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Maximal regularity in continuous interpolation spaces
and quasilinear parabolic equations

PHILIPPE CLEMENT AND GIERI SIMONETT

Abstract. In this paper we establish a geometric theory for abstract quasilinear parabolic equations. In particular,
we study existence, unigueness, and continuous dependence of solutions. Moreover, we give conditions for global
existence and establish smoothness properties of solutions. The results are based on maximal regularity estimates
in continuous interpolation spaces. An important new ingredient is that we are able to show that quasilinear
parabolic evolution equations generate a smooth semiflow on the trace spaces associated with maximal regularity,
which are the natural phase spaces in this framework.

1. Introduction

In this paper we consider the following abstract quasilinear parabolic evolution equation

u+Awu = fu),
{u(O) =x. (2.1)
Throughout we shall assume that, f) is a mapping fromV into H(E1, Eg) x Ep.
Here, Eg and E; are two given (real or complex) Banach spaces suchKhas densely
embedded inEg, andV is a subset offg. Moreover,H(E1, Eg) denotes the set of all
bounded linear operato® € L(E1, Eg) such that-B is the infinitesimal generator of a
strongly continuous analytic semigroup &p.

Abstract quasilinear parabolic problems have been studied by many authors, including
[1,2,3,4,6,9,10, 11, 16, 18, 19], and different approaches have been devised to establish
the existence of solutions. One approach is based on the concept of parabolic evolution
operators and has in particular been used in [18] and in [1, 2, 3]. Another approach relies
on the notion of maximal regularity and has for instance been applied in [4, 6, 16].

The mostgeneral and flexible results for Problem (1.1) have been obtainedin[2], based on
a careful and detailed analysis of parabolic evolution operators on interpolation spaces. The
method based on maximal regularity has the drawback of requiring stronger assumptions on
the geometry of the spac&g andE;, but has the advantage that one can resort to the Implicit
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Function Theorem to establish additional properties of solutions. Moreover, it provides a
natural setting for studying further geometric properties for the semiflow generated by (1.1).
In fact, all results known to us concerning center manifolds for quasilinear (and even fully
nonlinear) parabolic equations are tied to maximal regularity [8, 13, 15, 17].

If the mapping(A, f) is assumed to be continuously differentiable, then Problem (1.1)
can be treated within the theory of fully nonlinear equations developed in [7]. However,
since this approach does not take advantage of the quasilinear structure it does not provide
the smoothing property of solutions which is an important feature of quasilinear parabolic
evolution equations.

In [4], the maximal regularity results of [7] were extended to include functions which
admit a prescribed singularity at= 0. This extension, in turn, allows to take advantage
of the quasilinear structure of (1.1) and to establish the smoothing property, as was shown
in [4].

In [15, 16] the results of [4] were refined and the continuous and smooth dependence
of solutions to (1.1) was established. Moreover, existence and exponential attractivity of
center manifolds under appropriate assumptions was proved in [15, 17]. In particular, it was
shown that the center manifolds attract solutions in the stronger no#th fdr solutions
which start out in interpolation spaces betwdenand Eg, thus taking advantage of the
smoothing property. This effect has important consequences for applications and cannot be
observed in the approach of [8].

In this paper we establish a geometric theory for the quasilinear parabolic equation (1.1).
Animportant new ingredient is that we are able to show that (1.1) generates a (Lipschitz con-
tinuous or smooth) semiflow on the trace spaces associated with maximal regularity, which
are the natural phase spaces in this framework. This provides a considerable improvement
on the results obtained in [4, 15, 16]. A more detailed discussion is given in Remarks 5.2
and Remarks 6.2.

The paper is organized as follows. In Section 2 we state the results concerning maxi-
mal regularity for the linear theory which are used in the next sections. Local existence,
uniqueness and continuous dependence of solutions to (1.1) is established in Section 3,
Theorem 3.1. In Section 4, we investigate global existence and the main result is contained
in Theorem 4.1. In Section 5 we show that Problem (1.1) generates a locally Lipschitz
continuous semiflow on the trace spaces associated with maximal regularity. Finally, in
Section 6 we establish smoothness properties of solutions, relying on the Implicit Function
Theorem.

NOTATIONS. In the sequel we shall use the following notationsE land F are two

Banach spaces we write — F if E is continuously embedded in, and we writef <4 F
if Eis, inaddition, denseif’. If X andY are metric spaces anftlis a mapping fronX into
Y we say thatf is locally Lipschitz continuous, and we use the notatfoa C1~ (X, Y), if
every pointx € X has a neighborhood such thatf|y is (globally) Lipschitz continuous.
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2. Function spaces and maximal regularity
In the following we assume that € (0, 1], thatE is a (real or complex) Banach space,

andthat/ = [0, T']for some numbel > 0. We consider functions defined dn= J \ {0}
which have a prescribed singularity at 0. Let

BUC1_,(J,E) = {u € C(J,E); [t — t*"u] € BUC(J, E),
lim 2" u@)) =0}
t—0t
lulle, ,, = sup**u@®e,  pe©1).
teJ

Itis easy to verify thaBUC1-,(J, E), equipped with the norn- [|c,_,, is a Banach space.
Next we introduce the following subspaceBUC1_,,(J, E)

BUCT ,(J.E):={ue C'(J, E):u.it € BUC1L ,(J, E)}.
Moreover we set
BUCo(J, E) := BUC(J, E), BUC}(J, E) := BUCY(J, E).
If E1 andEq are two Banach spaces such thatis continuously embedded iy we set

Eo(J) := BUC1-,(J, Ep), w € (0,1],

(2.2)
E1(J) := BUC{ ,(J, Eo) N BUC1 ,(J, E1),
whereE(J) is given the norm
luelliey () = supt* = (L@l £y + u@) |l £y)
reJ
which turns it into a Banach space. In the following we will use the notation
Eg := (Eo, E1)9 := (Eo, El)g,oo’ 6 €01, (2.2)

for the continuous interpolation spaces of DaPrato and Grisvard [7], see [3, 4, 13] for more
information.

REMARKS 2.1. (a) LetA € L(E1, Epg). Then itis easy to see that

d
(E N A) € LEL(T), Eo(])).
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(b) E1 is densely embedded ifA1—,. If A € H(E1, Eo) with type(—A) < 0 and
x € Ep, then the following characterization is well-known:
x € (Eg, E1)g <= sups'™||Ae A«

s>0

lim s¥%) Ae™Ax|| g, = 0
s—0t

”Eo < 00,

and

lxllo := sups™™||Ae™Ax || £, (2.3)

s>0
is an equivalent norm ofy for 6 € (0, 1).
(c) Suppose that € H(E1, Eg) and that typé—A) < 0. Letx € E,, be given. Then
[t — ¢ %x] € E1(J) and there exists a constant- 0 independent of such that

le™xlley) < cllxll. telJ. (2.4)
Proof. (i) Let u € (0, 1) be fixed and lek(r) := e~%x forr € J. It follows from

(2.3) that

—tA

suptXH ([l (1) g + lut) | £,) < e suprt™ | Ae
lEj >0

x”Eo = C”x”u,

wherec does not depend ah.

(i) Itremains to showthat € E1(J). SinceE; is densely embedded i, we find
a sequence, in E1 such thaty, — x in E,. Letu,(t) := e x, fort e J.
Itis easy to see that, € E1(J) and it follows from (i) that

supt (i) — itn (Ol Eg + Nlu(®) — un(OllEy) < cllx — xull, n €N

relJ
SinceE1(J) is a Banach space we readily conclude thatEq(J).
(iif) The remaining cas@ = 1 is easy to show. O

(d) The mapping’ : E1(J) — Ep, yv := v(0), is well-defined, linear and continuous.

