According to Theorem 1.1.(d)—(e), we know that all eigenvalues of (1.9) are non-
positive if ¢ < 1, and that there exists exactly one positive simple eigenvalue if { > 1.
We will refer to the case ( <1 as a stability condition.

Observe that neither the thermal conductivity coefficients d; nor the kinetic co-
efficient ¢ enters this stability condition, as it depends only on the heat capacities x;,
the latent heat ¢, the surface tension o, and on the geometry. In particular, decreasing
the size of a ball decreases its stability, as does increasing surface tension; see also
Remark 1.5(a). We also mention that the stability condition ¢ < 1 is always valid in
the quasi-stationary case x; = 0, i.e., for the Mullins—Sekerka problem.

(b) It will be shown in the forthcoming paper [27] that solutions for the Stefan
problem (1.3) that start out close to an equilibrium (u, ) exist globally and converge
towards an equilibrium state (u’, X’) as time goes to infinity, provided that { > 0 and
¢ < 1. This gives justice to the wording stability condition for the case ( < 1. We note
again that ¢ = 0 if the heat capacities k; are zero, that is, in the quasi-stationary
case. In this case, global existence and convergence to equilibria were obtained in
[11, 20] by using a center-manifold analysis; see also [15] for a different approach in
the one-phase case.

(c) If the Gibbs—Thomson condition on the free interface I'(¢) is replaced by
u; = 0, then (1.3) is called the (classical) Stefan model. It should be observed that,
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in contrast to the problem with surface tension, the classical Stefan problem does not
admit nontrivial equilibrium states.

For [ > 0, the results in Theorem 1.1 suggest that one eigenvalue, A, crosses the
imaginary axis at 0 as the quantity ¢ increases and exceeds 1. According to part (c)
of Theorem 1.1, 0 is always an eigenvalue with geometric multiplicity (n + 1). This
suggests that as the eigenvalue A, crosses through 0, the algebraic multiplicity of 0
raises by one, and then drops again as soon as the eigenvalue has crossed. This is
exactly what happens, as will be proved in Theorem 2.1.

Another way to view and understand this situation can be gained from considering
the following parameter-dependent eigenvalue problem:

AxSKU —dAv =0 in Q\X,
dv=0 on 012,
(1.10)
v=0cAxp + A\bp on 3,
Alp — [dO,v] =0 on 3.

The following result will be proved in section 6.
THEOREM 1.3. Let I > 0 and set so := [|X|R?/o(x|1)q. Then the following hold:
(a) The eigenvalue problem (1.10) has an analytic curve of solutions

[s = (Auls),0(s), p(s))]; s € (s0 — 0,00),

such that A«(s) > 0 iff s > so, where €g is an appropriate positive number.

(b) Ai(s) crosses the imaginary azxis with positive speed at s = sg.

(c) [s— Ai(s)] is strictly increasing.

(d) If 6 > 0, then \(s) is bounded above by o /6R>.

(e) If 6§ =0, then A(s) — 00 as s — 0.

Clearly, the eigenvalues of the modified problem (1.10) coincide with the eigen-
values of (1.9) if s = 1. In case ¢ > 1 we have sp < 1 and see that A = A\.(1) is a (the
only) positive eigenvalue of (1.9).

According to (1.5) an equilibrium state (o/R,Sg(xo)) for the Stefan problem
(1.3) has energy

B(R) : = B (%, Sr(x0)) = H(xlDa + €[]

(1.11)
(K1]] + r2|Q2]) + €],

=F
-
R
where |Q1]| = R"|B| and |Q| = || — R™|B|, with |B| the volume of the unit ball. A

straightforward computation shows that the function ¢ has a unique minimum. It is
attained at the point R,, where R, is the unique solution of

(1.12) o+l _ ( - UM) Sgl.

R? R

with |Sg| = |Sr(zo)| being the area of the sphere Sgr(zp).

In the following, we denote by R. the point where ¢ attains its (unique) minimum
and by R* the largest number R such that Br(x¢) C €, and we suppose that R, < R*.
Then we have the following result; see also the stability diagram in Figure 1.
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RO R_* R™«

Fic. 1. Stability diagram for k1 < k2 and 6 = 0; circled: ill-posed, dotted: unstable.

COROLLARY 1.4. Let ¢, = ¢(R.) be the minimum value of ¢, and let ¢* = ¢(R*).
Moreover, let co = E(ug, o) = ¢(R) be a given energy level.
(a) If co < cx, then problem (1.3) does not admit equilibrium states.
(b) If e < co < c*, then (1.3) admits two branches of equilibrium states. The
branch of equilibria (o/R,Sgr(x¢)) with 0 < R < R, is linearly unstable,
whereas the branch with R, < R < R* is linearly stable.
(d) In case co = ¢4 or cg > c*, the Stefan problem (1.3) admits one family of
equilibrium states. All equilibria (o/R, Sr(xzo)) with ¢(R) > ¢* are linearly
unstable.
(e) If Ry := [k]o/€ > 0 and § = 0, then the linearized problem is ill-posed for
R < Ry.
Proof. This follows from Remark 1.2(a), (1.12), and the fact that ¢'(R) is negative
for R < R, and positive for R, < R < R*. 0

Remark 1.5. (a) We can show that R, is increasing with respect to o (and, for
that matter, also with respect to [«]). In order to see this, let R.(o) denote the unique
solution of (1.12). Then we have R’ (¢) > 0. For this we note that (1.12) can be written
as

(1.13) nl|B|R" (o) — o (k2| + (n — 1)[K]|B|R}(c)) = 0.
Taking the derivative of this equation with respect to o yields

(n—1)o[s] ,,
(n+1) K) R.(o)

= KolQ| + (n — 1)[][BIR! = (¢/0)n| BIRI () > 0.

n(n+1)¢|B|R?™! (R* -

Note that we have used (1.13) for the last equality. It remains to be observed that
the parenthetical expression in front of R} (o) is always positive. This is clear in case
[k] < 0 and follows from the fact that R, is always greater than Ry = o[x]/l in case
[k] > 0. We therefore see that increasing o increases R, (o), showing that spheres with
a fixed radius R can lose stability as o increases.

