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ON HELE-SHAW MODELS WITH SURFACE TENSION

JOACHIM ESCHER AND (GIERI SIMONETT

ABSTRACT. It is shown that surface tension effects on the free boundary
have a regularizing effect for Hele-Shaw models, which implies existence
and uniqueness of classical solutions for general initial domains.

1. Introduction and main results

Recently, N. Alikakos, P. Bates, and X. Chen [1] proved that level sur-
faces of solutions to the Cahn-Hilliard equation tend to solutions of the
two-phase Hele-Shaw problem with surface tension under the assumption
that classical solutions of the latter exist. In the present note we are able
to guarantee that the above assumption is in fact satisfied. More precisely,
our results [11] show the existence of a unique classical solution to one-
and two-phase Hele-Shaw models with surface tension for general initial
data. It should be emphasized that even weak solutions to Hele-Shaw
models with surface tension were not known to exist in the general setting
presented here. In this note we only give the statements of our results and
a brief sketch of their proofs. The full details will appear in [11].

We first consider the one-phase problem. Let 2 be a bounded domain
in R" and assume that its boundary 952 is of class C°°. Moreover, assume
that 02 consists of two disjoint non-empty components J and I'. Later on,
we will model over the exterior component I' a moving interface, whereas
the interior component J describes a fixed portion of the boundary. Let v
denote the outer unit normal field over I' and fix a € (0,1). Given a > 0,
let

U:={peC***I); oo < a}.
For each p € U define the map
0, = idr + pv

and let I', := im(6,) denote its image. Obviously, 6, is a C*** diffeomor-
phism, mapping I' onto I', provided a > 0 is chosen sufficiently small. In
addition, we assume that a > 0 is small enough such that I', and J are dis-
joint for each p € U. Let 2, denote the domain in R"™ being diffeomorphic
to © and whose boundary is given by J and I',. To describe the evolution
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of the hypersurface Iy, fix some 7" > 0. Then each map p : [0,T] — U
defines a collection of hypersurfaces I',;) and domains Q,), t € [0,77].
Let us also introduce the following generalized parabolic cylinder

Q1= {(2,1) €ER"x (0,T]); 2 €y} = |J (i x {1})
te(0,T

and, correspondingly,

Fp,T = {(%,t) e R" x (O,T] NS Fp(t)} = U (Fp(t) X {t})
te(0,T]

Observe that Qg 7 is just the standard parabolic cylinder € x (0,7]. Sim-
ilarly, o = T x (0,7T]. For the sake of completeness, we write Jp :=
J % (0,T].

Then, given any initial value py € U, consider the moving boundary
problem of determining a pair (u, p) satisfying the following set of equa-
tions:

Au= 10 in Q,r
u= oKk, on I',r

(1.1) (I1=8)u+dVulyy) =10 on Jr
0N, — (Vu|VN,) =0 on I'yr

p(0,:)=po on TI.

Here, o > 0 is a positive constant, called surface tension, and k) (z)
denotes the mean curvature of I',;) at & € T'yy), t € [0,T]. We use the
sign convention that convex hypersurfaces have positive mean curvature.
In particular, we have kg = 1 if I' is the unit sphere. Moreover, A and
V stand for the Laplacian and the gradient, respectively, in the Euclidean
metric. The outer unit normal field over J is denoted by v; and N, is a
defining function for I'y, i.e., N[jl(()) =T,, p € U. A precise definition
of N, is given below. Finally, the function b is given and with the integer
d € {0,1} we either choose a Dirichlet or a Neumann type boundary
condition on the fixed part J of the boundary. The entire system (1.1) is
called classical formulation of the one-phase Hele-Shaw model with surface
tension. To state our results clearly, we need some notations. Let us first
give the definition of N,. For this pick ao € (0, dist(I", J)) and let

N :T x (—ag,a9) — R", N(z,\) :=x+ Iv(z).
Then N is a smooth diffeomorphism onto its image R := im(N), i.e.,

N € Dif f>(I' x (—ao, ao), R),
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provided ag > 0 is small enough. It is convenient to decompose the inverse
of N into N =1 = (X, A), where

X € C*(R,T) and A € C*(R, (—agp,ap)).
Given p € U, define now
Noy:R—=R,  Ny(y) = Ay) — p(X(y)).

Then it is not difficult to verify that ', = N, 1(0).

