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1. INTRODUCTION 

IN THIS PAPER we consider parameter-dependent quasilinear reaction-diffusion equations on a 
bounded domain of R”. It is our purpose to study the dynamical behavior of solutions to these 
equations. In particular, we are interested in the behavior of the solution set if the parameter 
is changed. To be more precise, let us assume that Sz C R” is a bounded domain having a 
smooth boundary. Then we consider the parameter-dependent equation 

[ 

a,# + @(A, U)U = f(A, *, 24) in Sz x (0, cx)), 

W, u)u = 0, . , u) on 13&2 x (O,oo), (l.l), 

U(0) = 240 in Sz. 

Here, u = (u’, . . . . uN) is a RN-valued function and I varies in an open subset A of some finite 
dimensional Banach space, say of R. Moreover, 

(W, u), WL u)) (1.2) 

denotes a very general boundary value system, where @.(A, U) stands for a system of second 
order quasilinear differential operators and @(A, U) denotes a system of quasilinear first order 
boundary operators. Being more specific, we consider the general second order differential 
operator 

@(A, U)U ‘= aj(Qjk(A, ‘3 U)d,U) + aj(A, ** U)djU + QC)(l, -7 U)U. (1.3) 

Since we allow u to be a vector valued function, the coefficients take values in the space d=(@“) 
of all (real) N x N-matrices. Note that we use the summation convention, where j and k run 
from 1 to n. Moreover, the dot stands for the space variable. Throughout, we assume the 
coefficients to be smooth functions of the variables, i.e. 

ajk, aj, Q E C”(A X fi X G, .J2(RRN)), (1.4) 

where G denotes an open subset in RN. @(A, U) then stands for the boundary operator 

@(A, U)U := d(ajk(A, *) u)vjydku + bo(A, -9 U)YU) + (1 - 6)yU. (1.5) 

t Supported by Schweizerischer Nationalfonds. 
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Here, y is the trace operator and v = (v’, . . . , v”) denotes the outer unit field on aa. Moreover, 
for 

6 := diag[6l, . . . . aN]: an + Se(@), 

the boundary characterization map, we assume that 6’ E C(X& 10, l)), 1 I r I N. Hence, 6’ 
assigns to each component of connectedness of &2 one of the values (0, 11. Thus, the function 
6 characterizes whether we have “Neumann type” or Dirichlet boundary conditions on a given 
component of aa. We assume that the function 6, depends smoothly on the indicated variables. 
In addition, let 

f~ C”(A x fi x G, lRN), g E C”(A x an x G, RN). (1.6) 

In order to have a powerful theory we shall impose an ellipticity and complementing condition 
upon the boundary value systems (@(A, u), &(A, u)). We will require that 

(@(A, u), @(A, u)) are normally elliptic for (A, U) E A x C(b, G). (1.7) 

We refer to [l], where the definition of normally elliptic boundary value problems is intro- 
duced. It should be noted that this definition weakens the ellipticity conditions usually imposed 
on systems. Moreover, the concept of normally elliptic boundary value systems is in a certain 
sense optimal, cf. [l, theorem 2.4; 2, theorem 4.1, remark 4.2~1. 

Note that (1. l)h is a system of parameter-dependent, strongly coupled reaction-diffusion 
equations subject to nonlinear boundary conditions. 

To give a simple example where our assumptions are met, we consider the special case 

ajk@, *, 24) = a(& *, U)Sj, and aj = a, = b, = 0 for 1 I j, k I n, where Sj, is the Kronecker 
symbol. Also, let a1 = ... = aN = 1 for the boundary characterization map. Then the 
quasilinear reaction-diffusion system (1. l), takes the form 

i 

a+ - aj(a(A, a, 24)aj24) = f(A, *, u) in Q x (0, co), 

a@, *, u)vjyau = g(A, -, 24) on an x (0, CO), (1% 

u(0) = q-J in Q. 