(b) If one considers the case where the domain €25 is occupied by the solid phase,
and s by the fluid phase, then the third and fourth lines in (1.3) must be replaced
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by

u; = —oHp — 6V on I'(t),

(1.14) —[dd,u] = (£ + [Klu)V on I'(¢),

and the energy functional by

E(u(t), T(£) :=/mudw+€|§22(t)|: /filuldx—i— ks dz + 0| (8)],
Q Q4 (t) Qa(t)

while all other conventions are left unchanged. Thus, one formally has to switch signs
in the normal v and in £ and [k]. Then all of the results and assertions stated in this
paper remain valid for the equilibrium states (—o /R, Sr(xo)).

The plan of this paper is the following. In section 2 we will state a more general
and concise version of Theorem 1.1; its proof will be given in sections 3-5. Finally, in
section 6 we will prove Theorem 1.3.

2. Main theorem. In this section we will introduce an appropriate functional
analytic setting to study the eigenvalue problem (1.9). We always assume [ > 0 except
when proving (f) of Theorem 1.1.

For the case § = 0 we define the operator Ly on Ey := L,(2) x W§_2/p(2) by
means of

D(Lg) :=={(v,p) € W2(Q\ ) x W}=P(X) : [do,v] € W2™2/7(D),
dv=00n0Q, ] =00n ¥, v=0cAspon X},
Lo(v, p) = ((d/m)Ao, [(d/1)0,0)),  (v,p) € D(Lo).

In case 6 > 0, we instead set Es := L,(2) x W,}_l/p(E), and we define Ls by

D(Ls) :=={(v,p) € WZ(Q\ ) x W2~1/P(%)
dyv=00n0Q, [v]=0o0n X%, v—(§/1)[dd,v] = cAsp on X},
Ls(v, p) = ((d/m) A0, [([d/100]),  (v,) € D(Ls).

We remark that Ly and Ls differ only by their respective domains of definition. It
will be shown in [7] that the operators Ls generate an analytic semigroup on FEs.
This property, in conjunction with the spectral information contained in the next
theorem, will be crucial in proving global existence and convergence of solutions for
problem (1.3) that start out close to an equilibrium, which will be provided in [27];
see also Remark 1.2(c).
THEOREM 2.1. Suppose 1 < p < oo, and let Il > 0. For § > 0 let Lgs be defined as
above.
(a) The spectrum of Ls consists of countably many real eigenvalues of finite al-
gebraic multiplicity and is independent of p.
(b) 0 is an eigenvalue of Ls with geometric multiplicity (n + 1). The null space
of Lg is spanned by

(2.1) (-1,Y5),(0,Y7),...,(0,Yy,),

where Yo = R?/o, and where Y;, 1 < j < n, are the spherical harmonics of
degree 1 (normalized by the orthogonality condition (Y;|Y;)x = 6;;).
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(¢) Suppose that the degeneracy condition
(2.2) (K}‘l)Q = K1|Ql| + K2|Q2| = l|2|R2/0'

holds. Then the eigenvalue 0 has algebraic multiplicity (n + 2).
(d) If the degeneracy condition (2.2) does not hold, then 0 is semi-simple; that
is, N(L?) = N(Ls).
(e) If o(k[1)q < |S|R?, then Ls has no positive eigenvalues.
(f) If o(k|1)q > U|X|R?, then Ls has exactly one positive simple eigenvalue.
Proof. (a) By the compact embeddings D(Ls) — Ejs, the spectrum of Ls consists
of eigenvalues of finite algebraic multiplicity. The assertion that all eigenvalues are
real will be proved in section 4.
Let 1 < p < oo be fixed, and suppose that A is an eigenvalue of Ls with a
corresponding eigenfunction (v, p). Then v € W2(Q\ ¥), and v solves the elliptic
transmission problem

kA — dAv =0 in Q\X%,
v =0 on 0,
[v] =0 on X,

—[dO,v] = =Xp on X,

with p € I/[/;,l_sign(é)_1/’7(2)7 where sign(6) =1 if 6 > 0, and sign(§) = 0 if 6 = 0. Due
to Sobolev’s imbedding theorem we have that p € Wpll_l/p1 (X), where p; € (p, o) is
appropriately chosen. Proposition 5.1 then yields v € ng (Q\X). Next, we recall that
p satisfies

cAsp=v—(6/))[dO,v] =:h on X.

Since v € W2, (2\ ) we see that h € Wle_Sign(é)_l/pl (3), and we obtain from the

properties of the elliptic differential operator As, that p € W;l_Sign(é)_l/ P1(X). The
arguments given above can now be iterated a finite number of times to show that

(v,p) € W2(Q\ X) x Wy—sien®)=1/a(x)

for any fixed ¢ > p. Clearly, this is also true for any ¢ < p. We have, thus, shown that
the spectrum of Ls is independent of p. The properties listed in (b)—(d) are proved
in section 3, and assertion (e) is shown in section 4 while (f) is established in section
d. ]

PROPOSITION 2.2. Let 1 < p < oc. Suppose that (A, v, p) € RxW2(Q\X)xW2(X)
solves the eigenvalue problem (1.9). Then the functions (v, p) are smooth; that is,

V|Q; ECOO(QZ‘), pGCOO(Z).

Proof. This follows from a similar bootstrapping argument as in the proof of The-
orem 2.1(a), based on regularity properties of the elliptic transmission problems (3.4)
and (5.2), and regularity properties of the differential operator As. 0

Due to Theorem 2.1 and Proposition 2.2 we may restrict our attention to the
eigenvalue problem (1.9) in the Hilbert space setting of Lo (£2) x L2(X). In the following,
we use the notation (:|-)q and | - |q for the inner product and the norm in Lo (),
respectively, and similarly for Ls(X).
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3. The trivial eigenvalue. Let us first look at the eigenvalue problem (1.9)
with A = 0. Obviously, here [ € R can be arbitrary, and also 6 € R. For this purpose
we recall some properties of the operator Ay.

