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© Birkhäuser Verlag, Basel, 2001

Maximal regularity in continuous interpolation spaces
and quasilinear parabolic equations

Philippe Clément and Gieri Simonett

Abstract. In this paper we establish a geometric theory for abstract quasilinear parabolic equations. In particular,
we study existence, uniqueness, and continuous dependence of solutions. Moreover, we give conditions for global
existence and establish smoothness properties of solutions. The results are based on maximal regularity estimates
in continuous interpolation spaces. An important new ingredient is that we are able to show that quasilinear
parabolic evolution equations generate a smooth semiflow on the trace spaces associated with maximal regularity,
which are the natural phase spaces in this framework.

1. Introduction

In this paper we consider the following abstract quasilinear parabolic evolution equation{
u̇ + A(u)u = f (u),

u(0) = x.
(1.1)

Throughout we shall assume that(A, f ) is a mapping fromV into H(E1, E0) × E0.
Here,E0 andE1 are two given (real or complex) Banach spaces such thatE1 is densely
embedded inE0, andV is a subset ofE0. Moreover,H(E1, E0) denotes the set of all
bounded linear operatorsB ∈ L(E1, E0) such that−B is the infinitesimal generator of a
strongly continuous analytic semigroup onE0.

Abstract quasilinear parabolic problems have been studied by many authors, including
[1, 2, 3, 4, 6, 9, 10, 11, 16, 18, 19], and different approaches have been devised to establish
the existence of solutions. One approach is based on the concept of parabolic evolution
operators and has in particular been used in [18] and in [1, 2, 3]. Another approach relies
on the notion of maximal regularity and has for instance been applied in [4, 6, 16].

The most general and flexible results for Problem (1.1) have been obtained in [2], based on
a careful and detailed analysis of parabolic evolution operators on interpolation spaces. The
method based on maximal regularity has the drawback of requiring stronger assumptions on
the geometry of the spacesE0 andE1, but has the advantage that one can resort to the Implicit
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Function Theorem to establish additional properties of solutions. Moreover, it provides a
natural setting for studying further geometric properties for the semiflow generated by (1.1).
In fact, all results known to us concerning center manifolds for quasilinear (and even fully
nonlinear) parabolic equations are tied to maximal regularity [8, 13, 15, 17].

If the mapping(A, f ) is assumed to be continuously differentiable, then Problem (1.1)
can be treated within the theory of fully nonlinear equations developed in [7]. However,
since this approach does not take advantage of the quasilinear structure it does not provide
the smoothing property of solutions which is an important feature of quasilinear parabolic
evolution equations.

In [4], the maximal regularity results of [7] were extended to include functions which
admit a prescribed singularity att = 0. This extension, in turn, allows to take advantage
of the quasilinear structure of (1.1) and to establish the smoothing property, as was shown
in [4].

In [15, 16] the results of [4] were refined and the continuous and smooth dependence
of solutions to (1.1) was established. Moreover, existence and exponential attractivity of
center manifolds under appropriate assumptions was proved in [15, 17]. In particular, it was
shown that the center manifolds attract solutions in the stronger norm ofE1 for solutions
which start out in interpolation spaces betweenE1 andE0, thus taking advantage of the
smoothing property. This effect has important consequences for applications and cannot be
observed in the approach of [8].

In this paper we establish a geometric theory for the quasilinear parabolic equation (1.1).
An important new ingredient is that we are able to show that (1.1) generates a (Lipschitz con-
tinuous or smooth) semiflow on the trace spaces associated with maximal regularity, which
are the natural phase spaces in this framework. This provides a considerable improvement
on the results obtained in [4, 15, 16]. A more detailed discussion is given in Remarks 5.2
and Remarks 6.2.

The paper is organized as follows. In Section 2 we state the results concerning maxi-
mal regularity for the linear theory which are used in the next sections. Local existence,
uniqueness and continuous dependence of solutions to (1.1) is established in Section 3,
Theorem 3.1. In Section 4, we investigate global existence and the main result is contained
in Theorem 4.1. In Section 5 we show that Problem (1.1) generates a locally Lipschitz
continuous semiflow on the trace spaces associated with maximal regularity. Finally, in
Section 6 we establish smoothness properties of solutions, relying on the Implicit Function
Theorem.

NOTATIONS. In the sequel we shall use the following notations. IfE andF are two

Banach spaces we writeE ↪→ F if E is continuously embedded inF , and we writeE
d

↪→ F

if E is, in addition, dense inF . If X andY are metric spaces andf is a mapping fromX into
Y we say thatf is locally Lipschitz continuous, and we use the notationf ∈ C1−(X, Y ), if
every pointx ∈ X has a neighborhoodU such thatf |U is (globally) Lipschitz continuous.
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2. Function spaces and maximal regularity

In the following we assume thatµ ∈ (0, 1], thatE is a (real or complex) Banach space,
and thatJ = [0, T ] for some numberT > 0. We consider functions defined onJ̇ := J \{0}
which have a prescribed singularity at 0. Let

BUC1−µ(J, E) :=
{
u ∈ C(J̇ , E); [t 7→ t1−µu] ∈ BUC(J̇ , E),

lim
t→0+ t1−µ‖u(t)‖ = 0

}
‖u‖C1−µ

:= sup
t∈J̇

t1−µ‖u(t)‖E, µ ∈ (0, 1).

It is easy to verify thatBUC1−µ(J, E), equipped with the norm‖·‖C1−µ
, is a Banach space.

Next we introduce the following subspace ofBUC1−µ(J, E)

BUC1
1−µ(J, E) := {u ∈ C1(J̇ , E); u, u̇ ∈ BUC1−µ(J, E)}.

Moreover we set

BUC0(J, E) := BUC(J, E), BUC1
0(J, E) := BUC1(J, E).

If E1 andE0 are two Banach spaces such thatE1 is continuously embedded inE0 we set

E0(J ) := BUC1−µ(J, E0), µ ∈ (0, 1],

(2.1)
E1(J ) := BUC1

1−µ(J, E0) ∩ BUC1−µ(J, E1),

whereE1(J ) is given the norm

‖u‖E1(J ) := sup
t∈J̇

t1−µ(‖u̇(t)‖E0 + ‖u(t)‖E1)

which turns it into a Banach space. In the following we will use the notation

Eθ := (E0, E1)θ := (E0, E1)
0
θ,∞, θ ∈ (0, 1), (2.2)

for the continuous interpolation spaces of DaPrato and Grisvard [7], see [3, 4, 13] for more
information.

REMARKS 2.1. (a) LetA ∈ L(E1, E0). Then it is easy to see that(
d

dt
+ A

)
∈ L(E1(J ), E0(J )).
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(b) E1 is densely embedded inE1−µ. If A ∈ H(E1, E0) with type(−A) < 0 and
x ∈ E0, then the following characterization is well-known:

x ∈ (E0, E1)θ ⇐⇒ sup
s>0

s1−θ‖Ae−sAx‖E0 < ∞,

lim
s→0+ s1−θ‖Ae−sAx‖E0 = 0

and

‖x‖θ := sup
s>0

s1−θ‖Ae−sAx‖E0 (2.3)

is an equivalent norm onEθ for θ ∈ (0, 1).
(c) Suppose thatA ∈ H(E1, E0) and that type(−A) < 0. Letx ∈ Eµ be given. Then

[t 7→ e−tAx] ∈ E1(J ) and there exists a constantc > 0 independent ofJ such that

‖e−tAx‖E1(J ) ≤ c‖x‖µ , t ∈ J. (2.4)

Proof. (i) Let µ ∈ (0, 1) be fixed and letu(t) := e−tAx for t ∈ J . It follows from
(2.3) that

sup
t∈J̇

t1−µ(‖u̇(t)‖E0 + ‖u(t)‖E1) ≤ c sup
t>0

t1−µ‖Ae−tAx‖E0 = c‖x‖µ,

wherec does not depend onJ .
(ii) It remains to show thatu ∈ E1(J ). SinceE1 is densely embedded inEµ we find

a sequencexn in E1 such thatxn → x in Eµ. Let un(t) := e−tAxn for t ∈ J .
It is easy to see thatun ∈ E1(J ) and it follows from (i) that

sup
t∈J̇

t1−µ(‖u̇(t) − u̇n(t)‖E0 + ‖u(t) − un(t)‖E1) ≤ c‖x − xn‖µ, n ∈ N.

SinceE1(J ) is a Banach space we readily conclude thatu ∈ E1(J ).
(iii) The remaining caseµ = 1 is easy to show. ¤

(d) The mappingγ : E1(J ) → E0, γ v := v(0), is well-defined, linear and continuous.