We assume that 

o(a(A, x, rl)) c [Ke z > 01, (I,x,q)~AxfixGG, 

where a(a(,l, x, 9)) denotes the spectrum of the N x N-matrix a@, x, q). Then 

(-aj(@, -, u)aj), aV,-, u)vjYaj) 

(1.9) 

defines a normally elliptic boundary value system, see [ 1, theorem 4.41. If N = 2 and the matrix 
a is given by 

a(&--6 vl) = 
[ 

a,dk x9 a) adA, x, rl) 
-adA x, II) 1 0 ’ 

(1.10) 

condition (1.9) is satisfied whenever 

a,,(& x, rl) > 0, a,,(& x, rl)a&, x, a) > 0, (1, x, u) E A x 0 x G. (1.11) 

First of all, we are interested in whether the quasilinear reaction-diffusion system (l.l)x does 
have a unique solution for a given initial value uO. After this very first question, we are 
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concerned with the dynamical behavior of solutions. Thanks to the very general results proven 
in [l], we already know that the quasilinear reaction-diffusion system (1 .l), generates a semi- 
flow on an open subset of an appropriate function space. Note that this property stands at the 
beginning of a thorough development of a geometric (or dynamic) theory for quasilinear 
equations which contain (1 .l)x as a prominent and important prototype. In fact, let p > n 
and set 

H& := (u E Hi@, iRN); (1 - 6)yu = O], V:= (U E H;,,; u(n) c G). (1.12) 

Owing to the trace theorem, Hd,a is a closed subspace of the Sobolev space H$2, RN). 
Moreover, it follows from Sobolev’s embedding theorem and the fact that fi is compact that I/ 

is a well-defined open subset of Hd,@. If we assume that (1 - S)g = 0, the following result is 

proven in [ 1,3]. 

Given any initial value uO, the parameter-dependent quasilinear reaction-diffusion 
system (1. l), has a unique maximal classical solution 

U(‘, uo, A) E C(]O, f+@o, 111, VI f-l C”@ x (0, f+No, A)), RN) 

satisfying ~(0, uo, A) = u. . The mapping 

(l, uo) - u(t, uo, A) 

defines a smooth semiflow on I/ depending smoothly on I E A. 

(1.13) 

(1.14) 

Important further questions are related to the existence of bifurcating solutions such as 
steady states and periodic solutions emerging from an equilibrium. We will now assume that 

0 E G and 

(A*, 0, A), g(*, 0, I)) = (0, O), A E A. (1.15) 

Then 0, i.e. the solution u = 0, is an equilibrium for the quasilinear system (1. 1)x and we may 
consider the linearization at this point. Thus, we consider the elliptic eigenvalue problem 

]-a@, 0) + %J-(L *, @Iv = P@)V in C& 

[--@(A, 0) + C&g@, *, O)]?J = 0 
(1.16)~ 

on an. 

Observe that (1.16), is well-posed since the &-realization has a compact resolvent. Then let 

l~c,@); k E N1, I E A, (l-17), 

denote the set of eigenvalues of (1.16), , each one counted according to its multiplicity. If we 
assume for the first moment that 

IP&); k E Nl c [Rez -C 01, A E A, 

then we infer from the principle of linearized stability that 0 is an asymptotically stable critical 
point for the semiflow induced by (l.l), . For a proof, see [4,5]. Indeed, in the case that there 
are no eigenvalues on the imaginary axis, the results in the latter paper imply in particular that 
0 is exponentially stable. Hence, the dynamical behavior of small solutions to the parameter- 
dependent equation (l.l)x remains essentially the same if I is changed. But there is a drastic 
change if some of the eigenvalues hit or cross the imaginary axis if A is varied. This situation 
occurs in the case of Hopf bifurcation, for example, where a pair of conjugate eigenvalues 
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crosses the imaginary axis, causing bifurcation of periodic solutions. It is this situation we 
would like to investigate in detail. 