PROPOSITION 3.1. Let ¥ = Sg(zg) C R™ be a sphere of radius R and center x,

and let
1 n—1
AZ:_W,—l(,Rz_'—AZ)

be defined on La(X) with domain W(X). Then the following assertions hold:

(a) Ay is self-adjoint. Its spectrum consists of countably many eigenvalues A\, =
m (k(k+mn—2)— (n—1)) with k > 0. The eigenfunctions are given by
the spherical harmonics of degree k.

(b) The kernel of As is given by N(As) = span{Y1,...,Y,}, where Y; denotes
the spherical harmonics of degree 1 on ¥, normalized by (Y;|Y;)s = 6;;.

(¢) The range of As,, R(As) is closed, and we have Ly(X) = N(Asx) @ R(Ax).

(d) There is precisely one negative eigenvalue, namely —1/R?, with eigenfunction
1, which is simple.

(e) As is positive semi-definite on Ly o(X) = {p € La(2): (p|1)s = 0} and posi-
tive definite on

Loo(3) N R(As) = {p € La(X): (p|)s = (p|¥j)s =0, j = 1,...,n}.

Proof. We can assume, without loss of generality, that ¥ = Sg(0) = RS" 1,
where S"~! denotes the standard unit sphere in R”. Let ® : & — S"~! be defined
by p — (1/R)p. Then ® is a smooth diffeomorphism of ¥ into S”~!, and one readily
verifies that

(3.1) (9lh) o2y = R* " H®@ug|®uh) pysn-1y, Ax = (1/R?) ®*Agn-1 D,

where ®* and @, are the pull-back and push-forward operators, respectively. We then
have

1
which shows that A is an eigenvalue of Ay iff
1
. = — — —_ 1
(3.3) A= gy (= (=)

with p an eigenvalue of —Agn-1. The assertions in (a)—(b) and (d)—(e) follow now from
(3.1)~(3.3) and well-known results for the Laplace-Beltrami operator on S"~1; see,
for instance, [30, section 31]. Since Ay, has compact resolvent we conclude that R(Ay)
is closed, and the fact that Ay is self-adjoint then implies the remaining assertion in
(c). O

Before we proceed we need the following result on the elliptic transmission
problem:

—dAv=f i Q\3,
d,v=0 on 0f2,
[v] =0 on X,
—[dov] =g on X.

(3.4)
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PROPOSITION 3.2. Let 1 < p < co. Then the following hold:
(a) The transmission problem (3.4) has a solution v € W2(Q\ X) if and only if

(f,9) € Lp,(Q2) x W;fl/p(Z) and the compatibility condition
(fIDa+(gl)z =0

is satisfied. The solution is unique with the normalization (k|v)q = 0.

(b) Let v = Tog be the unique solution of (3.4) with f = 0, (g/1)s = 0, and
(klv)a = 0. Then Ty is self-adjoint and positive definite on Lo(X); that is,
there exists a positive constant ¢ = c(d;,€2;) such that

1/2
(Togl9)racs) = cloldysy, g€ W2 (D).

Proof. (a) This proof follows from known results in elliptic theory since the
Lopatinskii—-Shapiro conditions are satisfied.

(b) Let g,h € W21/2(E) be given. Then we have

(Toglh)s = (Tog|[—d0,Toh])s = (dVTog|VIoh)q
= (=[do, Tog]|Toh)s = (g9|Toh)s,

thus showing that T is symmetric. For v := Typg the computation above yields

(Toglg)s = (dVv|Vv)q.

On the other hand, setting v; = v|q, we obtain

190 2.y = 11001 — d20yv2] Ly (s) < e(lorlwz(en) + lv2lwz o))
< c(lorl Loy + 1AV Loy + 102]Loa) + 1AV2] Ly (0))
= el < clvlwy ) < Vol < c(Toglg)y™.
Here we used the fact that
v="Tog € WH(Q) NWZ(Q\X).

Moreover, we used that (| - |z, + [A - |1,(0,)) defines an equivalent norm on
W3(€;), and also that |Vul 1, q) defines an equivalent norm on Wy (€2) for all functions
u € WH(Q) with (k|u)q = 0. This completes the proof of Proposition 3.2. |

We are now ready to establish the assertions (b)—-(d) of Theorem 2.1.

(b) Suppose that (v, p) is a solution of (1.9) with A = 0. Then, taking the inner
product of (1.9); with v, the divergence theorem and (1.9), , show that v is constant
on Q\ 3; hence, v is constant on Q and v = o0 Axp due to 7(1.9)3. A special solution
of this problem is pg = —R?v/0, and the solutions of the corresponding homogeneous
equation are the spherical harmonics Y; on X for j = 1,...,n. Thus we obtain an
(n + 1)-dimensional null space spanned by(2.1), which proves Theorem 2.1(b).

This null space is tangent to the (n+1)-dimensional manifold of equilibria, where
(0,Y;) corresponds to the center zo, and (—1,Yp) corresponds to the radius R. Note
that the null spaces of Ly and Lg, 6 > 0, coincide.

(c) Suppose that (2.2) holds. Then there exists a pair (v*, p*) € N(L2) \ N(Ls).
Indeed, this can be seen as follows: we first solve (3.4) with (f,g) = (—k,lR?/0).
According to Proposition 3.2, this problem has a unique solution vy with (k|vg)g = 0
since the necessary compatibility condition is precisely (2.2).
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Set v* = vg + ZZ _, ;TpY;. Then v* satisfies

—(d/r)Av* = -1 in Q\ZX,
. ov* =0 on 09,
(3:5) [v*]= 0 on X,

~[(d/)o,v*] = R*’/o+%)_10;Y; on X.

We now want to solve v* = cAgp + (6/1)[d0,v*] in terms of p; that is, we consider
the problem

oAyp =v* — (6/1)[dO,v*] =: h.