Proof. Let v ∈ E1(J ) be given and lett be a fixed number iṅJ . Then

v(s) = v(t) −
∫ t

s

v̇(τ ) dτ, 0 < s < t, (2.5)

and we conclude thatv(0) = lims→0+ v(s) exists and admits the representation

v(0) = v(t) −
∫ t

0
v̇(τ ) dτ. (2.6)

The assertion follows now from this representation. ¨
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(e) According to Remark (d), any functionv ∈ E1(J ) has a trace and we can introduce
thetrace spaceγ E1(J ) of E1(J ),

γ E1(J ) := im(γ )

(2.7)
‖x‖γ E1(J ) := inf {‖v‖E1(J ); v ∈ E1(J ), γ v = x}.
It is easy to verify thatγ E1(J ) is a Banach space and thatγ ∈ L(E1(J ), γ E1(J )).

LEMMA 2.2. Suppose thatH(E1, E0) 6= ∅. Then

(a) γ E1(J )=Eµ.
(b) E1(J ) = BUC1

1−µ(J, E0) ∩ BUC1−µ(J, E1) ↪→ BUC(J, Eµ).
(c) There exists a constantc > 0 independent ofJ such that

‖u‖BUC(J,Eµ) ≤ c‖u‖E1(J ), u ∈ E1(J ), γ u = 0, (2.8)

(d) E1(J ) = BUC1
1−µ(J, E0) ∩ BUC1−µ(J, E1) ↪→ BUCµ−σ (J, Eσ ), σ ∈ [0, µ].

Proof. (a) For a proof we refer to [3, Theorem III.2.3.1].

(b) This follows from [3, Theorem III.2.3.3].
(c) We chooseA ∈ H(E1, E0) with type(−A) < 0 and equipEµ with the norm (2.3).

Suppose thatu ∈ E1(J ), γ u = 0 and lett ∈ J be given. If 0< s ≤ t we obtain

s1−µ‖Ae−sAu(t)‖E0 ≤ ct1−µ‖u(t)‖E1 ≤ c‖u‖E1(J ).

If t < s then we use the formulau(t) = ∫ t

0 u̇(τ ) dτ , see (2.6), to conclude that

s1−µ‖Ae−sAu(t)‖E0 ≤ cs−µ

∫ t

0
τµ−1 dτ‖u‖E1(J ) ≤ c(µ)‖u‖E1(J ).

The assertion is now a consequence of (2.3).
(d) If σ = µ the assertion follows from part (b). Letσ ∈ [0, µ). It follows from the

reiteration theorem for the continuous interpolation method, see [3, Section I.2.8],
thatEσ = (E0, Eµ)σ/µ. Letu ∈ E1(J ) be given. The interpolation inequality, (2.5)
and part (b) yield

‖u(t) − u(s)‖Eσ ≤ c‖u(t) − u(s)‖1−σ/µ
E0

‖u(t) − u(s)‖σ/µ
Eµ

≤ c‖u‖E1(J )|t − s|µ−σ

for s, t ∈ J , proving the claim. ¤
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DEFINITION 2.3. (Maximal regularity) LetE1 andE0 be two Banach spaces such that
E1 ↪→ E0 and suppose thatA ∈ H(E1, E0). Moreover, letJ = [0, T ] for someT > 0
and letµ ∈ (0, 1]. Then we define

A ∈ Mµ(E1, E0) :⇐⇒
(

d

dt
+ A, γ

)
∈ Isom(E1(J ), E0(J ) × Eµ). (2.9)

If A ∈ Mµ(E1, E0) then(E0(J ), E1(J )) is called apair of maximal regularity for A.

REMARKS 2.4. (a) It follows from Remarks 2.1(a), (e) and Lemma 2.2(a) that(
d

dt
+ A, γ

)
∈ L(E1(J ), E0(J ) × Eµ).

Moreover, the mapping is injective.
(b) Suppose that(E1(J ), E0(J )) is a pair of maximal regularity forA and let(f, x) ∈

E1(J ) × Eµ be given. Then(
d

dt
+ A, γ

)−1

(f, x) = e−tAx +
∫ t

0
e−(t−τ)Af (τ) dτ

(2.10)
=: e−tAx + (KAf )(t).

(c) (E0(J ), E1(J )) is a pair of maximal regularity forA if and only if

KA(BUC1−µ(J, E0)) ⊂ BUC1−µ(J, E1).

Proof. (i) Suppose that(E0(J ), E1(J )) is a pair of maximal regularity forA and
let f ∈ BUC1−µ(J, E0). Then

KAf =
(

d

dt
+ A, γ

)−1

(f, 0) ∈ E1(J ) ⊂ BUC1−µ(E1).

(ii) Suppose thatKA mapsBUC1−µ(J, E0) intoBUC1−µ(J, E1). Letf ∈ E0(J )

be given. Then it follows from [14, Theorem 4.2.4] thatKAf ∈ C1(J̇ , E0)

and that
d

dt
(KAf ) = f − AKAf ∈ BUC1−µ(J, E0).

We conclude thatKAf ∈ E1(J ) and the assertion follows from (a)–(b), from
Remark 2.1(c), and from the open mapping theorem. ¤

(d) Suppose(E0(J ), E1(J )) is a pair of maximal regularity for someA ∈ H(E1, E0).
Then eitherE1 = E0 or E0 contains a closed subspace which is isomorphic to the
spacec0 of null sequences. In particular, ifE0 is reflexive then the setMµ(E1, E0)

will be empty.
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Proof. This result follows from [5] and Lemma 2.6. ¨

(e) SupposeA ∈ M1(E1, E0) and let c(τ ) := ‖KA‖L(C([0,τ ],E0),C([0,τ ],E1)). If
lim supτ→0 c(τ ) = 0 thenE1 = E0.

Proof. Let x ∈ E0 be given and setf (t) := e−tAx. Thenf ∈ C(J, E0) and

(KAf )(t) =
∫ t

0
e−(t−s)Ae−sAx ds = te−tAx.

If follows from our assumption that

‖tAe−tAx‖E0 ≤ ‖A‖L(E1,E0)‖(KAf )(t)‖E1 ≤ Nc(τ)‖x‖E0

for t ∈ [0, τ ]. This implies‖tAe−tA‖ ≤ Nc(τ) for t ∈ [0, τ ] and the claim follows
from [14, Theorem 2.5.3]. ¨

(f) We shall now describe a situation which shows that many interesting operators belong
to the classMµ(E1, E0).

Assume thatA ∈ H(E1, E0) and let

E2 := E2(A) := (dom(A2), ‖ · ‖E2),

‖ · ‖E2 := ‖ · ‖E2(A) := ‖A · ‖E1 + ‖ · ‖E1.

Then(E2, ‖ · ‖E2) is a Banach space withE2
d

↪→ E1
d

↪→ E0. We set

Eθ := (E0, E1)θ ,

E1+θ := E1+θ (A) := (E1, E2(A))θ , 0 < θ < 1, (2.11)

Aθ := the maximalEθ -realization ofA.

It is well-known thatAθ ∈ H(Eθ , E1+θ ) and it turns out thatAθ ∈ Mµ(Eθ , E1+θ )

for anyµ ∈ (0, 1].

THEOREM. (Da Prato, Grisvard, Angenent)Suppose thatµ ∈ (0, 1] andθ ∈ (0, 1).
LetJ = [0, T ]. Then

(E θ (J ), E1+θ (J )) := (BUC1−µ(J, Eθ ), BUC1
1−µ(J, Eθ ) ∩ BUC1−µ(J, E1+θ ))

is a pair of maximal regularity forAθ , that is,(
d

dt
+ Aθ, γ

)
∈ Isom(E1+θ (J ), E θ (J ) × (Eθ , E1+θ )µ) (2.12)

where(Eθ , E1+θ )1 := E1+θ .

Proof. This was proved by Da Prato and Grisvard [7] forµ = 1, and by Angenent [4]
for the general case. We also refer to [3, Theorem III.3.4.1] and [15]. ¨
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LEMMA 2.5. (a)Mµ(E1, E0) ⊂ H(E1, E0) is open and[
A 7→

(
d

dt
+ A, γ

)−1
]

∈ Cω(Mµ(E1, E0), L(E0(J ) × Eµ, E1(J )),

i.e., the mapping is real analytic.
(b) LetA ⊂ Mµ(E1, E0) be compact. Then there exists a constantc such that∥∥∥∥∥

(
d

dt
+ A, γ

)−1
∥∥∥∥∥L(E0(J )×Eµ,E1(J ))

≤ c, A ∈ A.

Proof. (a) Note that the mappings

I : H(E1, E0) → L(E1(J ), E0(J ) × Eµ), A 7→
(

d

dt
+ A, γ

)
,

Inv : Isom(E1(J ), E0(J ) × Eµ) → L(E0(J ) × Eµ, E1(J )),(
d

dt
+ A, γ

)
7→

(
d

dt
+ A, γ

)−1

are real analytic. Moreover,Mµ(E1, E0) = I−1(Isom(E1(J ), E0(J ) × Eµ)). The
first assertion follows from the fact that Isom(E1(J ), E0(J ) × Eµ) is open in
L(E1(J ), E0(J ) × Eµ).

(b) It follows from part (a) that the set{( d
dt

+ A, γ )−1; A ∈ A} is compact, and thus
bounded, inL(E0(J ) × Eµ, E1(J )). ¤

LEMMA 2.6. Mµ(E1, E0) ⊂ Mσ (E1, E0) for 0 < µ < σ ≤ 1.