We first establish the existence and attractivity of parameter-dependent, locally invariant 
manifolds, ‘X’(n), for the quasilinear reaction-diffusion system (1. 1)x. Using invariant (center) 
manifolds is a well-known approach to study (local) bifurcation of small solutions, such as 
periodic solutions or steady states. The method of invariant manifolds is common in dynamical 
systems and in ordinary differential equations and has also been used in the context of 
semilinear evolution equations, cf. [6-81. However, not much is done in the case of quasilinear 
equations. In fact, we shall use the results in [5] where the existence and attractivity of center 
manifolds in the case of quasilinear equations has been established for the first time. To be 
more precise, we were able to show that center manifolds exist and attract solutions in the 
topology of I/. (Note that V is a natural phase space for (1. l), , due to (1.13) and (1.14).) In 
order to prove this, we had to use maximal regularity results, cf. [9, lo]. But while maximal 
regularity results are only obtained in some very special spaces (the continuous interpolation 
spaces), we were able to overcome this restriction, cf. [5]. A slight modification of the results 
in [5] will cover the parameter-dependent case. To be more specific, we suppose that there exists 
Aa in A such that 

0, := lo,, . . ..P.(&)] C iK (T, := (,Yj(n,);j > J] C [Rez < 01. (1.18) 

Let 

X’ := @ IsjsJN(Pj(ACl))3 (1.19) 

be the “center space”, where N(pj(&,)) denotes the algebraic eigenspace of the eigenvalue 
pj(&). Note that each N(pj(&)) is finite dimensional since (1.16), has a compact resolvent. 

With this we can state the following theorem. 

THEOREM 1.1. Let k E /FJ* be given. Then the parameter-dependent quasilinear reaction- 

diffusion system 

a,u + a@, u)u = f@, *, u) in Q X (O,m), 
(1.20), 

@(A, u)u = g(A, . , u) on aQ x (O,co), 

has a parameter-dependent, finite dimensional, locally invariant Ck-manifold X’(1) C V, for 
A in a sufficiently small neighborhood A = A(k) of 2,. More precisely: there exists a mapping 

rr = (TV E BCk(A x Xc, V) 

with 

a(& 0) = 0 for i E A, aa(O, 0) = 0, 

such that 

‘5X’(l) := graph @A, *) 

is invariant for small solutions of (1.20), . The invariant manifolds %‘(A) attract small solutions 

at an exponential rate. 

It is shown that the invariant (center) manifolds m’(d) contain all the local recurrence. This 
allows the reduction of (1.2O)x to a finite dimensional system of differential equations. Using 
results on bifurcation for ordinary differential equations, we are able to study the problem of 
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bifurcating solutions for the quasilinear reaction-diffusion equation (1. l), . We focus our 
attention on Hopf bifurcation and give conditions, whether the bifurcating orbits are stable or 
unstable. 

THEOREM 1.2. Let A = (-A,, A,) for some &, > 0 and assume that ( fro,) are simple eigen- 
values of the eigenvalue problem (1.16), , where o0 > 0, and all of the remaining eigenvalues 
are contained in [Re z < 01. 

Let ~(1) be the unique continuation of the eigenvalue io, in a neighborhood of A = 0 and 
suppose that 

$(Re,Nl.))],_, > 0. (1.21) 

Then there exists a unique one-parameter family {r(s); 0 < s < E) of nontrivial periodic orbits 
of the system (l.l), in a neighborhood of (0,O) E A x V. 

More precisely, there exists E > 0 and a map 

(A(*), T(-), 4.)) E (3(-c, c), R x R x V 

with 

and such that 

V(O), T(O), NO)) = (0,27r/w, 9 0) 

T(s) := l-(24(s)) 

is a nontrivial T(s)-periodic orbit of the quasilinear reaction-diffusion system (1. l),,, passing 
through U(S) E V. If 0 < S, < s2 < E, then I+,) # IQ,). 

Moreover, the family (T(s); 0 < s < E) contains every nontrivial periodic orbit of (1. l), lying 
in a neighborhood of (0, T(O), 0) E A x IR x I/. 