Proof. Letv € E1(J) be given and let be a fixed number ig. Then
v(s) = v(@) — /t (1) dT, O<s <t, (2.5)
and we conclude that(0) = lim_, o+ v(s) exists and admits the representation
v(0) =v(t) — /Ot v(r)dT. (2.6)

The assertion follows now from this representation. O
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(e) According to Remark (d), any functiane E1(J) has a trace and we can introduce
thetrace space/Eq(J) of E1(J),
yEi(J) = im(y)
_ (2.7)
Ixllyeyy = inf{llvlE, ) v € Ea(J), yv = x}.

It is easy to verify thay’E1(J) is a Banach space and that L(E1(J), yE1(J)).

LEMMA 2.2. Suppose thak((E1, Eo) # 4. Then

(@) yEi())=E.
(b) E1(J) = BUC}_M(J, Eo) N BUC1—,,(J, E1) = BUC(J, E,,).
(c) There exists a constant> 0 independent of such that

lullsuc(s.g,) < cllullg ), ueE1(J), yu=0, (2.8)

(d) E1(J) = BUCE_,(J. Eo) N BUC1_(J, E1) = BUC*™°(J. E;), o € [0, pl.

Proof. (a) For a proof we refer to [3, Theorem [11.2.3.1].

(b) This follows from [3, Theorem I11.2.3.3].
(c) We choosed € H(Eq, Eg) with type(—A) < 0 and equipE,, with the norm (2.3).
Suppose thai € E1(J), yu = 0 and letr € J be given. If 0< s < r we obtain

s A Pu() || gy < ctY M )| Ey < cllulley )

If 1 < s then we use the formula(r) = fé u(t)dr, see (2.6), to conclude that

t
s Ae™S () gy < esTH /0 Yt ulg, gy < c@llulley ).

The assertion is now a consequence of (2.3).

(d) If o = u the assertion follows from part (b). Let e [0, u). It follows from the
reiteration theorem for the continuous interpolation method, see [3, Section 1.2.8],
thatE, = (Eo, E)o/u- Letu € E1(J) be given. The interpolation inequality, (2.5)

and part (b) yield

lu() — u(s)llg, < clul) —u)5""

lu() = u 7" < cllullsynlt = 51"~

fors,t € J, proving the claim.
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DEFINITION 2.3. (Maximal regularity) LeE; andEg be two Banach spaces such that
E1 — Eg and suppose that € H(E1, Eg). Moreover, let/ = [0, T] for someT > 0
and letu € (0, 1]. Then we define

A € M, (E1, Eg) 1= <% +A, y) € ISom(E1(J), Eo(J) x E,). (2.9)

If A e M, (E1, Eg) then(Eq(J), E1(J)) is called gpair of maximal regularity for A.

REMARKS 2.4. (a) It follows from Remarks 2.1(a), (e) and Lemma 2.2(a) that

<% +A, y) € L(E1(J), Eo(J) x Ep).

Moreover, the mapping is injective.

(b) Suppose thatf1(J), Eg(J)) is a pair of maximal regularity foA and let(f, x) €
E1(J) x E, be given. Then

_l t
<i +A, 7/) (f,x) = e %x +/ e DA r(0)dr
dt 0

(2.10)
= e Py + (Kaf)(0).

(c) (Eo(J), E1(J)) is a pair of maximal regularity foA if and only if
Ka(BUC1—,(J, Eg)) C BUC1—,(J, E1).

Proof. (i) Suppose thatEq(J), E1(J)) is a pair of maximal regularity foA and
let f € BUC1—,.(J, Eg). Then

d 1
Kaf = (E + A, V) (f,0) € E1(J) C BUC1 ;i (E).

(if) Suppose thaky mapsBUC1—,.(J, Eg) into BUC1—,(J, E1). Let f € Eo(J)
be given. Then it follows from [14, Theorem 4.2.4] thét f € Cl(J, Eo)
and that

d
E(KAf) = f —AKaf € BUC1-,(J, Ep).

We conclude thak, f € E1(J) and the assertion follows from (a)—(b), from
Remark 2.1(c), and from the open mapping theorem. 0

(d) Suppos€Eg(J), E1(J)) is a pair of maximal regularity for somé € H(E1, Ep).
Then eitherE1 = Eg or Eg contains a closed subspace which is isomorphic to the
spaceg of null sequences. In particular, Hy is reflexive then the seM,, (E1, Eg)
will be empty.
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Proof. This result follows from [5] and Lemma 2.6. O

(e) SupposeA e Ma(E1, Eo) and lete(r) = [[Kallzicqo,e], Eo).c(0,7],E0)- I
limsup,_, o c(r) = 0thenEy = Ejp.

Proof. Letx € Eg be given and sef (1) := e~%x. Thenf e C(J, Eg) and
t

(Kaf)(0) = / e~ 7SA g5 = te %x.
0

If follows from our assumption that

ItAE™ Ax I £y < 1Al £ ey, o) | (Ka /)@ Ey < Ne(@)llxl g

for t € [0, z]. This implies|tAe | < Nc(r) for ¢ € [0, z] and the claim follows
from [14, Theorem 2.5.3]. O

(f) We shall now describe a situation which shows that many interesting operators belong
to the classM, (E1, Eo).
Assume thatd € H(E1, Epg) and let
Ez = Ez(A) := (dom(A?), || - [|,),
I 1E2a) == I1A - gy + 1 - 1 Eq-

I 1le,
. . d d
Then(Ey, || - |l£,) is a Banach space withp, — E; < Eg. We set

Ey = (Eo, E1)s,
E119 ‘= E119(A) == (E1, E2(A))g, 0<0 <1, (2.11)
Ap = the maximalEy-realization ofA.

Itis well-known thatdg € H(Ey, E14¢) and it turns out thatly € M, (Eq, E149)
foranyu € (0, 1].

THEOREM. (Da Prato, Grisvard, Angener@yippose that € (0, 1] andé € (0O, 1).
LetJ =[O0, T]. Then

Eo(J), E19(J)) := (BUC1_,(J, Eg), BUCT_,,(J. Eg) N BUC1_,(J, E146))

is a pair of maximal regularity forAy, that is,

d
(E + Ay, V) € IsomEye(J), Eg(J) x (Eg, E1y0) 1) (2.12)

where(Eg, E146)1 ‘= E1+40-

Proof. This was proved by Da Prato and Grisvard [7] for= 1, and by Angenent [4]
for the general case. We also refer to [3, Theorem [11.3.4.1] and [15]. O
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LEMMA 2.5. (a) M (E1, Eo) C H(E1, Eo) is open and
d 71
[A = (E + A, J/) } € C”(M(E1, Eg), L(Eo(J) x E;, E1(J)),

i.e., the mapping is real analytic.
(b) Let A C M, (E1, Eg) be compact. Then there exists a constastich that

d -1
Z LA,
(M*' V)

Proof. (a) Note that the mappings

<c¢, AeA
L(Eo(J)xEy,E1(]))

d
I H(E1, Eo) » LEL(J)), Eo(J) X Ey), A (E + A, y) ,

Inv: IsomE1(J), Eo(J) x E;) — LEo(J) x E,, E1(])),

d—i—A — d—i—A -
dt Y dt v

are real analytic. MoreoveM , (E1, Eo) = I~ Y(1som(E1(J), Eo(J) x E,)). The
first assertion follows from the fact that Is¢By(J), Eo(J) x E,) is open in
LE1(J]), Eo(J) x E,).