According to Proposition 3.1(b)—(c) this problem has a solution p* iff (h|Y;)s = 0
for i = 1,...,n. The conditions (h|Y;)s = 0 will then be employed to determine the
coefficients ;. A short computation yields

(hY)s =0 & da;+ Y UTY;Yi)s ay = —(volYs)s, i=1,....n.
j=1
Since Ty is self-adjoint and positive definite on Ly(X), there exists a unique solu-
tion of this system, as we shall see in (6.7). Due to 0 Ax(R?/o + Z oY) = —1
(see Proposition 3.1), we conclude that (v*,p*) € D(L%). It is then easy to see that
Ls(v*, p*) # (0,0) and L2(v*, p*) = (0,0). These facts in combination with part (b)
show that

(3.6) N(L3) = N(Ls) @ span{(v*, p")},

in the degenerate case where (2.2) holds.

Next we show, still in the degenerate case (2.2), that N(L3) = N(L%). In fact, if
(v,p) € N(L?), then Ls(v,p) = (vn, pn) + B(v*, p*) for some (vy,pn) € N(Ls) and
some scalar (. For solvability of this equation, the compatibility condition

(k(on + Bv*)[1) g, +L(pn + Bp (1) =0
must be valid. Due to the degeneracy condition we have (kvn|1)q + ( ~|1l)x =0,
and the compatibility condition is reduced to B{(kv*)[1)q +1(p*[1)x } = 0. Using the
property that —(d/k)Av* = —1 (see (3.5)), we obtain
—{(kv*1)q +U(p*|1)s} = —(dAv*|v*)q — U(p*|1)x
= [Vd Vo' [{ + ([dd,0"]]o")s — Up" Vs

= VAVl — 1| B* /o + ) a¥jloAsp™ |+ (6/Dd0,v7 ][5 — U(p*|1)x

j=1
= [Vd Vv g + (6/1)][dd,v*] |3

since Ay, is self-adjoint on Ly(X) and cAx(R?/o + Z _, a;Y;) = —1; see Proposi-
tion 3.1. This implies 8 = 0, i.e., (v, p) € N(L?2), thus establishing Theorem 2.1(c).

(d) Let us examine when the eigenvalue A\g = 0 of Ls is semi-simple. Assume that
(v, p) € D(L?) is such that L2(v, p) = 0. Then

b

Ls(v,p) = ao(=1,Yo) + > a;(0,Y)).
j=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/28/15 to 129.59.223.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ON THE STEFAN PROBLEM WITH SURFACE TENSION 687

This implies that

—(d/k)Av = ag in Q\X%,
o,v =0 on 01,
[v] =0 on X,
—[(d/1)0,v] Zaj on X,
v= U.Agp + (6/1)[do,v] on 3.

According to Proposition 3.2 we necessarily have
ao(ka || + kalQ2]) = 1) a;(Yj[1)x = lag|S| R /o,
j=0

since the mean value of Y; over ¥ is zero for j > 1. Assuming the nondegeneracy
condition

(37) (H|1)Q = Hl‘Ql‘+HQ|QQ‘ %Z‘E|R2/O’,

we conclude that ag = 0. But then

O:—/dAvvdx:/d|Vv|2dw+/[d8,,v]vds,
Q Q )

which further yields

0= |VaVolg+io Y a;(YjlAsp)s + (8/D1[d,0]|% = [V Vol + (6/D)1[d0,0]1%

Jj=1

since As; is self-adjoint on Lo(X) and AyY; = 0 for j > 1. We conclude that v is
constant in £ and that 0 = [dO,v] = ZZ?ZI a;;Yj; hence, a;; = 0 for all 5. This shows
that Ag = 0 is a semi-simple eigenvalue of Ls, that is, N(L?) = N(Ls) for § > 0,
provided the nondegeneracy condition (3.7) is valid, and this proves the assertion of
Theorem 2.1(d).

4. Nontrivial eigenvalues. Now we consider the eigenvalue problem (1.9) for
A€ C, XN #0, in case | > 0. Suppose that A # 0 is an eigenvalue with nontrivial
eigenfunction (v, p). Taking the inner product in Ly(§2) of the first equation in (1.9)
with v and using the divergence theorem, we get

AlVEv[g = (dAvv)a = —|Vd Vol — ([do,v][v)s
= —[Vd Vvl — (8/1)][dd,v]|% — Mo(p|Asp)s:

hence, we obtain the identity
@) ARl +lo(plAsp)s) + VAV + 8/ (0,013 = 0.

If Tm A # 0, then |/wo|3 + lo(p|Asp)s = 0; hence, |Vd V|3 + (§/1)][dd,]|% = 0.
We conclude that v is constant and (1.9), , now implies that (v,p) = (0,0) since
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A #£ 0. Therefore the eigenvalues and eigenfunctions are real, thus establishing Theo-
rem 2.1(a).
Using AMp = [dO,v] and the fact that A is real, we may rewrite (4.1) as

(4.2) A(IVAvI + 1ol Asp)s + Mool ) + | VA Vel = 0.

Integrating the eigenvalue equation (1.9) we obtain

A[r)a = (dAv[L)o = —([dd,v][1)s = =Al(p[1)s;
hence, dividing by A,
(4.3) (vlr)q + I(p|1)s = 0.
Splitting p = po + p and v = vy + U, where (po|l)s = (vo|k)q = 0, from (4.2) and
(4.3) we derive an identity equivalent to (4.2), namely,
A(Iv/Avoly + 10 (pol Aspo)s+ M6l pol ) + [V Vol
1%

(k1)
Since Ay, is positive semi-definite on Ls o(X), the Lo-functions with mean zero, we

see that in case A > 0, (4.4) implies v = constant, and hence (v, p) = (0,0), provided
that

(4.5) (k[ < U[Z|R?/o.

(4.4)

+A(As + —%)HZW:O.

Consequently, (1.9) cannot have positive eigenvalues if the stability condition (4.5) is
satisfied, thus proving the assertion of Theorem 2.1(e).