If 

d(s) > 0 for s > 0 (“supercritical bifurcation”), 

then each orbit T(s) is asymptotically stable in I/. 
In the case of 

s;2(s) < 0 for s > 0 (“subcritical bifurcation”), 

each of the orbits T(s), 0 < s < E, is unstable in V. 

It is one of the main purposes of this paper to derive stability conditions for the bifurcating 
periodic orbits. In fact, we will give an algorithm which enables the determination of whether 
the super-critical or subcritical case occurs. This algorithm works in the (infinite dimensional) 
case of quasilinear reaction-diffusion systems. It involves derivatives up to the third order and 
the knowledge of the linear semigroup on the stable subspace, cf. Section 5. In some special 
cases, see remark 5.5(b), the stability analysis is rather simple. An example, based on the 
quasilinear reaction-diffusion system (1.8), , will be given elsewhere. 

The derivation of our algorithm is self-contained and it uses corresponding results for 
two-dimensional ordinary differential equations. We should mention that a similar algorithm 
has been described in [6]. However, there are some differences between our derivation and 
theirs. First, we have the feeling that our computation is much simpler than the one given in [6] 
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(cf. [6, remark on p. 1251). Second, the results in proposition 5.4 are new and in some sense 
naturally related to the problem. Our results apply to ordinary differential equations, semi- 
linear evolution equations and, of course, to quasilinear evolution equations. They use the 
existence of invariant manifolds and the stability result given in Section 3, which, in turn, is a 
consequence of the fact that the invariant manifolds attract solutions at an exponential rate. 
We should mention that the authors of [6] have included a proof for the existence of center 
manifolds, which only uses that a given evolution equation generates a smooth semiflow on a 
Banach space (which is supposed to admit a P-norm) (see [6, theorem 2.71). But to our 
knowledge, this proof is only valid for the case of flows, and the extension to semiflows is 
incorrect [I 1, p. 361. 

In the context of ordinary differential equations and semilinear evolution equations, Hopf 
bifurcation has been widely studied in recent years, see for instance the monographs 
[6,7, 12-141 and also [15-181, to mention a few. Extensions to more general nonlinear equa- 
tions have been given in [19, 201. In fact, there are quite different approaches to the study of 
Hopf bifurcation. Instead of using reduction via invariant manifolds, one can also use the 
so-called Ljapunov-Schmidt reduction. This has been done in [19], where the existence of 
bifurcating solutions for quasilinear reaction-diffusion equations has been proven. However, 
the author does not study stability conditions, cf. the remarks at the end of his article. On the 
other hand, there is a functional analytic approach which was introduced in [1.5] and later also 
used by [20] for fully nonlinear equations. The authors in the latter paper obtain the existence 
of bifurcating periodic solutions even for fully nonlinear equations, but they do not consider 
stability. Finally, we also mention the work [IO], where the authors prove existence of center 
manifolds for fully nonlinear equations and then state a result on Hopf bifurcation. Our results 
improve on theirs in several directions in the case of quasilinear equations, cf. the discussion in 
the introduction of [5]. Our results apply to the wide class of normally elliptic quasilinear 
reaction-diffusion systems subject to nonlinear boundary conditions. 

In recent years, Amann has developed a dynamic theory for quasilinear parabolic equations 
which is able to cover the quasilinear reaction-diffusion systems introduced at the beginning of 
this section, cf. [l-3,21]. Indeed, it is this approach which enables us to deal with quasilinear 
reaction-diffusion systems with nonlinear boundary conditions. We mention that the 
quasilinear systems studied by Amann, and considered in this paper, are indeed very general 
and cover many interesting equations governed by problems in physics, biology and chemistry, 
see [2, Section 1). The ellipticity conditions (normal ellipticity) weaken the usual conditions 
imposed on systems (which is sometimes the demanding Legendre condition), cf. again [l, 31. 
On the other side, the imposed conditions are still strong enough to render a very powerful 
theory (and are in some sense optimal). The equations under consideration include strongly 
coupled systems which really are more demanding than, say, scalar equations. Finally, we 
deal with nonlinear boundary conditions (note that the boundary operator @(u)u and the 
“boundary source function” g depend nonlinearly on u). We do not know of other results and 
techniques which were able to cover this general situation. 