(b) It follows from part (a) that the SQ(% + A, y)"1; A € A} is compact, and thus
bounded, iNC(Eg(J) x E,, E1(J)). O

LEMMA 2.6. M, (E1, Eg) C Ms(E1, Eg)forO<p <o <1

Proof. (i) We first consider the case < 1. Suppose tha € M, (E1, Eg) and let
f € BUC1—,(J, Eg) be given. Then

t t 1
f e DA f () dT = z“—“/ e UTDA_—_ f(1)dt
0 0 ToTH

t O—U __ 40—
+/(; e (—DA Mf(r) dr = g1(t) + g2(1).

TO—H

It is clear that the functiont] — t#~¢ f(7)] belongs toBUC1_,(J, Eg) and we
conclude from Remark 2.4(c) that the first integral belong3t@’',—, (J, E1). This
implies thatg; € BUC1—,(J, E1). For the second integral we have

t o— o—
s @7 =177
/(; lle (t—1)A TU——H f('[)||]51 dt

! dt 1o
SCA sup 57 £ (0l

(t —p)t-lo—mgl-n O<t<t

1 1 ds 1—o
=c / sup 1 f (D)l Eo

1177 Jo (1 —s)l-(—mgl-n O<t<t
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andwe canconcludethat € BUC1_,(J, E1). ThereforeK, f € BUC1—,(J, E1)
and the assertion follows from (c).

(i) We now consider the case= 1. Let f € BUCo(J, Eg) = BUC(J, Ep) be given.
We can assume thgt(0) = 0. Otherwise we writef = f — f(0) + f(0). Since
A(K4 f(0)) = (I —€'""14) £(0) € BUC(J, Eg) We obtainkK, f(0) € BUC(J, E1).
The conditionf (0) = 0 implies that f — t#~1f(1)] belongs toBUC1—,.(J, Eg)
and we can now repeat the proof given in (i). O

LEMMA 2.7. (a) Suppose tha(t% + A, y) e IsomEy(J), Eo(J) x E,) for J =
[0, T]. Then(% + A, y) € IsomE1(J;), Eo(J7) x E,) for any subintervall; =
[0,7] c J and

I Kall £o(r,).Er () < KAl £Eo(r).E1(T))s J. C J. (2.13)

(b) Suppose thaté + A, y) € IsomE1(J), Eo(J) x E,) for J = [0, T]. Then(4 +
A,y) elsomEL(]), Eo(1) x E,) for any finite intervall = [0, T1].

(c) LetE, := (Eo, E1),, ¥ € (0,1), be an interpolation space, wheteg, -), is an
arbitrary interpolation functor of exponent. Suppose tha € M, (E1, Eg) and
that B € L(E,, Eo) forsome0 < y < 1. ThenA + B € M (E1, Eo).

Proof. These results are contained in [4, Lemmas 2.3-2.5]. For the reader’s convenience
we include a proof.

(a) Letf e BUC1—,(J7) be given. Then we set

. @) if0 <t <r,
€N = {(%)1—;1]0(1) fr<r<T.

It easy to see thaf € L(BUC1—,(J-, Eg), BUC1-,,(J, Eg)) with |£]| = 1. The
assertions follow from Remark 2.4(c) and the facttkat, = R o Kar o €&,
whereR denotes the restriction operat@u = u|, .

(b) Letl = [0, T1] be an arbitrary interval. Due to part (a) we may assume.that/.
Thenthere exists anumber N* suchthat c [0, nT]. Let(f, x) € Eo([0, nT]) x
E, be given and let

J -1
fo = fly, wvoi= <E+A,V) (fo, x)

d -1
fi = fC+iDl, vji= (EJFA,V) (fj> vj-1(1)

for j =1,...,n— 1. It follows from our assumptions and from Lemma 2.6 that

vo € BUCT_,,(J, Eo) N BUC1_,(J. E1), vj € BUCY(J, Eo) N BUC(J, E1)
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for j =1,...,n— 1. Itis now easy to verify that the functiandefined by
v(t) ==vj(t —jT) if jT<t<(G+DT, je{0....n—1}, te€[0,nT],

belongs tdE, ([0, nT]) and satisfie$% + A, y)v = (f, x). The assertion follows
from Remark 2.4(a), the open mapping theorem, and part (a) of the proof.
(c) (i) A well-known perturbation result for generators of analytic semigroups yields
A + B € H(E1, Eo). According to Lemma 2.7(b) is suffices to show that

d
(E + A+ B, V> € Isom(Ey(J1), Eo(J1) x Ep), J1=1[0,n],

for some numben € J.
(ii) Let f € Eo(J1) be given. Then there exists a constaéht= M (J) > 1 such that

Y HIBKA )0y < ||B||£(EV,E0)tl_M”(KAf)(t)”Ey

! 1
< Mtl_“f — = dt sup Mg
0o ¢t —oyri=n O<t<n 0

1 1
— M / _ Y sup t R FO)le
o (1— T)yrri-n 0<7<n 0

foranyt € J; and anyr; € J. Hence [id+ BK4] € Isom(Eq(J1)), providedr;
is chosen small enough.

(i) Given (f,x) € Eo(J1) x E, we setu(t) = e "B x + Kylid + BKs]71f
fort € Ji1. It follows from Remark 2.1(c) and the Proof of Remark 2.4(c) that
u € E1(J1). Moreover,

<%+A+B,y>u=(f,x)

and we conclude that?. + A + B, y) € 1SomE1(J1), Eo(J1) x E). O

LEMMA 2.8. (a) Suppose thdts — A(s)] € BUC(J, L(E1, Eo)) and that

dt
Then

<i + A(s), y) € Isom(E1(J), Eo(J) x Ep), seJ=[0,T].

d
(E + AC), )/) € IsomE1(J), Eo(J) x E).

(b) Suppose that the familyA(s); s € J} satisfies the assumptions @) and that
R € BUC1-,,(J, L(E,, Eo)) with u € (0,1). Then

d
(E + A() + R(), V) € Isom(E1(J), Eo(J) x E).
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Proof. (a) We refer to [3, Theorem 111.2.6.1 and Remark 111.3.4.2(c)].

(b) (i) We can write

dt

d +A - d +A
dt 0,V dt 0,V

whereAp := A(0) and wherg(id, id) := (idgy(s), idg,). Let(f, x) € E1(J) x
E, be given. There exists a constadt= M (J) > 1 such that

(i +A() + R(), y) = |:(id, id)+(R()+A()—A(0),0)

ti-n

d -1
(A@t) — A0)) (E + Ao, )/) (fs %)

Eo

<M sup [|A(r) — AO)ll£(Ey, Eq) I (fs ¥) IEo(0.1]) % E,e
‘L'E[O,tl]

and

i

d -1
R(1) (E + Ao, V) (f. %)

Eo
< "R 2k, By 1K a0 Dl E, + lle™x]g,)

<M sup TRk, ol (f ) IBo(@0.0]) < E,
7€[0,11]

for anyr; € J andr € (0, 11]. The estimates imply that

d -1
(R() + A() — A0), 0) <E + Ao, V)

L(Eo(J1)xEy)
<1/2, J1:=1]0,n],

providedr; is sufficiently small and we conclude that

d
(E + A() + R(), J/) € IsomE1(J1), Eo(J1) x Ep).