5. The unstable eigenvalue. As far as we know, for [ > 0 and

o (k|1

IZ|R? —

there are no positive eigenvalues; however, the algebraic eigenspace of Ls rises in
dimension by one when ¢ becomes 1. This indicates that for ¢ > 1 there is exactly

one algebraically simple eigenvalue A\, > 0. We want to prove that this is indeed the
case. In order to do so, we consider the following transmission problem:

Ao — dAv = f in Q\X,
v =0 on 09,
[v] =0 on X,
—[do,v] =g on X.
Then the following result holds.

PROPOSITION 5.1. Let 1 < p < 0o and Re A > 0. Then the following hold:

(a) Problem (5.2) has precisely one solution v € W) (Q) NW2(Q\ X) iff (f.9) €
Ly(©) x Wy~ /7(3).

(b) Let T\ be the solution operator for (5.2) with f = 0. Given any number
0 € (0,m), there exist positive numbers Ao = Ao(0,d;, K:,8;) and My =
Mo(0,d;, k:,8;) such that

17591z, s) < Mol 2Nl )

for g e Wpl*l/p(Z), whenever |A| > Ao and |arg \| < 6.

(5.1) (=

(5.2)
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(¢) For A > 0, Ty is positive definite on Lo(X); that is, there exists a positive
constant B = [(d;, k;,$;) such that

VA 1/2
(Tglo)ae) 2 B Moltasy, 9 € WR2(2).
Proof. (a) This proof follows from known results in elliptic theory.
(b) Suppose that €, = R™ and Qy = R"}, with R} = {(2/,z,) € R" : £z,, < 0}.
Then one readily obtains that
Taglrn-1xg0y = F ' (maFyg),

where F denotes the Fourier transform in the tangential variables, and where

m g f— .
S N /sy W N Y sy W AT

The assertion then follows from Mikhlin’s multiplier theorem. The general case can
be obtained by the usual procedure of localization.
(c) Let g,h € W21/2(Z) be given. Then we have

(Taglh)s = (Trg|[-dO,T5h])s = Ak Tag|Txh)a + (d VTrg|VTih)q
= (—=[dO,Txg]|T5h)s = (9|Txh)s,

showing that T} = T, in particular, that T is symmetric for A > 0. For v := T)g,
A > 0, the computation above yields

(5.3) (Thglg)s = A(kv|v)a + (d Vo|Vo)g.

Setting v; = v

q, we conclude similarly as in the proof of Proposition 3.2 that
191 Lo(s) = 1d18uv1 — d20,v2] Ly(sy < c(ldivilwza,) + ldavalwz s))

< c(ldivill o) + ldiAvi ] Ly0,) + [d2v2] Ly 0q) + [d2Av2] 1,y (0y))
c(ldivrl o,y + AME1vil Ly, + 1daval Ly 0) + A2l Ly 02))
< exVAly0) < ex(VAI o) + V0l y0) < e (Taglg)yl”,

where ¢\ = c(d;, ki, %)(1 + X)/VX. In the estimates above we have used that v =
Thg € W3 (Q)NWZ(Q\X), and that ([ -], +|A | £,(0:)) defines an equivalent norm
on W2(€;) and, lastly, we employed (5.3). This completes the proof of Proposition
5.1. 0

We assume now that A > 0 is a fixed number. For given p € W21/2 (%), let v be
the solution of the transmission problem

Akv —dAv =0 in Q\X%,
v =20 on 0f),
(5.4)
[v] =0 on X,

—[do,v] = =Ap on X.

Then v = T\ (—Alp) = —NT\p with Ty, being the solution operator introduced above.
By inserting this representation of v into the equation v = 0 As,p+ Adp, we obtain the
problem

(5.5) Aop+ NTrp+ cAsp =0,
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which is equivalent to the eigenvalue problem.
Setting By (s) := XoI + AT\ + so Ay, for s > 0 and employing Proposition 5.1(c), we
obtain the estimate

(Ba(s)plp)s = M6 +D)|pl3: + so(Asplp)s
= A6 +D]pol3; + so(Aspolpo)s + {6 + 1) — so/R*}|S|p?,

where v = SvV/A/(14 ) and p = po+p with (pg|1)s = 0. Since (Asxpolpo)s > 0 we see
that all of the terms in the previous line are nonnegative, provided A(6 +~1) > so/R?,
i.e., for small s. Hence, for small s > 0, the operator B)(s) is positive definite, which
means that A cannot be an eigenvalue of (1.9), where in the third line of (1.9) o is
replaced by so. On the other hand, choosing p = 1 we have

(Bx(s)1]|1)s = MS|Z| + M(Th1|]1)x — so|X|/R? < 0
if s becomes large. Now we set
Sx 1= S«(A) :=sup{s > 0: By(s) is positive definite}.

Then B (s,) is still semi-definite, but not definite, and hence, by compactness of the
resolvent, has a nontrivial kernel. Therefore, for a given A > 0 there is an s, = $,(\)
such that A is an eigenvalue of (1.9), where oAy is replaced by s.cAyx in the third
line.

Next, we show that positive eigenvalues are simple. Rewrite (5.5) as

ASpo + NTrpo + 0 Aspo = —{A6 + NIT\1 — o /R*}p.

Since B, is positive definite on Lg (2), this equation has precisely one solution for
given p, which shows that the eigenspace N(\ — Ls) is at most one-dimensional for
any given A > 0.

To show that nontrivial eigenvalues are semi-simple, suppose that

(A= Ls)(v,p) = (v1,p1), (A= Ls)(vy, p1) = 0.

Then by Green’s formula

IVEvi3 = (Akv — dAv|vy)g
= (v|Akv1 — dAvy)q + ([dOyv]|v1)s — (v][dOyv1])s
= (6/)([dOyv]|[dOyv])s + lo(Ap — p1]|Aspr)s
= (6/1)([dO,v][[dDyv1])s — Mo (Asplp1)s
= —lo(p1|Asp1),

which yields

IVEv1 G + lo(p1|Aspr).