Next we introduce some function spaces. Given an open subset U of
R™, let h*(U) denote the little Holder space of order s > 0, i.e., the closure
of BUC*(U) in BUC*(U), the Banach space of all bounded and uniformly
Hélder continuous functions of order s. We use the symbol C*(U) to denote
the Fréchet space of all locally Holder continuous functions of order s. If M
is a (sufficently) smooth submanifold of R™ the spaces h®(M) are defined
by means of a smooth atlas for M. Moreover, we need the anisotropic
function spaces C%?T%(Q, 1) consisting of all u : Q,7 — R such that,
given (z,t) € Q, 1, the function u(-,¢) belongs to C*(Qy)) N AT (Qp1))
and the function u(z, ) belongs to C'((0,T]). Finally, we fix § € («,1) and
we set

V= hPT) nu.

A pair (u,p) is called a classical Hélder solution of (1.1), if (u,p) €
CO2+(Q, 1) x (C((0, T}, V) N C((0, T}, A**+4(T)) N C1((0, T], h(T))) and
if (u, p) satisfies the equations in (1.1) point-wise. Recall that the function
b and the surface tension o are known quantities, i.e., we assume that

be hlttao()) and >0
are given. Our main result for problem (1.1) now reads as follows:

Theorem 1. Given any initial value pg € V, there exists a unique classical
Hélder solution (u, p) of (1.1) on a sufficiently small interval of existence
(0,T]. Moreover, the moving boundary p : (0,T) — V is analytic in the
time variable.

Of course, we can choose py = 0 above. Then Theorem 1 guarantees a
classical solution to (1.1) starting from the initial hypersurface I', which
we picked for simplicity to be C'*°. Observe, however, that we also get a
classical solution to problem (1.1) for any C?**# initial hypersurface T,
which is close to I' in the sense that pg belongs to V.

Let us also discuss the above result comparing it to the one-phase prob-
lem without surface tension, given by ¢ = 0. In the latter, the sign of
the function b becomes significant. Recently, it was shown in [10] that the
one-phase Hele-Shaw problem is well-posed if b = 0, i.e., if b(z) > 0 for
x € J but b # 0. This is in clear contrast to the case ¢ > 0 where the sign
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of b has no influence on the problem being well-posed, as Theorem 1 shows.
Hence surface tension has a regularizing effect on Hele-Shaw models, see
also [7], [14], [13], and [12].

We call problem (1.1) linearly ill-posed on V if the linearized equation
on a fixed reference domain is ill-posed in the sense of Hadamard. Then
we have the following sharp alternative:

Theorem 2. The Hele-Shaw problem (1.1) is well-posed on V if o > 0 or
if o =0 and b = 0. It is linearly ill-posed onV if 0 < 0 or if c = 0 and
b=<0.

Let us now turn to the two-phase Hele-Shaw model. To begin with,
assume again that Q' is a bounded smooth domain in R"™ such that its
boundary 9! consists of two disjoint components, the interior part J*
and the exterior part I'. In addition, let also 2 be a bounded smooth
domain in R"™ containing Q! and possessing a boundary with two disjoint
components. The interior part of 9 is assumed to coincide with J! and
the exterior part is called J2. Finally, we let Q% := Q\ Q' and we use the
same notation as above for U, T'), T 7, N,, J&, and Q;’T, i €{1,2} and
T > 0. Of course, in this situation we assume that the positive constant
a in U is chosen small enough so that I', intersects neither J' nor J2.
Then we consider the following two-phase problem: Given an initial value

po €V, find a triple (u',u?, p) such that
(1.2) (uy,ug) € CO’QJ““(Q;’T) X CO72+Q(Q;2),T)
p € C([0,T],V) N C((0,T], h***(T)) N C*((0, T], h*(T"))

and such that
Aul =0 in QZ,T
(Vulilvy) =0 on Jh
(1.3) u'=o0k, on I,p
N, — (Vu! — Vu?|[VN,) = 0 on I'pr
p(0,-)=po on T.
Here we use the sign convention that x, denotes the mean curvature of I,
with respect to Q1. System (1.3) is the classical formulation of the two-

phase Hele-Shaw model with surface tension. For problem (1.3) we have
the following general existence, uniqueness, and regularity result:

Theorem 3. Assume that o > 0. Then, given any initial value py €
V, problem (1.3) possesses a unique classical solution (u',u?,p) in the
class (1.2) for a sufficiently small T > 0. Moreover, the interface depends
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analytically on the time variable. If o < 0, then problem (1.3) is linearly
ill-posed on V.