(i) It follows from our assumptions and from Lemma 2.6 and Lemma 2.7(c) that
the family {(A(t1+s) + R(t1+5)); s € Jo}, Jo := [0, T — 11], satisfies the
assumptions of part (a) with = 1. We conclude that

dt
N C(J2, Eg), C(J2, Eg) x E1).

(iif) The assertion follows now from (i)—(ii). O

(i+A(t1+ )+R(+ ), y) € Isom(Cl(Jz, Eop)
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REMARK 2.9. Lemma 2.2(a) was proved in [7], see also [12, Appendix]. In these
publications, the notatio® 4 (0) is usually used instead dfy. Lemma 2.2(b) was first
established in [15], see also the remark following the proof of [3, Theorem I11.2.3.3]. The
fact thatM, (Eq, Ep) is open inH(E1, Eg) was shown in [4, Lemma 2.1]. Lemma 2.6
was proved in [4] for the case = 1.

3. Local existence and unigueness

In this section we study the existence of solutions to the quasilinear parabolic
Problem (1.1). To do so we will first introduce the notion of a solution. We assume
that

(A, f) 1V = H(E1, Eo) x Eg

whereV is a nonempty subset d&y. Letx € V be givenand lef ¢ R := [0, co) be an
interval which contains 0. By solutionu of (1.1) onJ we mean a function

ueCYJ,Ep)nC(J,E))NC(, V)
which satisfies

{u(r) + A@®)u@t) = fu@), teld,
u(0) =x,

whereJ = J\{0}. We are ready to prove the following fundamental local existence, unique-
ness and continuity theorem for quasilinear parabolic evolution equations.

THEOREM 3.1.Leta € (0, 1) be fixed and lett, := (Eg, E1)s be a continuous
interpolation space. Assume thét c E, is open and that

(A, f) € C* (Vo, Mo(E1, Eo) x Eo). (3.1)

(a) Foreveryxg in V, there exist positive constants= 7 (xg), € = e(xg) andc = c¢(xgp)
such that the quasilinear evolution equati¢il) has a unique solution

u(-, x) € BUCI_([0, 7], Eo) N BUC1_4([0, ], E1) (3.2)
on[0, 7] for any initial valuex € B, (xo, £). Moreover,

u(-, x) € BUC([0, t], Vo) N BUC* ([0, ], Ep) (3.3)
foranyp € [0, @), whereEg := (Eg, E1)g, and

lu(, x) —u, Mlicdor E < cllx = Yllg,,  x,y € Bg,(xo, &) (3.4)
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(b) LetS c V, be compact. Then there exist bounded closed neighborhiéadsl W
of § and constants, ¢ > 0 such that

« SCUCWCWCY,
e The quasilinear Problenil.1) has for eachx € U a unique solution

u(-,x) € BUCL ([0, 7], Eo) N BUC1_4([0, 7], E1) N BUC([O, 7], V)
on|[0, 7] and

lu,x) —uC, lcqor e = clix —yl, x,yeU.
Proof. (a) In the following we set

Eo(J) = BUC1-o(J, E0),
E1(J) := BUCL ,(J, Eo) N BUC1_4(J, E1)

where the meaning of the intervalwill be evident from the context. It is clear that
Problem (1.1) is equivalent to the evolution equation

{u—}—Au = Bwu + f(u), (3.5)

u(0) = x,
where A = A(xg) and B(z) = A(xg) — A(z) for z € V,. We conclude that
B € CY(V,, L(E1, Eg)) and thatB(xg) = 0. In the following we assume that,
is equipped with the (equivalent) norm
I+ U, = sups™™*|l(@+ A)e @A) | g,

s>0

wherew is a fixed number such thagpe(—(w + A)) < 0. LetT > 0 be fixed and
let J ;= [0, T]. It follows from Lemma 2.2(c) that there exists a constafit> 1
such that

lullcr, ) < Millullgys,y, uweBEi(Jy), u@ =0, J,=[0,7]CJ. (3.6)

Moreover, we obtain

le™Azllgy ) < c(@)e®” sups™™[l(w + A)e Tz g, < MallzllE, (3.7)
s>0
forz € EqandJ; C J. Let||Kall = [IKall £go(s),E1())- Then there exist positive

constantsyg, b, andL > 1 such thaBg, (xo, 200) C V, and such that

1 _
B < —) <b, eB , 00,
1Bl £(Er,E0) = AKA[Ma ILf @I =< z € Bg, (xo0, po)

(3.8)
(B, f)(z1) — (B, /)@ £(Er, Egyx Eg < Lllz1 — 22|l E, »
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wherezy, z2 € Bg, (x0, po). Leteg := min(po, (4| Ka||M1L)~1). Then we find a
numberT; € J such that

le™%x0 — xoll£, < €0/2, teJp:=[0,T],

(3.9)
lle™Axolley(y) < €0/2.

The first inequality in (3.9) follows from the strong continuity of the semigroup
{e=%; ¢ > 0} on E,, whereas the second one is a consequence of Remark 2.1(c).
Lett < Ty be given and set, = [0, z]. Forx € IFBEQ (0, &) with 2M»e < g we set

Wi(Jo) 1= {v € E1(J1); v(0) = x, [[v — x0llc(sr, £y) < €0} N BEy(s,) (O, £0)

and equip this set with the topology Bfi(J;). It follows from Lemma 2.2(b) that
W, (J;) is a closed subset df;(J;) and thus is a complete metric space. (3.7)
and (3.9) yield { — e "%x] € W,(J;), showing thatW, (J;) is nonempty. Let

v € W,(J;) be given. Then we obtain from (3.8)

Y B@) () + f 00)) | £,
IBW) | £eEy. 0yt 0@l gy + 274N F )l

IA

(3.10)
Ivllgy )+

4| KallM1
€0
E —_—
4| KallM1
It follows from Lemma 2.2(b), the mapping properties(8f, 1), and the estimates
above thatB(v)v + f(v) € Eo(J;) for anyv € W,(J;). (2.9) and Remark 2.4(b)
imply that the mapping

+1%, tel,.

Gy Wi(Jo) = E1(Jy),  Gi(v) = e Bx + Ka(B(v)v + f(v))

is well defined for any € Bg, (O, ¢).

(i) It follows from (3.6), (3.9)—(3.10), and from the strong continuity of the semi-
group{e~"; ¢t > 0} on E, that

1Gx () — xollcs,, Eq)
—tA —tA
< lle7"(x = x0)llc,,Eq) + e x0 — xollc (s, Eo)
+ IKa(B@)v + f()lcu,,Ey

£0 &0
— + M1[|Kall <

<cllx — xollg, + 4K 4| My

> + r1“b> < &0,

provided that|x — x|, < ¢ for a sufficiently small numberand provided that
7 iIs small enough. We can always makesmaller since the relevant constants
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and|| Ka ll zaeos,).5.(J,)) are independent of, C J, see Lemma 2.7(a). Addi-
tionally, we also obtain
1G W) llgys) < e A0 = x0) Iy ) + e Ax0lly )

+ [1Ka(B(W) + f()lEy(sr)

€0
= Mzllx = xollg, + = + [I1Kall

€0 l-«o )
e b <eo
(4||KA||M1

if ¢ andt are small enough. Lastly, observe tliat(v) (0) = x. We have shown
that G (W, (J;)) C Wy (J7) for all x € Bg, (xo, €), provided that andt are
sufficiently small.