Proof. (i) We first consider the caseσ < 1. Suppose thatA ∈ Mµ(E1, E0) and let
f ∈ BUC1−σ (J, E0) be given. Then∫ t

0
e−(t−τ)Af (τ) dτ = tσ−µ

∫ t

0
e−(t−τ)A 1

τσ−µ
f (τ) dτ

+
∫ t

0
e−(t−τ)A (τσ−µ − tσ−µ)

τσ−µ
f (τ) dτ =: g1(t) + g2(t).

It is clear that the function [τ 7→ τµ−σ f (τ)] belongs toBUC1−µ(J, E0) and we
conclude from Remark 2.4(c) that the first integral belongs toBUC1−µ(J, E1). This
implies thatg1 ∈ BUC1−σ (J, E1). For the second integral we have∫ t

0
‖e−(t−τ)A (τσ−µ − tσ−µ)

τσ−µ
f (τ)‖E1 dτ

≤ c

∫ t

0

dτ

(t − τ)1−(σ−µ)τ1−µ
sup

0<τ≤t

τ1−σ ‖f (τ)‖E0

= c
1

t1−σ

∫ 1

0

ds

(1 − s)1−(σ−µ)s1−µ
sup

0<τ≤t

τ1−σ ‖f (τ)‖E0
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and we can conclude thatg2 ∈ BUC1−σ (J, E1). Therefore,KAf ∈ BUC1−σ (J, E1)

and the assertion follows from (c).
(ii) We now consider the caseσ = 1. Letf ∈ BUC0(J, E0) = BUC(J, E0) be given.

We can assume thatf (0) = 0. Otherwise we writef = f − f (0) + f (0). Since
A(KAf (0)) = (I −eit−tA)f (0) ∈ BUC(J, E0) we obtainKAf (0) ∈ BUC(J, E1).

The conditionf (0) = 0 implies that [τ 7→ τµ−1f (τ)] belongs toBUC1−µ(J, E0)

and we can now repeat the proof given in (i). ¤

LEMMA 2.7. (a) Suppose that( d
dt

+ A, γ ) ∈ Isom(E1(J ), E0(J ) × Eµ) for J =
[0, T ]. Then( d

dt
+ A, γ ) ∈ Isom(E1(Jτ ), E0(Jτ ) × Eµ) for any subintervalJτ =

[0, τ ] ⊂ J and

‖KA‖L(E0(Jτ ),E1(Jτ )) ≤ ‖KA‖L(E0(J ),E1(J )), Jτ ⊂ J. (2.13)

(b) Suppose that( d
dt

+ A, γ ) ∈ Isom(E1(J ), E0(J ) × Eµ) for J = [0, T ]. Then( d
dt

+
A, γ ) ∈ Isom(E1(I ), E0(I ) × Eµ) for any finite intervalI = [0, T1].

(c) Let Eγ := (E0, E1)γ , γ ∈ (0, 1), be an interpolation space, where(·, ·)γ is an
arbitrary interpolation functor of exponentγ . Suppose thatA ∈ Mµ(E1, E0) and
thatB ∈ L(Eγ , E0) for some0 ≤ γ < 1. ThenA + B ∈ Mµ(E1, E0).

Proof. These results are contained in [4, Lemmas 2.3–2.5]. For the reader’s convenience
we include a proof.

(a) Letf ∈ BUC1−µ(Jτ ) be given. Then we set

(Ef )(t) :=
{

f (t) if 0 < t ≤ τ ,
( τ

t
)1−µf (τ) if τ ≤ t ≤ T .

It easy to see thatE ∈ L(BUC1−µ(Jτ , E0), BUC1−µ(J, E0)) with ‖E‖ = 1. The
assertions follow from Remark 2.4(c) and the fact thatKA,τ = R ◦ KA,T ◦ E ,
whereR denotes the restriction operatorRu := u|Jτ .

(b) Let I = [0, T1] be an arbitrary interval. Due to part (a) we may assume thatJ ⊂ I .
Then there exists a numbern ∈ N

∗ such thatI ⊂ [0, nT ]. Let (f, x) ∈ E0([0, nT ])×
Eµ be given and let

f0 := f |J , v0 :=
(

d

dt
+ A, γ

)−1

(f0, x)

fj := f (· + jT )|J , vj :=
(

d

dt
+ A, γ

)−1

(fj , vj−1(T ))

for j = 1, . . . , n − 1. It follows from our assumptions and from Lemma 2.6 that

v0 ∈ BUC1
1−µ(J, E0) ∩ BUC1−µ(J, E1), vj ∈ BUC1(J, E0) ∩ BUC(J, E1)



48 philippe clément and gieri simonett J.evol.equ.

for j = 1, . . . , n − 1. It is now easy to verify that the functionv defined by

v(t) := vj (t − jT ) if jT ≤ t ≤ (j + 1)T , j ∈ {0, . . . , n − 1}, t ∈ [0, nT ],

belongs toE1([0, nT ]) and satisfies( d
dt

+ A, γ )v = (f, x). The assertion follows
from Remark 2.4(a), the open mapping theorem, and part (a) of the proof.

(c) (i) A well-known perturbation result for generators of analytic semigroups yields
A + B ∈ H(E1, E0). According to Lemma 2.7(b) is suffices to show that(

d

dt
+ A + B, γ

)
∈ Isom(E1(J1), E0(J1) × Eµ), J1 = [0, t1],

for some numbert1 ∈ J̇ .
(ii) Let f ∈ E0(J1) be given. Then there exists a constantM = M(J) ≥ 1 such that

t1−µ‖B(KAf )(t)‖E0 ≤ ‖B‖L(Eγ ,E0) t1−µ‖(KAf )(t)‖Eγ

≤ Mt1−µ

∫ t

0

1

(t − τ)γ τ1−µ
dτ sup

0<τ≤t1

τ1−µ‖f (τ)‖E0

= Mt1−γ

∫ 1

0

1

(1 − τ)γ τ1−µ
dτ sup

0<τ≤t1

τ1−µ‖f (τ)‖E0

for any t ∈ J1 and anyt1 ∈ J̇ . Hence [id+ BKA] ∈ Isom(E0(J1)), providedt1

is chosen small enough.
(iii) Given (f, x) ∈ E0(J1) × Eµ we setu(t) := e−t (A+B)x + KA[id + BKA]−1f

for t ∈ J1. It follows from Remark 2.1(c) and the Proof of Remark 2.4(c) that
u ∈ E1(J1). Moreover,(

d

dt
+ A + B, γ

)
u = (f, x)

and we conclude that( d
dt

+ A + B, γ ) ∈ Isom(E1(J1), E0(J1) × Eµ). ¤

LEMMA 2.8. (a)Suppose that[s 7→ A(s)] ∈ BUC(J, L(E1, E0)) and that(
d

dt
+ A(s), γ

)
∈ Isom(E1(J ), E0(J ) × Eµ), s ∈ J = [0, T ].

Then(
d

dt
+ A(·), γ

)
∈ Isom(E1(J ), E0(J ) × Eµ).

(b) Suppose that the family{A(s); s ∈ J } satisfies the assumptions of(a) and that
R ∈ BUC1−µ(J, L(Eµ, E0)) with µ ∈ (0, 1). Then(

d

dt
+ A(·) + R(·), γ

)
∈ Isom(E1(J ), E0(J ) × Eµ).
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Proof. (a) We refer to [3, Theorem III.2.6.1 and Remark III.3.4.2(c)].

(b) (i) We can write(
d

dt
+ A(·) + R(·), γ

)
=

[
(id, id)+(R(·)+A(·)−A(0), 0)

(
d

dt
+A0, γ

)−1
] (

d

dt
+A0, γ

)

whereA0 := A(0) and where(id, id) := (idE0(J ), idEµ). Let (f, x) ∈ E1(J ) ×
Eµ be given. There exists a constantM = M(J) ≥ 1 such that

t1−µ

∥∥∥∥∥(A(t) − A(0))

(
d

dt
+ A0, γ

)−1

(f, x)

∥∥∥∥∥
E0

≤ M sup
τ∈[0,t1]

‖A(τ) − A(0)‖L(E1,E0)‖(f, x)‖E0([0,t1])×Eµ

and

t1−µ

∥∥∥∥∥R(t)

(
d

dt
+ A0, γ

)−1

(f, x)

∥∥∥∥∥
E0

≤ t1−µ‖R(t)‖L(Eµ,E0)(‖(KA0f )(t)‖Eµ + ‖e−tA0x‖Eµ)

≤ M sup
τ∈[0,t1]

τ1−µ‖R(τ)‖L(Eµ,E0)‖(f, x)‖E0([0,t1])×Eµ

for anyt1 ∈ J̇ andt ∈ (0, t1]. The estimates imply that∥∥∥∥∥(R(·) + A(·) − A(0), 0)

(
d

dt
+ A0, γ

)−1
∥∥∥∥∥L(E0(J1)×Eµ)

≤ 1/2, J1 := [0, t1],

providedt1 is sufficiently small and we conclude that(
d

dt
+ A(·) + R(·), γ

)
∈ Isom(E1(J1), E0(J1) × Eµ).