Consider the one-phase problem (1.1) and suppose we start with an
initial domain € such that the mean curvature ko of I' takes positive and
negative values. Since the function kg enters in the elliptic problem con-
tainted in (1.1), it is impossible to use any elliptic comparison principle
for problem (1.1). Consequently, unlike the Hele-Shaw model without
surface tension, problem (1.1) is generally not endowed with any mono-
tonicity properties. This explains to some extend the fact that even weak
solutions to problem (1.1) were not known to exist in general. In the two-
dimensional case, X. Chen [4] proved the existence of weak solutions to
(1.3) and global existence when the initial curve is nearly circular. Under
even more restictive assumptions, i.e., when the initial curves are small an-
alytic perturbations of circles, P. Constantin and M. Pugh [6] established
existence of analytic solutions to (1.1). Their approach uses conformal
transformations and is therefore strictly restricted to the two-dimensional
case.

Our approach to problem (1.1) and to problem (1.3) is of a completely
different nature and has the advantage of working in any space dimension
and for general initial domains. The proofs of the above results are based
on the techniques developed in [8], [9], and [10] and will be published in
[11]. Nevertheless, let us briefly explain the procedure for the one-phase
Hele-Shaw model (1.1).

In a first step, we transform the original domains {1, with a moving
boundary to the fixed reference domain 2. The corresponding diffeomor-
phisms, which will of course depend nonlinearly on the function p, induce
a Riemannian metric g, on the reference domain €2. Let A, denote the
Laplace-Beltrami operator with respect to (€2,g,) and let d,, and Oy,
stand for the directional derivatives with respect to the outer normal unit
on J and to VN, repectively. Moreover, let h, denote the mean curvature
of (I, g,) with respect to (€2, g,). The transformed version of problem (1.1)
then reads as follows:

App=10 in Qo7
v=och, on Iyt

(1.4) (I1=98)v+d0,,v=">0 on Jr
Op+0On,v=10 on Ior

p(0,-)=po on TI.

It is known that the principal part of the mean curvature h,, is a quasilinear
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second order elliptic operator. This means in particular that there exist
PcCYU, LR*TT), R T™(T)) and € C¥U,h' ()
such that
hy, = P(p)p+1(p) for p € R¥TI) NU.

Given p € U and r € h*T(T"), it follows from Theorem 4.3.4 in [16]
that the elliptic boundary value problem

(1.5) Apjp=0 in Q, v=r on I' (1-90v+0,v=>b on J,

possesses a unique solution in C%(2) N A T(Q). For simplicity we assume
that b = 0 and we call the solution v,(r). Then we define

®(p)7 := 00N, (v, (P(p)7)) and F(p) :== —00n, (v,(L(p)))

for p € U and 7 € h3T(T"). Using the definition of v,(-) and the equations
in (1.5), it is not difficult to see that the following abstract quasilinear
evolution equation

(1.6) dhp+ @(p)p="F(p),  p(0)=po,

is equivalent to problem (1.4) and therefore also to problem (1.1), being a
transformed version of (1.4). A careful analysis of the operator ® discloses
that [p — ®(p)p] is a nonlinear pseudo-differential operator of third order.
In addition, the operator ® carries a quasilinear structure, i.e.,

d e C¥U, LK), h*(T))).
Moreover, it turns out that F' is a second order term in the sense that
F e C¥U,h*(T)).

We shall use the theory of abstract quasilinear parabolic problems devel-
oped by H. Amann [2] to investigate problem (1.6). See also the results in
[3] and [15]. A thorough knowledge of the corresponding linear equation is
fundamental in order to apply this theory. Indeed, using Fourier multiplier
representations of Poisson operators and subtle perturbation arguments it
can be verified that the operator —®(p) generates for each p € V a strongly
continuous analytic semigroup on the space h®(T'), cf. Section 5 in [11].
Once this generation property is verified, a unique classical solution of
problem (1.6) is guaranteed by Theorem 12.1 in [2], see also Theorem 2.11
in [3] and Theorem 3.1 in [15].
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Note added in proof

After this paper was submitted, we learned of a manuscript by X. Chen,

J. Hong, and F. Yi [5] in which also existence and uniqueness of classical
solutions for the two-phase problem (1.4) is proved. However, it is note-
worthy to mention that Chen et al. assume that the initial hypersurface
belongs to V N C37%(T") which is a true subspace of V.
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