(i) Let x1, x2 € Bg, (xo0, €) be given and picky € Wy, (J;) andvz € Wy, (J;). It
follows from (3.7) that
le™ A1 — x2) gy s,y < M2llx1 — x2ll £, - (3.11)
Moreover, we obtain from (3.6) that
(v1 — v2) — e M1 — xDllcs,.E0) < Mal

(v1 — v2) — e A1 — x2) Iy (7,)-

This estimate together with (3.11) immediately yields

vy — vallc,,Ey) < Mallve — v2llg y)

(3.12)
+ Mo(14+ My)lx1 — x2llE, -
Next observe that
I1B(v)(v1 — v2)lEgr) < ————1llv1 — v2llgyuy),
M A KAl My H
[(B(v1) — B(wv2)v2llggr,y =< Lllvi —v2llcu, gy llv2lle, )
(3.13)

IA

eoLllvy — v2llc(s,,Ey)>

A

If (D) = FDllegsy < LT %Nv1 — valle, £y

If follows from the definition ofeg and from (3.11)—(3.13) that there exists a
constanty > 0 such that

Gy (V1) — Gy (V2) IRy sy = C2llx1 — X2l E,

1 -
+ <§ +IKallMiLTh “) vy — vallgy ) (3.14)

3
< collx1 — x2llg, + Z”Ul —v2llE,(Jp)

provided thatr is chosen small enough.
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(iii) As a particular case we obtain from (3.14) that

3
1Gx(v1) — Gx (V) llEy(sy) = = llve — v2llEy(Jr)s
x € Bg, (x0, ), v1,v2 € Wy(Jp).

(iv) It follows from (i)—(iii) and Banach'’s fixed point theorem that the mappiig
has a unique fixed point

u(-, x) € We(Jr) C BUCT ,(Jr, Eo) N BUC1 o (Jr, E1) (3.15)

for eachx € B, (xo0, £). (3.2) and the additional regularity assertions follow
now from (3.15) and Lemma 2.2(d).
(v) We infer from (3.14) that

lut, ) = uC, ey < 4e2llx = yllg,, x,y € Bg,(xo, )

and (3.4) follows from Lemma 2.2(d).
(vi) Suppose:; anduy are two solutions of (1.1) which satisfy (3.2). Let

71 :=supt € [0, t]; u1(s) = ua(s) VO<s <t}
Sinceu; andu; satisfy (3.2) we conclude that both belong to the set

{v € E1(Je); v(0) = x, [|v — X|lc (/0. E0) < €0} N B,(,.)(0, £0)

providedz* is sufficiently small. Banach’s fixed point theorem provides a unique

solution in this set and we conclude that> 0. Assume that; < 7. Itis clear
thatuy(ry) = up(r1) =: y. Letv;(¢) :=u;j(t +11), j = 1,2, withr € J5 =
[0, 72] for somet, € (0, T — 11]. Thenvy, vo € CL(Jo, Eg) N C(Jo, E1), and
v1, U2 Solve

u+ Awu = f(u), u0) =y.

If 72 is small enough, them andv; belong to the set

{v € E1(J2); v(0) =y, v = Yllc(pEy) < €0} NBEy(s,)(0, £0)

and we conclude once again that= v,. Thereforeu1 andu» coincide on the
interval [0, t1 + 12], thus contradicting the definition af.

(b) Part (b) follows from part (a) by a compactness argument. O

REMARK 3.2. (a) Theorem 3.1 shows that solutions of (1.1) starting out,n
immediately regularize and are £y for any positive time > 0. This is an impor-

tant feature of quasilinear parabolic evolution equations which has far reaching
consequences for questions related to global existence and the regularity of solu-
tions. It should also be noted that (3.2) gives a precise statement about the rate of
regularization as approaches 0.

(b) The formulation of Theorem 3.1(b) is inspired by [1, Proposition 6.1].
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4. Global existence

In order to formulate our next result on global existence we need to introduce some more
notation. Assumdg C R™ is an interval which contains 0 and is right openpul& (0, 1]
andE is a Banach space we set

Ci1-,(J,E) = {veC(J,E);ve BUC1_,([0,T],E), T <supJ},

Ci_,(J.E) = {ve C'(J,E)v, v e Cru(J, E))
and equip these spaces with the natura@cRet topology induced by the topology of

BUC1_,([0,T], E) andBUCLH([O, T], E), respectively. We recall that in cage= 1
we obtain

C3(J,E) :=CYJ,E), Co(J,E):=C(J, E),

with the Fiéchet topology of uniform convergence on compact subsefs of

Letu be a solution of (1.1) on an interval Thenu is called anaximal solutiorif there
does not exist a solutiom on an interval/’ strictly containingJ such that|; = u. If u
is a maximal solution/ is called themaximal interval of existence=inally, u is called a
global solution if/ = R™.

We are now ready to formulate our main result on global existence and uniqueness.

THEOREM 4.1.Leta € (0,1) be fixed and lett, := (Ep, E1), be a continuous
interpolation space. Assume thigf C E, is open and that

(A, f) € CY(Vy, My(E1, Eo) x Eo).

(a) The quasilinear evolution equatidgf.1) has for each initial value € V,, a unique
maximal solution

u(-,x) € Ci_o(J (x), E0) N C1o(J (x), E1). (4.2)
The maximal interval of existenddx) is open inR™. Moreover,
u(-,x) € C(J(x), Vo) NC*P(J(x), Ep)

foranypg € [0, a), whereEg := (Eo, E1)g.
(b) Assume that € V, N E;s for somes € («, 1]. Then

u(-, x) € Ci_5(J (x), Eo) N C1-5(J (x), E1) N C(J (x), Es).

(c) Letx e V, be given and suppose that(x) := supJ(x) < oo. Then the following
alternatives hold:
e dist(u(z, x),dV,) — 0ast — tT(x), or
° M(" -x) ¢ UC([05 t+(-x))v EO[)



PHILIPPE CLEMENT AND GIERI SIMONETT J.evol.equ.

(d) Suppose thatthe embeddifig < Egis compact. Let € V, be given and suppose
thatz*(x) < oo. Then either

e dist(u(t,x),dV,) — Oast — tT(x), or
o |lu(t,x)||g, — oo foreachs € (¢, 1] ast — 11 (x).

(e) Suppose thak; < Eg is compact, that the orbit (x) is bounded inEs for some
8 > o and bounded away frolV,. Thentt(x) = co. If, in addition, u(-, x) €
UCRT™, E,), then{u(t, x); t > t} is bounded inE for anyt > O.