(ii) It follows from our assumptions and from Lemma 2.6 and Lemma 2.7(c) that
the family {(A(t1 + s) + R(t1 + s)); s ∈ J2}, J2 := [0, T − t1], satisfies the
assumptions of part (a) withµ = 1. We conclude that(

d

dt
+A(t1+ ·)+R(t1+ ·), γ

)
∈ Isom(C1(J2, E0)

∩ C(J2, E0), C(J2, E0) × E1).

(iii) The assertion follows now from (i)–(ii). ¤
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REMARK 2.9. Lemma 2.2(a) was proved in [7], see also [12, Appendix]. In these
publications, the notationDA(θ) is usually used instead ofEθ . Lemma 2.2(b) was first
established in [15], see also the remark following the proof of [3, Theorem III.2.3.3]. The
fact thatMµ(E1, E0) is open inH(E1, E0) was shown in [4, Lemma 2.1]. Lemma 2.6
was proved in [4] for the caseσ = 1.

3. Local existence and uniqueness

In this section we study the existence of solutions to the quasilinear parabolic
Problem (1.1). To do so we will first introduce the notion of a solution. We assume
that

(A, f ) : V → H(E1, E0) × E0

whereV is a nonempty subset ofE0. Let x ∈ V be given and letJ ⊂ R
+ := [0, ∞) be an

interval which contains 0. By asolutionu of (1.1) onJ we mean a function

u ∈ C1(J̇ , E0) ∩ C(J̇ , E1) ∩ C(J, V )

which satisfies{
u̇(t) + A(u(t))u(t) = f (u(t)), t ∈ J̇ ,

u(0) = x,

whereJ̇ = J\{0}. We are ready to prove the following fundamental local existence, unique-
ness and continuity theorem for quasilinear parabolic evolution equations.

THEOREM 3.1. Let α ∈ (0, 1) be fixed and letEα := (E0, E1)α be a continuous
interpolation space. Assume thatVα ⊂ Eα is open and that

(A, f ) ∈ C1−(Vα, Mα(E1, E0) × E0). (3.1)

(a) For everyx0 in Vα there exist positive constantsτ = τ(x0), ε = ε(x0) andc = c(x0)

such that the quasilinear evolution equation(1.1) has a unique solution

u(·, x) ∈ BUC1
1−α([0, τ ], E0) ∩ BUC1−α([0, τ ], E1) (3.2)

on [0, τ ] for any initial valuex ∈ B̄Eα (x0, ε). Moreover,

u(·, x) ∈ BUC([0, τ ], Vα) ∩ BUCα−β([0, τ ], Eβ) (3.3)

for anyβ ∈ [0, α), whereEβ := (E0, E1)β , and

‖u(·, x) − u(·, y)‖C([0,τ ],Eα) ≤ c‖x − y‖Eα , x, y ∈ B̄Eα (x0, ε). (3.4)
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(b) LetS ⊂ Vα be compact. Then there exist bounded closed neighborhoodsU andW

of S and constantsτ, c > 0 such that

• S ⊂ U ⊂ ◦
W⊂ W ⊂ Vα

• The quasilinear Problem(1.1) has for eachx ∈ U a unique solution

u(·, x) ∈ BUC1
1−α([0, τ ], E0) ∩ BUC1−α([0, τ ], E1) ∩ BUC([0, τ ], Vα)

on [0, τ ] and

‖u(·, x) − u(·, y)‖C([0,τ ],Eα) ≤ c‖x − y‖, x, y ∈ U.

Proof. (a) In the following we set

E0(J ) := BUC1−α(J, E0),

E1(J ) := BUC1
1−α(J, E0) ∩ BUC1−α(J, E1)

where the meaning of the intervalJ will be evident from the context. It is clear that
Problem (1.1) is equivalent to the evolution equation{

u̇ + Au = B(u)u + f (u),

u(0) = x,
(3.5)

whereA := A(x0) and B(z) := A(x0) − A(z) for z ∈ Vα. We conclude that
B ∈ C1−(Vα, L(E1, E0)) and thatB(x0) = 0. In the following we assume thatEα

is equipped with the (equivalent) norm

‖ · ‖Eα := sup
s>0

s1−α‖(ω + A)e−s(ω+A) · ‖E0

whereω is a fixed number such thattype(−(ω + A)) < 0. LetT > 0 be fixed and
let J := [0, T ]. It follows from Lemma 2.2(c) that there exists a constantM1 ≥ 1
such that

‖u‖C(Jτ ,Eα) ≤ M1‖u‖E1(Jτ ), u ∈ E1(Jτ ), u(0) = 0, Jτ = [0, τ ] ⊂ J. (3.6)

Moreover, we obtain

‖e−tAz‖E1(Jτ ) ≤ c(ω)eωT sup
s>0

s1−α‖(ω + A)e−s(ω+A)z‖E0 ≤ M2‖z‖Eα (3.7)

for z ∈ Eα andJτ ⊂ J . Let ‖KA‖ := ‖KA‖L(E0(J ),E1(J )). Then there exist positive
constantsρ0, b, andL ≥ 1 such thatBEα (x0, 2ρ0) ⊂ Vα and such that

‖B(z)‖L(E1,E0) ≤ 1

4‖KA‖M1
, ‖f (z)‖ ≤ b, z ∈ B̄Eα (x0, ρ0),

(3.8)
‖(B, f )(z1) − (B, f )(z2)‖L(E1,E0)×E0 ≤ L‖z1 − z2‖Eα ,
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wherez1, z2 ∈ B̄Eα (x0, ρ0). Let ε0 := min(ρ0, (4‖KA‖M1L)−1). Then we find a
numberT1 ∈ J such that

‖e−tAx0 − x0‖Eα ≤ ε0/2, t ∈ J1 := [0, T1],

(3.9)
‖e−tAx0‖E1(J1) ≤ ε0/2.

The first inequality in (3.9) follows from the strong continuity of the semigroup
{e−tA; t ≥ 0} on Eα, whereas the second one is a consequence of Remark 2.1(c).
Let τ ≤ T1 be given and setJτ = [0, τ ]. For x ∈ B̄Eα (0, ε) with 2M2ε ≤ ε0 we set

Wx(Jτ ) := {v ∈ E1(Jτ ); v(0) = x, ‖v − x0‖C(Jτ ,Eα) ≤ ε0} ∩ B̄ E1(Jτ )(0, ε0)

and equip this set with the topology ofE1(Jτ ). It follows from Lemma 2.2(b) that
Wx(Jτ ) is a closed subset ofE1(Jτ ) and thus is a complete metric space. (3.7)
and (3.9) yield [t 7→ e−tAx] ∈ Wx(Jτ ), showing thatWx(Jτ ) is nonempty. Let
v ∈ Wx(Jτ ) be given. Then we obtain from (3.8)

t1−α‖B(v(t))v(t)+f (v(t))‖E0

≤ ‖B(v(t))‖L(E1,E0)t
1−α‖v(t)‖E1 + t1−α‖f (v(t))‖E0

(3.10)
≤ 1

4‖KA‖M1
‖v‖E1(Jτ )+τ1−αb

≤ ε0

4‖KA‖M1
+ τ1−αb, t ∈ Jτ .

It follows from Lemma 2.2(b), the mapping properties of(B, f ), and the estimates
above thatB(v)v + f (v) ∈ E0(Jτ ) for anyv ∈ Wx(Jτ ). (2.9) and Remark 2.4(b)
imply that the mapping

Gx : Wx(Jτ ) → E1(Jτ ), Gx(v) := e−tAx + KA(B(v)v + f (v))

is well defined for anyx ∈ B̄Eα (0, ε).

(i) It follows from (3.6), (3.9)–(3.10), and from the strong continuity of the semi-
group{e−tA; t ≥ 0} onEα that

‖Gx(v) − x0‖C(Jτ ,Eα)

≤ ‖e−tA(x − x0)‖C(Jτ ,Eα) + ‖e−tAx0 − x0‖C(Jτ ,Eα)

+ ‖KA(B(v)v + f (v))‖C(Jτ ,Eα)

≤ c‖x − x0‖Eα + ε0

2
+ M1‖KA‖

(
ε0

4‖KA‖M1
+ τ1−αb

)
≤ ε0,

provided that‖x−x0‖Eα ≤ ε for a sufficiently small numberε and provided that
τ is small enough. We can always makeτ smaller since the relevant constants
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and‖KA‖L(E0(Jτ ),E1(Jτ )) are independent ofJτ ⊂ J , see Lemma 2.7(a). Addi-
tionally, we also obtain

‖Gx(v)‖E1(Jτ ) ≤ ‖e−tA(x − x0)‖E1(Jτ ) + ‖e−tAx0‖E1(Jτ )

+ ‖KA(B(v) + f (v))‖E1(Jτ )

≤ M2‖x − x0‖Eα + ε0

2
+ ‖KA‖(

ε0

4‖KA‖M1
+ τ1−αb

)
≤ ε0

if ε andτ are small enough. Lastly, observe thatGx(v)(0) = x. We have shown
thatGx(Wx(Jτ )) ⊂ Wx(Jτ ) for all x ∈ B̄Eα (x0, ε), provided thatε andτ are
sufficiently small.