It follows now from (4.1) that v; is constant on Q \ X. Since A # 0, we then obtain
from (1.9) that (v1,p1) = (0,0). Thus any nontrivial eigenvalue is semi-simple, and,
in particular, positive eigenvalues are algebraically simple.

We want to show that for ¢ > 1 there is precisely one positive eigenvalue A\, > 0.
For this purpose we fix the parameters d, [, o, 6 as well as R, but replace k by sx
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in the first line of (1.9). Fixing u = As and scaling p — p/s, we obtain the scaling
o0 +— so. The argument given previously then shows that there is s, > 0 such that
u is a simple eigenvalue of the scaled problem; hence, A\, = u/s. > 0 is a simple
positive eigenvalue for (1.9) with x replaced by s.x in the first line. Since A, = Ai(sx)
is simple, the eigenvalue problem

SV —dAv =0 in Q\ZX%,
d,v=0 on 012,
(5.6)
v=0Asp+ Abp on 3,
Aulp — [dO,v] =0 on X

has a smooth (analytic) family [s — (A«(s),v(s), p(s))] of solutions, which exists as
long as \.(s) remains a simple eigenvalue. As ((s) := so(k|1)q/l|%|R? approaches the
value ¢ = 1 from above, we must have A,(s) — 0 from the right. This means that at
the value

l|§3|R2
5.7 s =80 :=

the eigenvalue A.(s) passes through the origin, in accordance with the jump of the
algebraic multiplicity by 1 of the eigenvalue 0 for Ls at ( = 1 = ((sg). This shows
that there can be only one positive eigenvalue for (5.6), independently of the values
of the parameters, and there is precisely one iff ¢ > 1.

If ¢ = o(k|1)Q/I|X|R? > 1, then we have that sop < 1. The argument given above
shows that the modified eigenvalue problem (5.6) has for each s > sg exactly one sim-
ple eigenvalue. This is, in particular, true for s = 1, thus establishing Theorem 2.1(f).

Now we turn our attention to the case I < 0. As before, we conclude that the
operator Ls has countably many eigenvalues. We note that the argument given in
section 4 also applies to the case I < 0 and § = 0, showing that all eigenvalues of (1.9)
are real in this case.

In the following, we assume that I < 0 and § > 0. In order to show Theorem 1.1(f),
we consider the operators By := A6 + AT\ + oAy, for A > 0. By Proposition 5.1 we
have

(Baplp)s = (6X = [I[MoAY2 = a/R?)[1pl13 > [|pll3;

provided that A > g, for some g > Ag. Hence, B, is positive definite for large A > 0.
On the other hand we have

(Bal|1)s = M[S| — AUl(Ta1[1)s — o[SI/R2 < 2[5 — 0[S}/ R2.
Thus for A small we see that By is not positive. Let
A :=inf{\ > 0: B, is positive definite for all ;1 > A}.

Then B,, is still semi-definite, but not definite, and hence, by compactness of the
resolvent, has a nontrivial kernel. This shows that A, is an eigenvalue of (1.9), proving
Theorem 1.1(f).

Remark 5.2. Suppose [ < 0 and 6§ > 0.

(a) While it is still true that all nontrivial eigenvalues of (1.9) are semi-simple,
we cannot conclude that positive eigenvalues are simple.
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(b) We do not know whether all eigenvalues of (1.9) are real if I < 0 and 6 > 0.
We can, however, prove that every sector [|arg A| < 6] can only contain finitely many
eigenvalues for a fixed 6 € (0, 7). This can be shown as follows. Let § € (7/2,7) be
fixed, and suppose that |arg A\| < 6. Moreover, let « € (0,7/2) be an arbitrary fixed
number. Then one verifies that

[A + p| > min{sina, sin(r — ) }|A|, whenever u € R, o <|arg)| <86,
and this shows that there exists a constant ¢ > 0 such that
(5.8) S + o(Asplp)s] = clAl, o < |argA| < 6.
Using that o(Axplp) > —0/R?||p||%, we see that
(5.9) NS + o (Asplp)s] > (6/2)|A], |lplls =1, Re\ >20/6R2.
Combining (5.8)—(5.9) yields
(5.10)  P(olo)s + o(Aspl)sl = KN, ol =1, largAl <6, |\,

where k = min{c,§/2} and n = (20/6R?)(1/cosa). Let A\g and My be as in Propo-
sition 5.1. Suppose that A € C\ {0} with |argA| < 6 is an eigenvalue of (1.9) with
eigenfunction (v, p). Then we have

(5.11) Aop + acAsp = AN|Txp

and we can assume, without loss of generality, that ||p||s = 1. If |A] > max{)\o,n},
then we conclude from (5.10)—(5.11) and Proposition 5.1 that

KIAL < Mol||A]2

and so || is bounded by (Myl/k)?. Clearly, if |\| < max{)\g,n}, we have a trivial
bound. This shows that all possible eigenvalues in the sector [| arg A\| < ] are bounded.
Since eigenvalues cannot accumulate in a bounded set, we see that (1.9) can only have
finitely many eigenvalues in the sector [| arg A| < 6].

6. Analysis of the unstable eigenvalue. In this section we analyze the prop-
erties of the unstable eigenvalue A, of problem (5.6) in case { > 0 in more detail. In
particular, we study the behavior of A, (s) and the corresponding eigenfunctions near
the critical value 1 of {(s), i.e., for s near sg; see (5.7).