Proof. (a) (i) It follows from Theorem 3.1(a) that there exists a numfesuch that the
quasilinear Problem (1.1) has a unigque solution

u1 € E1(Jy) = BUC%?IL(]]_, Eo) N BUC1_,(J1, E1), 4.2)

whereJ; := [0, t1]. Let x1 := u1(r1). Thenxy € V, N E1 and we can apply
Theorem 3.1(a) once again to obtain a unique solutjoa E1(J2) N C(J2, Ey)
of

u+ A(wu = f(u), u(0) = x1,

where J> = [0, t2]. Clearly, up solves the inhomogeneous linear Cauchy
problem

W+ Atu = f@t), tel, u(0) = x1, (4.3)
whereA(r) := A(up(t)) and f(¢) := f(ua(t)) for t € Jo. It follows from the
mapping properties afA, f) that

(A, f) € BUC(J2, L(E1, Eg) x Eo). (4.4)

Inparticular, notethat € BUC (J», Eg) C Eq(J2). We infer from Lemma 2.8(a)
thatuy is the unique solution of (4.3) ifi1(J2). On the other side, we obtain
from Lemma 2.6 thati(s) € M1(E1, Eo) for s € Jo, and Lemma 2.8(a) now
yields

d - -1
vi= <E + A(), V) (f,x1) € CX(J2, Eo) N C(J2, E1) C E1(J2)

due to the fact thatf, x1) € BUC(J2, Eo) x E1. By the uniqueness of solutions
of (4.3) in[E1(J2) we conclude that

us = v € C(Jo, Eg) N C(Jo, E1). (4.5)
Let

u(t) .= {

u1(r) forO<r <1y,
ur(t—11) form<tr<nu+mw
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(b)

(©

andset/ = [0, t1+12]. Iffollows from (4.2) and (4.5) that € BUC1—,,(J, E1).
Moreoveri1(t1) = —A(x1)x1+ f(x1) = u2(0) and thus: BUC%_H(J, Ep).
We conclude from Lemma 2.2(d) that
u € BUCT_,(J, Eo) N BUC1_,,(J, E1) N BUC*™P(J, Ep)
and that: is a solution of (1.1) ory.
(i) Let
J(x) == |_J{[0. 7]: (1.1) has a solution on [@]}.
It is clear that/ (x) is right open, since we could otherwise repeat the steps of
part (i) which contradicts the definition df(x). The construction in (i) shows
that the maximal solution(-, x) is unique and satisfies (4.1).
LetT € J(x) be arbitrary and set := [0, T]. It follows from step (a) that the
maximal solutionu (-, x) of (1.1) satisfies

u(-, x) € BUCY_,(I, Eo) N BUC1_4(I, E1) N BUC(I, Vy,). (4.6)
Let A(r) := A(u(t, x)), f(t) := f(u(t, x)) for t € I. We conclude that
(A, f) € BUC(I, L(E1, Eg) x Eg) (4.7)

and thatv := u(-, x)|; is the unique solution of the inhomogeneous linear problem
v+ A= f@), tel, v0) =x
in the set (4.6). Lemma 2.6, Lemma 2.8(a) and (4.7), on the other side, yield

dt
due to the fact thatf, x) € BUC1_s(I, Eg) x Es. Since
BUC} (I, Eo) N BUC1_5(I, E1) = BUC} (I, Eg) N BUC1_o(I, E1)

-1
w = (i + A(), )/) (f.x) e BUC%_S(I, Eo) N BUC1-5(1, E1)

we conclude that = w, that is,v has the same regularity as SinceT € J(x)

can be chosen arbitrarily, the assertion follows from Lemma 2.2(b).

We argue by contradiction and assume thate UC([0,t"), E,), and that
dist(u(t, x), dV,) 4 0 ast — tT, wheret™ := rT(x). Let S be the closure
of {u(t,x);0 <t < tT}in E,. Sinceu € UC([0,tT), E,) we conclude thal

is compact inV, and it follows from Theorem 3.1(b) that there exists a number
7 = 7(S) > 0 such that the quasilinear equation (1.1) has a unique solution

v(-,y) € BUCLQ([O, 7], Eg) N BUC1-4([0, 7], E1) (4.8)

on [0, r] for any y € S. We choose; € (0, t%) such thatt; + v > ¢ and we
setxy := u(t1, x) andvy := v(-, x1). Sincex1 € V, N E1 we infer from (4.8) and
step (b) thaw; enjoys the regularity property

v1 € CY([0, 7], Eg) N C([0, 7], E1). (4.9)
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Let
u(t, x) forO<t <n,
viit—n) form<r<n+rt

u(t) = {
and set/ := [0, t1 + t]. We conclude that
u € BUCY (I, Eo) N BUC1_o(I, E1),

and that. is a solution of the quasilinear equation (1.1) with initial valueHence,
u is a proper extension af(-, x), contradicting the maximality of (-, x).

Suppose the claim is not correct. Then there exists a nutnbefw, 1], numbers
r, R > 0,asetU C V,, and a sequendag) such that

o dist(U, dV,) > r,
o tp — tT(x) ask — oo,
o u(ty,x) € UNDBEg (0, R) for everyk € N.

Let S be the closure ofu(z, x); k € N} in E,. It follows from the compact embed-
ding Es — E, thatS is a compact subset 8f,. As in part (c) we conclude that the
solutionu (-, x) can be continued beyond (x), which leads to a contradiction.

It follows from part (d) of the theorem that (x) = co. Next, we infer from the
compact embeddinffs <— E, thaty (x) is relatively compact irV,,. Since locally

Lipschitz continuous functions are uniformly Lipschitz continuous on compact sets

we conclude that there exists a constarguch that

1A, )z = (A, /)@ £y ExEo < Lllza — 22llE,, 21,22 € ¥ (). (4.10)

In the sequel we setA(r), f(1)) = Au(t,x)), f(u(t,x)) forr € RT. Itis a
consequence of (4.10) and our assumptions that

(A, f) € BUC(R™, L(E1, Eo) x Ep). (4.11)

We infer from Lemma 2.5(b) and Lemma 2.6 that there exists a conafant 1
such that

d _ -1
<d_ + A(s), V) <M, seR", (4.12)
! L(C(I,Eq)x E1,CY(I,Eg)NC(I,E1))
wherel := [0, 1]. Itis then easy to see that
1K i)l e, Eoy.ca, B0y = M, e~ @TAED | 2oy < Me™™! (4.13)

foranyr € I,s € Rt and anyw > 0. Lety := (4M?)~1. It follows from (4.11)
that there are numbefs € (0, 1] andw = w(T) > 0 such that

Me™T <1/2, || AGs + 1) — A®) gL <1, T [0, T], s eRY. (4.14)
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Next we observe that := u(-, x) is the unique solution of

<% + o+ A(), y> u=(ou+ f,x)=: (g, x) onR™.

Sinceu(t) € E1 foranyt > 0 we can, and will, assume thate E;. Letn € N*
be an arbitrary integer and lef(z) := u(jT +1¢)fort € [0, T]andj € {0, ..., n}.
Then itis clear thab; is the unique solution of

(% +w+A(jT+-),y) v=(g;,u(jT))  onl,

whereg;(t) := g(jT + 1) fort € [0, T]. It follows from (4.12)—(4.14) thab;
admits the following representation:

-1
vj = (%+a)+z§j,y> |:(id,id)+(3j('),0)

d AN

(E +o+ A, y) } (8, u(jT)

= Ky a,[L+BjOK, 517 (8j — Bj()e™ @)
u () + e HAu (7).

whereA; := A(jT), B;(x) := (AT +7) — A(jT)) for = € [0, T] and where
(id, id) := (id¢(1, Eg), 1dEg,). Thanks to (4.13) and (4.14) we have

1Ky, [1+ BjOK i ) lecaeocaeyy <2M. j (0. n}

It follows now from the representation formula foy and from (4.14) that (nT) =
v,—1(T) satisfies the estimate

A

lunT)llg, < 2M||g||Lw(]R+,E0)(1+q+"'qn_l)+qn”x”E1
(4.15)

IA

2M(1— @) Mgl @+ by + X1

sinceq = @2M?y + Me=@T) < 1. Lett > O be arbitrary. Then we find a
numbern € N and a numbet € [0, T) such that = nT + . Observing that
u(@) =u@nT + t) = v,(r) we can use the representation formuladfpand (4.15)

to conclude that

lu@ e, < 2MglL @+ £p) + @M%0 + M) |u(mT)| g,
(4.16)

IA

c@lullp, @+ g + 1 f L@t Eo) + I1X1 £,

with a universal constamt O
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5. The semiflow property

Let X = (X, d) be a metric space and Iet : X — (0, oo] be a mapping. Then we
define

D= [ J[0.1%) x {x}.
xeX
For a given map : D — X we use the notatiop’(x) = ¢(z, x). Theng is called a
continuous (localsemiflowon X if

Dis openinRt x V,

peCD,X),

o0 =idy,

@ (x) = ¢’ 0 ¢*(x) whenever O< s < t(x) and 0< t < 1T (¢*(x)).