(ii) Let x1, x2 ∈ B̄Eα (x0, ε) be given and pickv1 ∈ Wx1(Jτ ) andv2 ∈ Wx2(Jτ ). It
follows from (3.7) that

‖e−tA(x1 − x2)‖E1(Jτ ) ≤ M2‖x1 − x2‖Eα . (3.11)

Moreover, we obtain from (3.6) that

‖(v1 − v2) − e−tA(x1 − x2)‖C(Jτ ,Eα) ≤ M1‖
(v1 − v2) − e−tA(x1 − x2)‖E1(Jτ ).

This estimate together with (3.11) immediately yields

‖v1 − v2‖C(Jτ ,Eα) ≤ M1‖v1 − v2‖E1(Jτ )

(3.12)
+ M2(1 + M1)‖x1 − x2‖Eα .

Next observe that

‖B(v1)(v1 − v2)‖E0(Jτ ) ≤ 1

4‖KA‖M1
‖v1 − v2‖E1(Jτ ),

‖(B(v1) − B(v2))v2‖E0(Jτ ) ≤ L‖v1 − v2‖C(J,Eα)‖v2‖E1(Jτ )
(3.13)

≤ ε0L‖v1 − v2‖C(Jτ ,Eα),

‖f (v1) − f (v2)‖E0(Jτ ) ≤ Lτ1−α‖v1 − v2‖C(Jτ ,Eα).

If follows from the definition ofε0 and from (3.11)–(3.13) that there exists a
constantc2 > 0 such that

‖Gx1(v1) − Gx2(v2)‖E1(Jτ ) ≤ c2‖x1 − x2‖Eα

+
(

1

2
+ ‖KA‖M1Lτ1−α

)
‖v1 − v2‖E1(Jτ ) (3.14)

≤ c2‖x1 − x2‖Eα + 3

4
‖v1 − v2‖E1(Jτ )

provided thatτ is chosen small enough.
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(iii) As a particular case we obtain from (3.14) that

‖Gx(v1) − Gx(v2)‖E1(Jτ ) ≤ 3

4
‖v1 − v2‖E1(Jτ ),

x ∈ B̄Eα (x0, ε), v1, v2 ∈ Wx(Jτ ).

(iv) It follows from (i)–(iii) and Banach’s fixed point theorem that the mappingGx

has a unique fixed point

u(·, x) ∈ Wx(Jτ ) ⊂ BUC1
1−α(Jτ , E0) ∩ BUC1−α(Jτ , E1) (3.15)

for eachx ∈ B̄Eα (x0, ε). (3.2) and the additional regularity assertions follow
now from (3.15) and Lemma 2.2(d).

(v) We infer from (3.14) that

‖u(·, x) − u(·, y)‖E1(Jτ ) ≤ 4c2‖x − y‖Eα , x, y ∈ B̄Eα (x0, ε)

and (3.4) follows from Lemma 2.2(d).
(vi) Supposeu1 andu2 are two solutions of (1.1) which satisfy (3.2). Let

τ1 := sup{t ∈ [0, τ ]; u1(s) = u2(s) ∀ 0 ≤ s < t}.
Sinceu1 andu2 satisfy (3.2) we conclude that both belong to the set

{v ∈ E1(Jτ∗); v(0) = x, ‖v − x‖C(Jτ∗ ,Eα) ≤ ε0} ∩ B̄ E1(Jτ∗ )(0, ε0)

providedτ ∗ is sufficiently small. Banach’s fixed point theorem provides a unique
solution in this set and we conclude thatτ1 > 0. Assume thatτ1 < τ . It is clear
thatu1(τ1) = u2(τ1) =: y. Let vj (t) := uj (t + τ1), j = 1, 2, with t ∈ J2 :=
[0, τ2] for someτ2 ∈ (0, τ − τ1]. Thenv1, v2 ∈ C1(J2, E0) ∩ C(J2, E1), and
v1, v2 solve

u̇ + A(u)u = f (u), u(0) = y.

If τ2 is small enough, thenv1 andv2 belong to the set

{v ∈ E1(J2); v(0) = y, ‖v − y‖C(J2,Eα) ≤ ε0} ∩ B̄ E1(J2)(0, ε0)

and we conclude once again thatv1 = v2. Therefore,u1 andu2 coincide on the
interval [0, τ1 + τ2], thus contradicting the definition ofτ1.

(b) Part (b) follows from part (a) by a compactness argument. ¤

REMARK 3.2. (a) Theorem 3.1 shows that solutions of (1.1) starting out inEα

immediately regularize and are inE1 for any positive timet > 0. This is an impor-
tant feature of quasilinear parabolic evolution equations which has far reaching
consequences for questions related to global existence and the regularity of solu-
tions. It should also be noted that (3.2) gives a precise statement about the rate of
regularization ast approaches 0.

(b) The formulation of Theorem 3.1(b) is inspired by [1, Proposition 6.1].
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4. Global existence

In order to formulate our next result on global existence we need to introduce some more
notation. AssumeJ ⊂ R

+ is an interval which contains 0 and is right open. Ifµ ∈ (0, 1]
andE is a Banach space we set

C1−µ(J, E) := {v ∈ C(J̇ , E); v ∈ BUC1−µ([0, T ], E), T < supJ },
C1

1−µ(J, E) := {v ∈ C1(J̇ , E); v, v̇ ∈ C1−µ(J, E)}
and equip these spaces with the natural Fréchet topology induced by the topology of
BUC1−µ([0, T ], E) andBUC1

1−µ([0, T ], E), respectively. We recall that in caseµ = 1
we obtain

C1
0(J, E) := C1(J, E), C0(J, E) := C(J, E),

with the Fŕechet topology of uniform convergence on compact subsets ofJ .
Let u be a solution of (1.1) on an intervalJ . Thenu is called amaximal solutionif there

does not exist a solutionv on an intervalJ ′ strictly containingJ such thatv|J = u. If u

is a maximal solution,J is called themaximal interval of existence. Finally, u is called a
global solution ifJ = R

+.
We are now ready to formulate our main result on global existence and uniqueness.

THEOREM 4.1. Let α ∈ (0, 1) be fixed and letEα := (E0, E1)α be a continuous
interpolation space. Assume thatVα ⊂ Eα is open and that

(A, f ) ∈ C1−(Vα, Mα(E1, E0) × E0).

(a) The quasilinear evolution equation(1.1) has for each initial valuex ∈ Vα a unique
maximal solution

u(·, x) ∈ C1
1−α(J (x), E0) ∩ C1−α(J (x), E1). (4.1)

The maximal interval of existenceJ (x) is open inR
+. Moreover,

u(·, x) ∈ C(J (x), Vα) ∩ Cα−β(J (x), Eβ)

for anyβ ∈ [0, α), whereEβ := (E0, E1)β .
(b) Assume thatx ∈ Vα ∩ Eδ for someδ ∈ (α, 1]. Then

u(·, x) ∈ C1
1−δ(J (x), E0) ∩ C1−δ(J (x), E1) ∩ C(J (x), Eδ).

(c) Letx ∈ Vα be given and suppose thatt+(x) := supJ (x) < ∞. Then the following
alternatives hold:

• dist(u(t, x), ∂Vα) → 0 ast → t+(x), or
• u(·, x) /∈ UC([0, t+(x)), Eα).
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(d) Suppose that the embeddingE1 ↪→ E0 is compact. Letx ∈ Vα be given and suppose
that t+(x) < ∞. Then either

• dist(u(t, x), ∂Vα) → 0 ast → t+(x), or
• ‖u(t, x)‖Eδ → ∞ for eachδ ∈ (α, 1] ast → t+(x).

(e) Suppose thatE1 ↪→ E0 is compact, that the orbitγ (x) is bounded inEδ for some
δ > α and bounded away from∂Vα. Thent+(x) = ∞. If, in addition,u(·, x) ∈
UC(R+, Eα), then{u(t, x); t ≥ τ } is bounded inE1 for anyτ > 0.