Proof Theorem 1.3. (a) We will first analyze the behavior of (A.(s),v(s), p(s)) for
s near sg. In order to do so we use the following ansatz:

Ax(8) = (s —s0)A1(s),
6.1) v(s) = =14 (s—so)A(s)vi(s),
' p(s) = po+ (s —s0)n+ (s = s0)\i(s) (pa(s) + Bls) - §),
(vi(s)[k)a =0, (p1(s)[)x = (p1(s)[Y;) =0, 1<j<n
with
(6.2) po:=R*/o+ &7, n:= (k[1)a/lZ,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/28/15 to 129.59.223.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

ON THE STEFAN PROBLEM WITH SURFACE TENSION 693

where &, 3(s) € R and § = (Y1,...,Y,). Setting r = s— so and inserting this ansatz
into the eigenvalue problem (5.6), we obtain the following system of equations:

—dAvy = sok + 1E(1 — sAv1) in Q\ZX,
d,v1 =0 on 01,
(6.3) [vt1] =0 on X,
—[ddyv1] = —lpo —rln —rMil(p1 + B+ §) on ¥,
o 2 o
oAspr = RQT)’\l —bpo+uvr—rén—rié(pr+ F-y) on

We first observe that due to (5.7), (6.1),, (6.2), and the fact that (Y;|1)s = 0, the
compatibility condition

(6.4) (1sor +r6(l — shiv1)) o, — L(1lpo + 11+ rAi(pr + B 7))y =0

holds. It is our intention to apply the implicit function theorem to find a smooth
(analytic) curve of solutions

[5 = (A (), 01(5), pa(5), B(s))]
of (6.3) for s near so. The idea is to use the (n + 1) orthogonality conditions
(Aspill) = (Aspm|Y;) =0, 1<j<n,

to determine the (n + 1) scalar functions A\; and ;. In order to do so, we will first
derive an expression for & and B Taking the inner product of (6.3), with Y; yields

(6.5) 0=—8a+ (v1|F)s — 6\ B,

where (v1]¥)s denotes the vector in R™ with components (v1]Y)s, 1 < j < n. Due
to Proposition 3.2 we have

(1Y) = (1] — [dBLTHY; )ss = / ddiv(nToY;) de
Q
= (dVu1|[VTY))a = (=dAvi|[ThY))a + (=[do,v1]|ToY))s
= (sok 4 r6(1 — sAv)|ToYi)a — L(po + 10+ 21 (p1 + B~ §)|ToY))s-
= —rshi(kv1|ToY))a — L(po + 1 + 1M (p1 + B+ §)|ToYi)s

for j =1,...,n. Setting first » = 0 yields an equation for &, namely,
0=—6a—(IR?*/o)UTo§)s — UTo 7| 7)s
ie.,
- . -1 -
(6.6) a=—(01+UTog|7)s) (R*/o)UTo7)s,

where (Ty i | J )» denotes the symmetric matrix with entries [(ToY;|Y;)s]1<i,j<n. Here
we remind the reader that

(6.7) (Tog|§)s€l6) = Y &&(ToYilYy)s = (To(§ - DIE- §))x = clél®

1,j=1
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for £ € R™, where (|-) denotes the Euclidean inner product on R™. This shows that
the matrix (To 7 |¥ )s is positive definite, and hence 61 + I(Tp ¥ | % )s is invertible for
any 6 > (0. Next, we obtain for 3 that

68)  B=—(I+UToF| 7)) {s(ku|Tod)g + /M +pilTod) s )

Thus we have a function B = 3(/\1,1;1, p1,$). Finally, we obtain an equation for Ay
by taking the inner product of (6.3), with 1:

(6.9) 0 = on|X|/R*\; — 6R*|Z| /o + (v1|1)g — r6|S|n.
Employing the relation (k|v1)o = 0 and (6.3), 4 as well as (6.5) yields
—rsA1(kv1|vi)a = (sok + re(1 — sA1v1)|v1)q

= (—dAvs|v1)g = [Vd Vor]g + ([d0,v]vr)s

= [VAVurl + (lpo + rin +ral(pr + B+ §)lon)s

— VAV |3 + {IR? /o +rin} (v1|1)s + 16| & + ) B +r\al(pr]or)s.
This leads to
(6.10) 0= [VdVul —5152/0 +rint{(o[Sln/R*\) — 6R?|2|/0 — r8|[n}
+ 18| &+ rx1 B]” 4+ rA{l(p1|v1)s + s(kv1|v1)a},

where we used (6.9).
Suppose now that vy solves the first four equations of (6.3). Then one easily
verifies that (6.5) is equivalent to (6.6) and (6.8). Moreover, assuming once again that

vy satisfies the first four equations of (6.3), and that & and B satisfy (6.6) and (6.8),
one verifies that

(6.11) (6.9) < (6.10).
For r = 0, that is, for s = sg, we obtain from (6.10)
(6.12) Ai(s0) = 150/ {|Vd Vi (so) |3 + 16(] &> + R*Z|/0?)},

where v;(so) is the unique solution of problem (3.4) with (f,g) = (sox, —lpg) and
(k|v1(s0))a = 0; see Proposition 3.2. This shows that A;(sg) is uniquely defined and
strictly positive. Moreover, we also know from (6.11) that

0 = (0| 3]/ R*M1(s0)) — 8RS /o + (v1(s0)[ 1)z — r6[Sn.
We obtain p1(sg) by solving
oAspr = on/R*\(s0) — 6po + v1(s0)

for p1, which is possible since we chose A\1(sg) and & in such a way that the necessary
orthogonality conditions of Proposition 3.1(d) hold. Equation (6.8) shows that the

mapping

Ix3veW2(Q\X):[v]=00on 2 x W2(2) x R — R",
613 {vems \D): b b x wE ()
[()\17v17p178) — ﬁ()‘hvhplas)]
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is analytic where I C R is an open interval that contains A (sg) but does not contain 0.