We writeg € C%1~(D, X) if

e pcC(D,X),

o for every point(zg, xo) € D there exist a product neighborhoédx V c D and a
constant > 0 such that
dg'(x),¢'(y) <cd(x,y), (&, x), (t,y) eUxV.

A semiflowy is called (locally) Lipschitz continuous i € C%1~ (D, X).
The following result shows that the quasilinear parabolic evolution equation (1.1) gene-
rates a locally Lipschitz continuous semiflow &g.

THEOREMG.1.Leta € (0,1) be fixed and lettE, := (Ep, E1), be a continuous
interpolation space. Assume théf C E, is open and that

(A, f) € C* (Va, Mo (E1, Eo) X Eo).
ThenD :=J, .y, J(x) x {x} is openinR™ x V, and

[(t,x) — u(t, x)] € CO17(D, V). (5.1)
The maf (¢, x) — u(z, x)] defines a locally Lipschitz continuous semiflowin

Proof. Here we follow the arguments used in the proof of [1, Theorem 7.2]. Let
(t0, x0) € D be given and leS := {u(t, xg), 0 < t < 1p}. Sinceu(-, xg) € C([0, 10], Vi)
we conclude thaf is compact inV,. According to Theorem 3.1(b) there exist numbers
g, 7, L > 0 such that

e B, (S.&) C Va,
e u(-, x) is defined on [07] for eachx € Bg, (S, ¢), (5.2)
o lu(s,x) —u(s,y)|g, <Llx—ylEg, foreachx,y e IE%EQ(S, g),s €[0, ].
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Without loss of generality we can assume thiat- 1. Next we fix numbergz;; j =
0,...,m+ 1} such that

O=tmp<t1<:- Ty =1, Tmyl:=lto+T

and such thatj;1 —t; < v for j = 0,...,m. Finally we sete; := L/~"1¢ for
j=0,...,m+ 1. Clearly we have; < ¢ ande; 1 = Le; for eachj. It follows from
(5.2) thatu(-, x) existson [Q 741 — ;] for eachx € ]PBE(X(M(TJ', x0),ej)andj =0,...,m.
Moreover, we conclude from (5.2) that

u(s, x) € ]EEa (u(s +1j,x0),€j+1), s€[0,tj41—1],

(5.3)
lu(s, x) —uls, Mg, < Llix —ylg,, s€l0,tj41—17)]
for eachx, y € Bg, (u(z}, x0), ¢;) andj = 0, ..., m.
(i) We infer from the first line in (5.3) that [Gp + ] C J(x) and that
u(t,x) € Bg,(S,e) (t,x) €0, 10+ ] x Bg, (xo, €0). (5.4)

Hence [0 + t] x B, (xo, £0) C D, showing thaD is open inR* x V.
(i) It follows from the second line of equation (5.3) that there existssach that

llu(t, x) —u(t, Y)Ee, <cllx—ylEg,,
) (5.5)
(t,x), (t,y) € [0, r0+7] x Bg, (xo, €0).

We have proved that the mapping f> u(z, x)] : I@Ea (x0, £0) — V4 is (globally)
Lipschitz continuous, uniformly im € [0, o 4+ t]. Moreover, it follows from (5.5)
that

lu(z, x) — u(to, x0)llg, < cllx — xollg, + lu(, xo) — u(to, xo) | g,

for (,x) € [0,t0 + 7] x B, (x0, €0). Sinceu(-,x0) € C([0, 70 + 7], Ey) We
conclude that the mapping¢[ x) — u(¢, x)] is continuous orD. This and (5.5)

shows (5.1).
(iif) The semiflow property in an immediate consequence of Theorem 4.1 and this com-
pletes the Proof of Theorem 5.1. O

REMARKS 5.2. (a) Suppose théEg, E1) is a densely injected couple of Banach
spaces and th&t, -)y is an admissible interpolation functor, that(s, ), is for each
6 € (0, 1) aninterpolation functor of exponefsuch that1 is densely embedded in
Ey := (Eo, E1)p. Then the following result has been obtained in [2, Theorem 12.1]:
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THEOREM. (Amann)Supposethad < y < a < o < 1, thatV, is open in
E,,and

(A, f) € C¥ (Vo H(E1, E0) x E,).
Then Problen{1.1) has for eachx € V,, := E, NV, a unique maximal solution
u(-,x) € CY(J, E)) N C(J, E) N C(J, V5) N C7(J, Eo),

whereJ = [0, t T (x)), and wheréV, is equipped with the topology &f,. Moreover,
[(z, x) = u(t, x)] € CO(D, V,).

Amann’s result gives great flexibility for the choice of the interpolation spaces, and
there are no geometric restrictions on the Banach spacasd Eg. Theorems 3.1,

4.1 and 5.1, on the other side, do require stringent geometric conditioAs and

Ep, subsumed in Definition 2.2, but provide sharper results: bdetea andy = 0

are admitted.

(b) In [4] local existence was proved for initial valuesWip for o > o under the same
assumptions as in the present paper. This result was extended in [15, 16] and it was
shown that (1.1) generates a locally Lipschitz continuous semifloWpagain with
o > .

(c) Our results concerning global existence, see Theorem 4.1(c), (d), (e), are similar to
the results stated in [3, Section 12].

(d) Under additional assumptions, the result of Amann stated in part (a) was extended in
[9] to include situations weré&,, is not necessarily an interpolation space between
E, andEp.

6. Smoothness properties of solutions

Lety : D — V, be the semiflow generated by the quasilinear evolution equation (1.1).
Then we writep € CO%(D, V,,) for k € N* U {00, w} if

° p(t,-) € CX(Dy, E,) for eachr € RT with D, := {x € Vy; (¢, x) € D} # @,
e Do e C(D,Ey) forj=0,...k,

and we callp a C¥-smooth semiflow.

THEOREM 6.1.Leta € (0,1) be fixed and lett, := (Eo, E1)q be a continuous
interpolation space. Assume théf C E, is open and that

(A, f) € C¥(Vy, Mo (E1, Eo) x Eg), k € N* U {00, ). (6.1)
Then the maximal solution of the quasilinear evolution equatioh) satisfies

u-,x) € Ck(J, Ep)yn c*(J, Eg)
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and

d m
" (-) u(-,x) € C1 (J, E)) NC1o(J, E1), m=1,...k, (6.2)

dt

whereJ = [0, 17 (x)). Moreover,

[(1, %) — u(t, )] € COX(D, V) N CK(D, Vi), (6.3)

wheref) ={(,x) e D;t > 0}.