Proof. (a) (i) It follows from Theorem 3.1(a) that there exists a numberτ1 such that the
quasilinear Problem (1.1) has a unique solution

u1 ∈ E1(J1) := BUC1
1−µ(J1, E0) ∩ BUC1−µ(J1, E1), (4.2)

whereJ1 := [0, τ1]. Let x1 := u1(τ1). Thenx1 ∈ Vα ∩ E1 and we can apply
Theorem 3.1(a) once again to obtain a unique solutionu2 ∈ E1(J2)∩C(J2, Eα)

of

u̇ + A(u)u = f (u), u(0) = x1,

whereJ2 := [0, τ2]. Clearly, u2 solves the inhomogeneous linear Cauchy
problem

u̇ + Ā(t)u = f̄ (t), t ∈ J2, u(0) = x1, (4.3)

whereĀ(t) := A(u2(t)) andf̄ (t) := f (u2(t)) for t ∈ J2. It follows from the
mapping properties of(A, f ) that

(Ā, f̄ ) ∈ BUC(J2, L(E1, E0) × E0). (4.4)

In particular, note that̄f ∈ BUC(J2, E0) ⊂ E0(J2).We infer from Lemma 2.8(a)
thatu2 is the unique solution of (4.3) inE1(J2). On the other side, we obtain
from Lemma 2.6 thatĀ(s) ∈ M1(E1, E0) for s ∈ J2, and Lemma 2.8(a) now
yields

v :=
(

d

dt
+ Ā(·), γ

)−1

(f̄ , x1) ∈ C1(J2, E0) ∩ C(J2, E1) ⊂ E1(J2)

due to the fact that(f̄ , x1) ∈ BUC(J2, E0)×E1. By the uniqueness of solutions
of (4.3) inE1(J2) we conclude that

u2 = v ∈ C1(J2, E0) ∩ C(J2, E1). (4.5)

Let

u(t) :=
{

u1(t) for 0 ≤ t ≤ τ1,
u2(t − τ1) for τ1 ≤ t ≤ τ1 + τ2
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and setJ = [0, τ1+τ2]. If follows from (4.2) and (4.5) thatu ∈ BUC1−µ(J, E1).
Moreover,u̇1(τ1) = −A(x1)x1+f (x1) = u̇2(0) and thusu ∈ BUC1

1−µ(J, E0).
We conclude from Lemma 2.2(d) that

u ∈ BUC1
1−µ(J, E0) ∩ BUC1−µ(J, E1) ∩ BUCα−β(J, Eβ)

and thatu is a solution of (1.1) onJ .
(ii) Let

J (x) :=
⋃

{[0, τ ]; (1.1) has a solution on [0, τ ]}.
It is clear thatJ (x) is right open, since we could otherwise repeat the steps of
part (i) which contradicts the definition ofJ (x). The construction in (i) shows
that the maximal solutionu(·, x) is unique and satisfies (4.1).

(b) Let T ∈ J̇ (x) be arbitrary and setI := [0, T ]. It follows from step (a) that the
maximal solutionu(·, x) of (1.1) satisfies

u(·, x) ∈ BUC1
1−α(I, E0) ∩ BUC1−α(I, E1) ∩ BUC(I, Vα). (4.6)

Let Ā(t) := A(u(t, x)), f̄ (t) := f (u(t, x)) for t ∈ I . We conclude that

(Ā, f̄ ) ∈ BUC(I, L(E1, E0) × E0) (4.7)

and thatv := u(·, x)|I is the unique solution of the inhomogeneous linear problem

v̇ + Ā(t)v = f̄ (t), t ∈ I, v(0) = x

in the set (4.6). Lemma 2.6, Lemma 2.8(a) and (4.7), on the other side, yield

w :=
(

d

dt
+ Ā(·), γ

)−1

(f̄ , x) ∈ BUC1
1−δ(I, E0) ∩ BUC1−δ(I, E1)

due to the fact that(f̄ , x) ∈ BUC1−δ(I, E0) × Eδ. Since

BUC1
1−δ(I, E0) ∩ BUC1−δ(I, E1) ↪→ BUC1

1−α(I, E0) ∩ BUC1−α(I, E1)

we conclude thatv = w, that is,v has the same regularity asw. SinceT ∈ J (x)

can be chosen arbitrarily, the assertion follows from Lemma 2.2(b).
(c) We argue by contradiction and assume thatu ∈ UC([0, t+), Eα), and that

dist(u(t, x), ∂Vα) 6→ 0 as t → t+, wheret+ := t+(x). Let S be the closure
of {u(t, x); 0 ≤ t < t+} in Eα. Sinceu ∈ UC([0, t+), Eα) we conclude thatS
is compact inVα and it follows from Theorem 3.1(b) that there exists a number
τ = τ(S) > 0 such that the quasilinear equation (1.1) has a unique solution

v(·, y) ∈ BUC1
1−α([0, τ ], E0) ∩ BUC1−α([0, τ ], E1) (4.8)

on [0, τ ] for any y ∈ S. We chooset1 ∈ (0, t+) such thatt1 + τ > t+ and we
setx1 := u(t1, x) andv1 := v(·, x1). Sincex1 ∈ Vα ∩ E1 we infer from (4.8) and
step (b) thatv1 enjoys the regularity property

v1 ∈ C1([0, τ ], E0) ∩ C([0, τ ], E1). (4.9)
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Let

u(t) :=
{

u(t, x) for 0 ≤ t ≤ t1,
v1(t − t1) for t1 ≤ t ≤ t1 + τ

and setI := [0, t1 + τ ]. We conclude that

u ∈ BUC1
1−α(I, E0) ∩ BUC1−α(I, E1),

and thatu is a solution of the quasilinear equation (1.1) with initial valuex. Hence,
u is a proper extension ofu(·, x), contradicting the maximality ofu(·, x).

(d) Suppose the claim is not correct. Then there exists a numberδ ∈ (α, 1], numbers
r, R > 0, a setU ⊂ Vα, and a sequence(tk) such that

• dist(U, ∂Vα) ≥ r,
• tk → t+(x) ask → ∞,
• u(tk, x) ∈ U ∩ BEδ (0, R) for everyk ∈ N.

Let S be the closure of{u(tk, x); k ∈ N} in Eα. It follows from the compact embed-
dingEδ ↪→ Eα thatS is a compact subset ofVα. As in part (c) we conclude that the
solutionu(·, x) can be continued beyondt+(x), which leads to a contradiction.

(e) It follows from part (d) of the theorem thatt+(x) = ∞. Next, we infer from the
compact embeddingEδ ↪→ Eα thatγ (x) is relatively compact inVα. Since locally
Lipschitz continuous functions are uniformly Lipschitz continuous on compact sets
we conclude that there exists a constantL such that

‖(A, f )(z1) − (A, f )(z2)‖L(E1,E0)×E0 ≤ L‖z1 − z2‖Eα , z1, z2 ∈ γ (x). (4.10)

In the sequel we set(Ā(t), f̄ (t)) := A(u(t, x)), f (u(t, x)) for t ∈ R
+. It is a

consequence of (4.10) and our assumptions that

(Ā, f̄ ) ∈ BUC(R+, L(E1, E0) × E0). (4.11)

We infer from Lemma 2.5(b) and Lemma 2.6 that there exists a constantM ≥ 1
such that∥∥∥∥∥
(

d

dt
+ Ā(s), γ

)−1
∥∥∥∥∥L(C(I,E0)×E1,C

1(I,E0)∩C(I,E1))

≤ M, s ∈ R
+, (4.12)

whereI := [0, 1]. It is then easy to see that

‖Kω+Ā(s)‖L(C(I,E0),C(I,E1)) ≤ M, ‖e−t (ω+Ā(s))‖L(E1) ≤ Me−wt (4.13)

for any t ∈ I, s ∈ R
+ and anyω ≥ 0. Letη := (4M2)−1. It follows from (4.11)

that there are numbersT ∈ (0, 1] andω = ω(T ) > 0 such that

Me−ωT < 1/2, ‖Ā(s + τ) − Ā(s)‖L(E1,E0) ≤ η, τ ∈ [0, T ], s ∈ R
+. (4.14)
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Next we observe thatu := u(·, x) is the unique solution of(
d

dt
+ ω + Ā(·), γ

)
u = (ωu + f̄ , x) =: (g, x) on R

+.

Sinceu(τ) ∈ E1 for anyτ > 0 we can, and will, assume thatx ∈ E1. Let n ∈ N
∗

be an arbitrary integer and letvj (t) := u(jT + t) for t ∈ [0, T ] andj ∈ {0, . . . , n}.
Then it is clear thatvj is the unique solution of(

d

dt
+ ω + Ā(jT + ·), γ

)
v = (gj , u(jT )) on I,

wheregj (t) := g(jT + t) for t ∈ [0, T ]. It follows from (4.12)–(4.14) thatvj

admits the following representation:

vj =
(

d

dt
+ ω + Āj , γ

)−1
[
(id, id) + (Bj (·), 0)

(
d

dt
+ ω + Āj , γ

)−1
]−1

(gj , u(jT ))

= Kw+Āj
[1 + Bj (·)Kω+Āj

]−1(gj − Bj (·)e−·(ω+Āj )

u(jT )) + e−·(ω+Āj )u(jT ),

whereĀj := Ā(jT ), Bj (τ) := (Ā(jT + τ) − Ā(jT )) for τ ∈ [0, T ] and where
(id, id) := (idC(I,E0), idE1). Thanks to (4.13) and (4.14) we have

‖Kw+Āj
[1 + Bj (·)Kω+Āj

]−1‖L(C(I,E0),C(I,E1)) ≤ 2M, j ∈ {0, . . . , n}.
It follows now from the representation formula forvj and from (4.14) thatu(nT ) =
vn−1(T ) satisfies the estimate

‖u(nT )‖E1 ≤ 2M‖g‖L∞(R+,E0)
(1 + q + · · · qn−1) + qn‖x‖E1

(4.15)
≤ 2M(1 − q)−1‖g‖L∞(R+,E0)

+ ‖x‖E1

sinceq := (2M2η + Me−ωT ) < 1. Let t > 0 be arbitrary. Then we find a
numbern ∈ N and a numberτ ∈ [0, T ) such thatt = nT + τ . Observing that
u(t) = u(nT + τ) = vn(τ ) we can use the representation formula forvn and (4.15)
to conclude that

‖u(t)‖E1 ≤ 2M‖g‖L∞(R+,E0)
+ (2M2η + M)‖u(nT )‖E1

(4.16)
≤ c(ω‖u‖L∞(R+,E0)

+ ‖f̄ ‖L∞(R+,E0)
+ ‖x‖E1)

with a universal constantc. ¤
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5. The semiflow property

Let X = (X, d) be a metric space and lett+ : X → (0, ∞] be a mapping. Then we
define

D :=
⋃
x∈X

[0, t+) × {x}.