We are now in a position to apply the implicit function theorem at the point
(v1(50), p1(S0), S0) to solve the first four equations in (6.3) and (6.9) for (Ay,v;) in
terms of (p1,s). We choose the functional analytic setting

X1 ={veWQ\): d,v=00n09Q, [v]=00n%, (klv)g =0},
Xy :={peW;(X): (pl)z = (p|¥;)x =0, 1 <j <n},
X =R x X; x X9 xR,

Y= Rx {(f.9) € La(Q) x W,*(2) : (Do + (g1)s = 0}
and we define F': V C X — Y by means of
on|S|/R*A1 — 6R?|S| /o + (vi]1)s — 8|Sy
F(A\,v1,p1,8) := | —dAvy —sok — ri(1 — sAjvg) ;
— [dD,v1] +Upo + 4+ rha(pr+ B+ §))

where V := 1 x X7 x X9 x R.
Equation (6.4) implies that F' maps V into Y, and (6.13) and the definition of F
show that

[()\lavlaphs) = F()\hvlaphs)] S Cw(m Y)

Clearly, the first four equations of (6.3) together with (6.9) are equivalent to
F(A1,v1,p1,8) = (0,0,0). Since we already know that

F(M(s0),v1(s0), p1(s0), 80) = (0,0,0),

we are left with verifying that the derivative of F' at the point (v1(s¢), p1(s0), So) W.r.t.
(p1,v1) is an isomorphism, i.e.,

D1 F(A1(s0),v1(80), p1(80), S0) € Isom(R x X1,Y).
It follows from Proposition 3.2(a) that the problem

DIF(Al(SO)a U1 (30)7 P1 (30)7 50)()‘7 ’UJ) = (:u7 f7 g)

has for each (u, f,g) € Y a unique solution (A, w) € R x X7, namely,

o R2)\%(80)

w = RO(faQ)v A= W((Ro(ﬁgﬂl)z - “)7

where w = Ry(f, g) is the unique solution of (3.4) with (x|lw)q = 0.
The implicit function theorem then yields a neighborhood U of (p1(sp), so) in
X5 x R such that

[(p1,8) = (A1(p1,8),v1(p1, 8))] € C¥(U, R x X1)

(6.14) F(Ai(p1, s)vi(p1,5), p1,8) = (0,0,0),  (p1,s) € U.

Combining all of the above results, we conclude that

(6'15) [(pl,S) = ()\1(0178),U1(p173), B(phs))] € CW(U,R x X % Rn)
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and that the functions (A (p1, ), v1(p1, s), & B(p1, s)) satisfy the first four equations
of (6.3) as well as (6.5) and (6.9). We now insert these functions into the equation for
p1 which gives an equation of the form

G(p1,5) = 0 Asp1 — on/R*Xi(s0) + 6po — v1(s0) — (5 — s0) R(p1,5) = 0,
where [(p1,s) — R(p1, )] € C¥(U, Ly(X)). By (6.5) and (6.9) we know that
G:XoxR—Z:={g€LyX): (gl)s = (9]Y;) =0, 1 <j<n}.

Moreover, we also know that G(p1(so), So) = 0. The derivative of G with respect to
p1 at (p1(so), s0) is oAy, and Proposition 3.1(d) and the implicit function theorem
then yield an analytic curve

[s = p1(s)] € C*((s0 — €0, 50 + €0), X2)

such that G(p1(s),s) = 0.
Combining all of the results, we obtain an analytic curve of solutions

[s = (Au(s), 0(s), p(s))]

of (5.6) for s € (sg — e, 80 +€0). If s > s0, then the statement in (a) follows from the
considerations in section 5.

(b) The proof of part (a) shows that the eigenvalue curve [s — A.(s)] is analytic
near the critical value s = sg and crosses the imaginary axis at s = sg with positive
speed A1(sp); see (6.12).

(c) We show that A.(s) is strictly increasing. To see this, we differentiate (5.6)
w.r.t. s and form the inner product of the resulting equation in Q with v = v(s). This
yields with Green’s formula

—(8A(8)) Vr0[fy = s (k0" |v)e — (dAV'[v)g
= (V'|sAekv — dAv)g + ([dO,V']|v)s — (V'[[dO,v])s
= (&/1)([d0,0/)[[d0,0])s + (Al + N.Iplo Asp)s
— /(40,0140 — (ulplo Asp)s
= N.lo(Asp|p)s;

hence

AlVrolE + N A|Vsr vl + lo(Asplp)s} = 0.

Employing (4.1) once more (with x replaced by sk), we obtain

N.(s) = A (s) IVrola/{IVd Vol + (6/Dl1do, 013},

which yields X, (s) > 0 for s # s¢. If s = s, then we have already established in (b)
that X, (sp) > 0, and this shows the assertion of Theorem 1.3(c).

(d) If the stability condition (5.1) is violated, then we can conclude from the
identity (4.4), where k is now replaced with sk and A is replaced with A,, that

RSP za|2|) 0

()\*(s)l(5|§]\ il
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which shows that A.(s) < 3%z (1 — 1/{(s)) provided that 6 > 0, i.e., if kinetic under-
cooling is present.

(e) To show that A.(s) — oo as s — oo in case § = 0, we employ the estimate in
Proposition 5.1(b). We first observe that due to the fact that A.(s) is increasing in s,
there exists a number s; > sg such that sA.(s) > Ag for s > s1, where A is the number
occurring in Proposition 5.1(b). It then follows from the relation A, Tsx,p+0cAsp =0
that

o*|Aspl = o*|Aspols + (0?|]/R*)p* = X Ton. pl%

(6.16) :
< Mi|pls Als)/s, s> s,

where we write p = pg+ p with (pg|1)s = 0. Multiplying the eigenvalue problem (5.6)
with (sA\«v — (d/k)Av) and using the divergence theorem and (6.16), we get
(5\)? [VRvIG + 25A [VAV 0 + [(d/VR) Aol + 250310 (pol As:po)s
— (2\2N0[SY/ B < Malpl2 X2, 5 2 s,

The relation A.lp = [d0,v] and the inequality above yield

1/2—¢ 3/24¢
Xlolé = (1/021[d0,011% < Clols/ave g5 < Clola"* ™ Toli (s

_ 1 1
< c{Ivl + 115 A >+ < Clpl A2 { oE )1/25}

< Clold X2/ (sM)77¢ = Clold A2/ /5127

for s > s1, where C is a generic constant that may change from line to line. Dividing
by A2 and by |p|% implies

Ax(8) > 65(1_26)/(1+26), 5> s1.

Thus we can conclude that lim inf, o, A« (s)/s? = oo for each 6 < 1. 0
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