Proof. (i) Let T e (0, t*(x)) be fixed and let := [0, T]. Then there exists a positive

(ii)

numbers > 0 such thatir € [0,r+(x)) for all (A,¢) € A x I, whereA =
(1-16,1+6). We setu, (r) := u(rt,x) for (A, 1) € A x I. Itis easy to verify
thatu, € BUCLQ(I, Eg) N BUC1_ (I, E1) and thatu, satisfies the parameter-
dependent evolution equation

{ 0+ LAWY = Af V), (6.4)

v(0) =x

on the intervall .
Leti : BUCLX(I, Eo) N BUC1—_4 (1, E1) — BUC(I, E,) be the inclusion map of
Lemma 2.2(b). Sinc&UC (I, V,) C BUC(I, E,) is open we obtain that

W =i "(BUC(I, Vo)) C BUCT_, (I, Eo) N BUC1_o(I, E1) = Ea(I)
is open. We now define the mapping

®: Wy x A — BUC1_o(I, Eg) x E,
(6.5)

(v, A) —~ (j—tv + AA(W)v — Af(v), yv — x) .

Observe that (u;, 1) = 0for i € A. Itis well-known that the mapping properties
of (A, f) imply that

(A, f) e CK(BUC, V), BUC(I, L(E1, Eg)) x BUC(I, Ep)).

Here we use the same notation {ar, ) and the substitution operators induced by
(A, f). Itis not difficult to see that

[(B,v) = Bv]: BUC(I, L(E1, Eg)) x BUC1-(I, E1) — BUC1-o(1, Eo)
is continuous and bilinear, and thus real analytic. We conclude that

® e CX(Wy x A, BUC1_o(I, Eg) X Ey). (6.6)



64 PHILIPPE CLEMENT AND GIERI SIMONETT J.evol.equ.

(iii) Let D1® denote the Fechet derivative ofb with respect to the first variable. Then

d
D1®(u1, Hw = (Ew + A(w)w + (A w)w)ug + f (uw, yw) . (6.7)

It follows from (6.1) that the Fechet derivativé A’, ') of (A, f) satisfies
(A, f') € C(Vy, L(Eq, L(E1, Eg) X Ep)). (6.8)

Let B(r) := A(u1(t)) + f'(u1(2)) for t € I. Moreover, given any € E, we set
R(1)z := (A'(u1(t))z)u1(r) for ¢ € I. It follows from (6.8) and Lemma 2.7(c) that

B € BUC(1, L(E1, E0)), B(s) € My(E1, Eg), se€l,

R € BUC1-«(I, L(Eq, E0)), |IRIIBUC,_o(J;,L(EqEo)) = Nllu1lley )

(6.9)

where the constan¥ is independent of; := [0, t] C /. We conclude from (6.7),
(6.9), and Lemma 2.8(b) that

D1®(u1, 1) € IsomE1(1), Eo(I) x Eg). (6.10)

It follows from the Implicit Function Theorem that the equatidiiv, A) = 0 can

be solved uniquely in terms &f in a neighborhood of 1. Sinc@(u;, A) = 0 we
conclude from (6.6), (6.10) and the Implicit Function Theorem that there exists a
numbere € (0, §) such that

A u;] € CK((A =&, 1+¢), E1(D)). (6.11)

Letzo € I be fixed. Giveru € Eq1(I) we definee(u) = u(rg). Itis easy to verify
thate € L(E1(1), E1) and it follows from (6.11) that

[A = u;(to) = ur(ro)] € CH((1—&, 1+ ¢), E).

Since this is true for any numbey € I we conclude that; € C¥(I, E1). Itis now
easy to see that

d m d m
(ﬁ) |,y =1" (E) up € E1(1), m=1,... k.

Since this is true for any intervdl = [0, T] c [0, t*(x)) we have proved the first
part of Theorem 6.1.

(iv) We now prove the first assertion in (6.3). Lete V, andzg € [0, ¢ (xo)) be fixed.
Moreover, givenT e (19, t+(xg)) let I := [0, T]. It follows from Theorem 5.1
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that there exists a numbér> 0 such that(x) > T for all x € Bg, (xo, §). We
consider the mapping

@ Wy x Bg, (x0,8) — BUC1_o(I, Eg) x Eq
(6.12)

(v, x) — (%v + A()v — f(v), yv —x> ,

whereW,, is definedin (ii). Let1(-, x) := u(-, x)|; and note tha® (u1(-, x), x) =0
for x € Bg, (x0, §). As in (ii) we obtain thatb is Ck-smooth. Moreover,

d
D1®(u1, xp)w = (Zw + A w + (A’ (up)wus + f'(upw, Vw> ,

where we sett; = uj(-, x0). We conclude as in step (iii) thad1® (u1, xo) is
an isomorphism. The Implicit Function Theorem then implies that there exists a
numbere € (0, §) such that

[x = u1(-, x)] € CKBE, (x0, €), E1(1)). (6.13)

Givenu € BUC(I, E,) we sete(u) := u(tg). Thene € L(BUC(I, E,), E,) and
we conclude from (6.13) and Lemma 2.2(b) that the mapping

k .
By, (x0, €) —> E1(I) - BUC(I, Eq) > Eq,  x > us(to, x) (6.14)

is C*-smooth. We have proved thdt[x) — u(t, x)] € CO%(D, V,).

(v) Letxg € V, andrg € [0, tT(xg)) be fixed. GivenTyx € (to, tT(xg)) there exists a
numbers > 0 such that that™ (x) > Tix for all x € Bg, (xo, 8). We now choose
T € (t0, T1) and set/ = [0, T]. By makingé smaller if necessary we conclude
thatir € [0, Tq] for (A,t) € A x I. Given(x,x) € A x Bg,(xo,8) we set
u (-, x) = u(r-, x)|;. Moreover, we define the mapping

D Wy x A xBg, (x0,8) — BUC1_o(I, Eg) X Eq
(6.15)

(v, (A, x)) — (%v + AA(W)v — Af(v), yv — x) .

It follows that @ (u; (-, x), (A, x)) = 0 for (A,x) € A x Bg,(x0,8). As before,
we conclude that the mappinb is C*¥-smooth and that the Echet derivative with
respect to the first variable is

d
D1®(u3, (1, x0))w = (Ew + A w + (A" (upwur + f'uw, Vw) .

The same arguments as above show that there exists a naraki€ §) such that

[x, x) = up(-,x)] € Ck((l— e,14+¢) x Bg, (x0, ), E1(1)). (6.16)
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Givenu € BUC(I, Ey) lete(u) := u(tg). Thene € L(BUC(I, E,), E,) and it
follows that

k .
(1—e,1+¢e) x Bg, (0. &) > E1(I) > BUC(I, Eq) > Ea,

(6.17)
(A, x) = u, (10, x) = u1(Arto, x)
is C*-smooth (for instance real analytickif= w). We can now infer that
[(1, %) > u(t, )] € C¥((10 — g0, 10 + £0) X BE, (x0, €), V) (6.18)
wheregg := roe. We have proved that{, x) — u(t, x)] € C"(zo), V). O

REMARKS 6.2.  (a) Under stronger assumptions, smoothness properties of solu-

tions were also considered in [1].

(b) Theorem 6.1 improves on the results contained in [16], where it was shown that (1.1)

generates a smooth semiflow in the (stronger) topology,ofvith o > «.

(c) Theideato use the Implicit Function Theorem in the Proof of Theorem 6.1 is inspired

by [4].
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