For a given mapϕ : D → X we use the notationϕt (x) := ϕ(t, x). Thenϕ is called a
continuous (local)semiflowonX if

• D is open inR
+ × V ,

• ϕ ∈ C(D, X),
• ϕ0 = idX,
• ϕs+t (x) = ϕt ◦ ϕs(x) whenever 0≤ s < t+(x) and 0≤ t < t+(ϕs(x)).

We writeϕ ∈ C0,1−(D, X) if

• ϕ ∈ C(D, X),
• for every point(t0, x0) ∈ D there exist a product neighborhoodU × V ⊂ D and a

constantc > 0 such that

d(ϕt (x), ϕt (y)) ≤ cd(x, y), (t, x), (t, y) ∈ U × V.

A semiflowϕ is called (locally) Lipschitz continuous ifϕ ∈ C0,1−(D, X).
The following result shows that the quasilinear parabolic evolution equation (1.1) gene-

rates a locally Lipschitz continuous semiflow onVα.

THEOREM 5.1. Let α ∈ (0, 1) be fixed and letEα := (E0, E1)α be a continuous
interpolation space. Assume thatVα ⊂ Eα is open and that

(A, f ) ∈ C1−(Vα, Mα(E1, E0) × E0).

ThenD := ⋃
x∈Vα

J (x) × {x} is open inR
+ × Vα and

[(t, x) 7→ u(t, x)] ∈ C0,1−(D, Vα). (5.1)

The map[(t, x) 7→ u(t, x)] defines a locally Lipschitz continuous semiflow onVα.

Proof. Here we follow the arguments used in the proof of [1, Theorem 7.2]. Let
(t0, x0) ∈ D be given and letS := {u(t, x0), 0 ≤ t ≤ t0}. Sinceu(·, x0) ∈ C([0, t0], Vα)

we conclude thatS is compact inVα. According to Theorem 3.1(b) there exist numbers
ε, τ, L > 0 such that

• B̄Eα (S, ε) ⊂ Vα,

• u(·, x) is defined on [0, τ ] for eachx ∈ B̄Eα (S, ε), (5.2)

• ‖u(s, x) − u(s, y)‖Eα ≤ L‖x − y‖Eα for eachx, y ∈ B̄Eα (S, ε), s ∈ [0, τ ].
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Without loss of generality we can assume thatL ≥ 1. Next we fix numbers{τj ; j =
0, . . . , m + 1} such that

0 =: τ0 < τ1 < · · · τm := t0, τm+1 := t0 + τ

and such thatτj+1 − τj ≤ τ for j = 0, . . . , m. Finally we setεj := Lj−m−1ε for
j = 0, . . . , m + 1. Clearly we haveεj ≤ ε andεj+1 = Lεj for eachj . It follows from
(5.2) thatu(·, x) exists on [0, τj+1−τj ] for eachx ∈ B̄Eα (u(τj , x0), εj ) andj = 0, . . . , m.
Moreover, we conclude from (5.2) that

u(s, x) ∈ B̄Eα (u(s + τj , x0), εj+1), s ∈ [0, τj+1 − τj ],
(5.3)

‖u(s, x) − u(s, y)‖Eα ≤ L‖x − y‖Eα , s ∈ [0, τj+1 − τj ]

for eachx, y ∈ B̄Eα (u(τj , x0), εj ) andj = 0, . . . , m.

(i) We infer from the first line in (5.3) that [0, t0 + τ ] ⊂ J (x) and that

u(t, x) ∈ B̄Eα (S, ε) (t, x) ∈ [0, t0 + τ ] × B̄Eα (x0, ε0). (5.4)

Hence [0, t0 + τ ] × B̄Eα (x0, ε0) ⊂ D, showing thatD is open inR
+ × Vα.

(ii) It follows from the second line of equation (5.3) that there exists ac such that

‖u(t, x) − u(t, y)‖Eα ≤ c‖x − y‖Eα ,

(5.5)
(t, x), (t, y) ∈ [0, t0+τ ] × B̄Eα (x0, ε0).

We have proved that the mapping [x 7→ u(t, x)] : B̄Eα (x0, ε0) → Vα is (globally)
Lipschitz continuous, uniformly int ∈ [0, t0 + τ ]. Moreover, it follows from (5.5)
that

‖u(t, x) − u(t0, x0)‖Eα ≤ c‖x − x0‖Eα + ‖u(t, x0) − u(t0, x0)‖Eα

for (t, x) ∈ [0, t0 + τ ] × B̄Eα (x0, ε0). Sinceu(·, x0) ∈ C([0, t0 + τ ], Eα) we
conclude that the mapping [(t, x) 7→ u(t, x)] is continuous onD. This and (5.5)
shows (5.1).

(iii) The semiflow property in an immediate consequence of Theorem 4.1 and this com-
pletes the Proof of Theorem 5.1. ¤

REMARKS 5.2. (a) Suppose that(E0, E1) is a densely injected couple of Banach
spaces and that(·, ·)θ is an admissible interpolation functor, that is,(·, ·)θ is for each
θ ∈ (0, 1) an interpolation functor of exponentθ such thatE1 is densely embedded in
Eθ := (E0, E1)θ . Then the following result has been obtained in [2, Theorem 12.1]:
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THEOREM. (Amann)Suppose that0 < γ ≤ α < σ < 1, that Vα is open in
Eα, and

(A, f ) ∈ C1−(Vα, H(E1, E0) × Eγ ).

Then Problem(1.1) has for eachx ∈ Vσ := Eσ ∩ Vα a unique maximal solution

u(·, x) ∈ C1(J̇ , E0) ∩ C(J̇ , E1) ∩ C(J, Vσ ) ∩ Cσ (J, E0),

whereJ = [0, t+(x)), and whereVσ is equipped with the topology ofEσ . Moreover,
[(t, x) 7→ u(t, x)] ∈ C0,1−(D, Vσ ).

Amann’s result gives great flexibility for the choice of the interpolation spaces, and
there are no geometric restrictions on the Banach spacesE1 andE0. Theorems 3.1,
4.1 and 5.1, on the other side, do require stringent geometric conditions onE1 and
E0, subsumed in Definition 2.2, but provide sharper results: Hereσ = α andγ = 0
are admitted.

(b) In [4] local existence was proved for initial values inVσ for σ > α under the same
assumptions as in the present paper. This result was extended in [15, 16] and it was
shown that (1.1) generates a locally Lipschitz continuous semiflow onVσ , again with
σ > α.

(c) Our results concerning global existence, see Theorem 4.1(c), (d), (e), are similar to
the results stated in [3, Section 12].

(d) Under additional assumptions, the result of Amann stated in part (a) was extended in
[9] to include situations wereEσ is not necessarily an interpolation space between
E1 andE0.

6. Smoothness properties of solutions

Let ϕ : D → Vα be the semiflow generated by the quasilinear evolution equation (1.1).
Then we writeϕ ∈ C0,k(D, Vα) for k ∈ N

∗ ∪ {∞, ω} if

• ϕ(t, ·) ∈ Ck(Dt , Eα) for eacht ∈ R
+ with Dt := {x ∈ Vα; (t, x) ∈ D} 6= ∅,

• D
j

2ϕ ∈ C(D, Eα) for j = 0, . . . , k,

and we callϕ aCk-smooth semiflow.

THEOREM 6.1. Let α ∈ (0, 1) be fixed and letEα := (E0, E1)α be a continuous
interpolation space. Assume thatVα ⊂ Eα is open and that

(A, f ) ∈ Ck(Vα, Mα(E1, E0) × E0), k ∈ N
∗ ∪ {∞, ω}. (6.1)

Then the maximal solution of the quasilinear evolution equation(1.1) satisfies

u(·, x) ∈ Ck(J̇ , E1) ∩ Ck+1(J̇ , E0)



Vol. 1, 2001 Maximal regularity in continuous interpolation spaces 63

and

tm
(

d

dt

)m

u(·, x) ∈ C1
1−α(J, E0) ∩ C1−α(J, E1), m = 1, . . . , k, (6.2)

whereJ = [0, t+(x)). Moreover,

[(t, x) 7→ u(t, x)] ∈ C0,k(D, Vα) ∩ Ck(
o

D, Vα), (6.3)

where
o

D := {(t, x) ∈ D; t > 0}.
Proof. (i) Let T ∈ (0, t+(x)) be fixed and letI := [0, T ]. Then there exists a positive

numberδ > 0 such thatλt ∈ [0, t+(x)) for all (λ, t) ∈ 3 × I , where3 :=
(1 − δ, 1 + δ). We setuλ(t) := u(λt, x) for (λ, t) ∈ 3 × I. It is easy to verify
that uλ ∈ BUC1

1−α(I, E0) ∩ BUC1−α(I, E1) and thatuλ satisfies the parameter-
dependent evolution equation{

v̇ + λA(v)v = λf (v),

v(0) = x
(6.4)

on the intervalI .
(ii) Let i : BUC1

1−α(I, E0) ∩ BUC1−α(I, E1) 7→ BUC(I, Eα) be the inclusion map of
Lemma 2.2(b). SinceBUC(I, Vα) ⊂ BUC(I, Eα) is open we obtain that

Wα := i−1(BUC(I, Vα)) ⊂ BUC1
1−α(I, E0) ∩ BUC1−α(I, E1) =: E1(I )

is open. We now define the mapping

8 : Wα × 3 → BUC1−α(I, E0) × Eα

(6.5)

(v, λ) 7→
(

d

dt
v + λA(v)v − λf (v), γ v − x

)
.

Observe that8(uλ, λ) = 0 for λ ∈ 3. It is well-known that the mapping properties
of (A, f ) imply that

(A, f ) ∈ Ck(BUC(I, Vα), BUC(I, L(E1, E0)) × BUC(I, E0)).

Here we use the same notation for(A, f ) and the substitution operators induced by
(A, f ). It is not difficult to see that

[(B, v) 7→ Bv] : BUC(I, L(E1, E0)) × BUC1−α(I, E1) → BUC1−α(I, E0)

is continuous and bilinear, and thus real analytic. We conclude that

8 ∈ Ck(Wα × 3, BUC1−α(I, E0) × Eα). (6.6)
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(iii) Let D18 denote the Fŕechet derivative of8 with respect to the first variable. Then

D18(u1, 1)w =
(

d

dt
w + A(u1)w + (A′(u1)w)u1 + f ′(u1)w, γw

)
. (6.7)

It follows from (6.1) that the Fŕechet derivative(A′, f ′) of (A, f ) satisfies

(A′, f ′) ∈ C(Vα, L(Eα, L(E1, E0) × E0)). (6.8)

Let B(t) := A(u1(t)) + f ′(u1(t)) for t ∈ I . Moreover, given anyz ∈ Eα we set
R(t)z := (A′(u1(t))z)u1(t) for t ∈ İ . It follows from (6.8) and Lemma 2.7(c) that

B ∈ BUC(I, L(E1, E0)), B(s) ∈ Mα(E1, E0), s ∈ I,
(6.9)

R ∈ BUC1−α(I, L(Eα, E0)), ‖R‖BUC1−α(Jτ ,L(Eα,E0)) ≤ N‖u1‖E1(Jτ )

where the constantN is independent ofJτ := [0, τ ] ⊂ I . We conclude from (6.7),
(6.9), and Lemma 2.8(b) that

D18(u1, 1) ∈ Isom(E1(I ), E0(I ) × Eα). (6.10)

It follows from the Implicit Function Theorem that the equation8(v, λ) = 0 can
be solved uniquely in terms ofλ in a neighborhood of 1. Since8(uλ, λ) = 0 we
conclude from (6.6), (6.10) and the Implicit Function Theorem that there exists a
numberε ∈ (0, δ) such that

[λ 7→ uλ] ∈ Ck((1 − ε, 1 + ε), E1(I )). (6.11)

Let t0 ∈ İ be fixed. Givenu ∈ E1(I ) we definee(u) := u(t0). It is easy to verify
thate ∈ L(E1(I ), E1) and it follows from (6.11) that

[λ 7→ uλ(t0) = u1(λt0)] ∈ Ck((1 − ε, 1 + ε), E1).

Since this is true for any numbert0 ∈ İ we conclude thatu1 ∈ Ck(İ , E1). It is now
easy to see that(

d

dλ

)m

uλ

∣∣
λ=1 = tm

(
d

dt

)m

u1 ∈ E1(I ), m = 1, . . . , k.

Since this is true for any intervalI = [0, T ] ⊂ [0, t+(x)) we have proved the first
part of Theorem 6.1.

(iv) We now prove the first assertion in (6.3). Letx0 ∈ Vα andt0 ∈ [0, t+(x0)) be fixed.
Moreover, givenT ∈ (t0, t

+(x0)) let I := [0, T ]. It follows from Theorem 5.1
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that there exists a numberδ > 0 such thatt+(x) ≥ T for all x ∈ BEα (x0, δ). We
consider the mapping

8 : Wα × BEα (x0, δ) → BUC1−α(I, E0) × Eα

(6.12)

(v, x) 7→
(

d

dt
v + A(v)v − f (v), γ v − x

)
,

whereWα is defined in (ii). Letu1(·, x) := u(·, x)|I and note that8(u1(·, x), x) = 0
for x ∈ BEα (x0, δ). As in (ii) we obtain that8 is Ck-smooth. Moreover,

D18(u1, x0)w =
(

d

dt
w + A(u1)w + (A′(u1)w)u1 + f ′(u1)w, γw

)
,

where we setu1 := u1(·, x0). We conclude as in step (iii) thatD18(u1, x0) is
an isomorphism. The Implicit Function Theorem then implies that there exists a
numberε ∈ (0, δ) such that

[x 7→ u1(·, x)] ∈ Ck(BEα (x0, ε), E1(I )). (6.13)

Givenu ∈ BUC(I, Eα) we sete(u) := u(t0). Thene ∈ L(BUC(I, Eα), Eα) and
we conclude from (6.13) and Lemma 2.2(b) that the mapping

BEα (x0, ε)
Ck−→ E1(I )

i→ BUC(I, Eα)
e→ Eα, x 7→ u1(t0, x) (6.14)

is Ck-smooth. We have proved that [(t, x) 7→ u(t, x)] ∈ C0,k(D, Vα).
(v) Let x0 ∈ Vα andt0 ∈ [0, t+(x0)) be fixed. GivenT1∗ ∈ (t0, t

+(x0)) there exists a
numberδ > 0 such that thatt+(x) ≥ T1∗ for all x ∈ BEα (x0, δ). We now choose
T ∈ (t0, T1) and setI = [0, T ]. By making δ smaller if necessary we conclude
that λt ∈ [0, T1] for (λ, t) ∈ 3 × I . Given (λ, x) ∈ 3 × BEα (x0, δ) we set
uλ(·, x) := u(λ·, x)|I . Moreover, we define the mapping

8 : Wα × 3 × BEα (x0, δ) → BUC1−α(I, E0) × Eα

(6.15)

(v, (λ, x)) 7→
(

d

dt
v + λA(v)v − λf (v), γ v − x

)
.

It follows that 8(uλ(·, x), (λ, x)) = 0 for (λ, x) ∈ 3 × BEα (x0, δ). As before,
we conclude that the mapping8 is Ck-smooth and that the Fréchet derivative with
respect to the first variable is

D18(u1, (1, x0))w =
(

d

dt
w + A(u1)w + (A′(u1)w)u1 + f ′(u1)w, γw

)
.

The same arguments as above show that there exists a numberε ∈ (0, δ) such that

[(λ, x) 7→ uλ(·, x)] ∈ Ck((1 − ε, 1 + ε) × BEα (x0, ε), E1(I )). (6.16)
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Given u ∈ BUC(I, Eα) let e(u) := u(t0). Thene ∈ L(BUC(I, Eα), Eα) and it
follows that

(1 − ε, 1 + ε) × BEα (x0, ε)
Ck→ E1(I )

i→ BUC(I, Eα)
e→ Eα,

(6.17)
(λ, x) 7→ uλ(t0, x) = u1(λt0, x)

is Ck-smooth (for instance real analytic ifk = ω). We can now infer that

[(t, x) 7→ u(t, x)] ∈ Ck((t0 − ε0, t0 + ε0) × BEα (x0, ε), Vα) (6.18)

whereε0 := t0ε. We have proved that [(t, x) 7→ u(t, x)] ∈ Ck(
o

D, Vα). ¤

REMARKS 6.2. (a) Under stronger assumptions, smoothness properties of solu-
tions were also considered in [1].

(b) Theorem 6.1 improves on the results contained in [16], where it was shown that (1.1)
generates a smooth semiflow in the (stronger) topology ofEσ with σ > α.

(c) The idea to use the Implicit Function Theorem in the Proof of Theorem 6.1 is inspired
by [4].
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