This paper relies on [5], where the abstract setting is introduced and the existence and 
attractivity of center manifolds is proven. We will briefly introduce this abstract setting and 
extend results to parameter-dependent equations. This is actually a simple task, since we just 
extend the spaces by the parameter space. In a later section, we prove that the invariant 
manifolds “carry” the dynamical behavior of small solutions. Section 4 then is devoted to 
Hopf bifurcation and the computation of the stability algorithm is given in Section 5. In the 



Quasilinear reaction-diffusion systems 521 

last part, we apply the results to quasilinear reaction-diffusion systems, using results of 
[5, Sections 7, 81. 

Notations 

Let E and F be two Banach spaces over the same field IK, where IK is either R or G. Then we 
denote by C(E, F) the vector space of all bounded linear operators from E to F and we equip 
this space with the uniform operator norm. If two Banach spaces E, F coincide, except for 
equivalent norms, we express this by writing E e F. If E is a subspace of F, E - F means that 
the natural injection is continuous, that is, E is continuously embedded in F. E h F then stands 
for dense embedding, i.e. E c F is densely and continuously embedded. 

2. INVARIANT MANIFOLDS FOR PARAMETER-DEPENDENT EQUATIONS 

In this section we briefly introduce an abstract setting which enables us to deal with 
parameter-dependent, quasilinear, autonomous evolution equations. We prove the existence of 
(parameter-dependent) invariant manifolds and show that these attract small solutions at an 
exponential rate. Our approach uses results on maximal regularity of the Da Prato-Grisvard 
type and relies on [5]. We refer to [5, Section 21 for a short presentation of the subject, cf. also 
[9,22-241. We refrain from giving more details and assume that the reader is familiar with some 
of the results and the notation of [5]. 

Let X0 and X, be two Banach spaces such that X, e X0. Let F be a finite dimensional space 
and assume that 

A c F is open and 0 E A. 

We then consider the parameter-dependent, quasilinear evolution equation 

We assume that 

ti + A(I, u)u = F(A, u), t > 0, IL EA. (2. I), 

(A,F) E @A x U,, UX,,X,) xX,), ke h\l*, (2.2) 

where U, denotes an open subset of the continuous interpolation space X, := (X,,, X&, with 
0 < p < 1, such that 0 E U,. 

The next assumption on maximal regularity is crucial for our results. In fact, we can then use 
(a modified version of) the Ljapunov-Perron method and obtain invariant manifolds as fixed 
points of an integral equation. For comments in this direction, see the remarks at the end of 
[5, Section 51. We impose that 

AU, u) E VY(X, 3 x3), @,@EAx U,, (2.3) 

where 0 < p < (Y < 1. For the definition of !&(X1, X0), see (2.16) in [5]. In particular, A@, u) 
is the negative generator of an analytic semigroup on X0 and dom(A(I, u)) * Xi, in the sense 
of equivalent norms, for each 1 and each U. We will show in the last section that the quasilinear 
reaction-diffusion system (l.l), can be shaped as an abstract evolution equation of the type 
(2.1)x in carefully chosen spaces X,, and X1. The abstract counterpart of (1.15) will then be 
reflected by 

F&O) = 0, i E A. (2.4) 
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If 

L := A(O,O) - &F(O, 0) (2.5) 

denotes the linearization of (2.1), with respect to the second variable, the condition (1.18) will 
be recovered as 

0(-L) = a, u as, a, C iIf?, a,c [Rez<O], (2.6) 

where a(-L) denotes the spectrum of the closed operator -L. In an abstract context we assume 
that 

a, consists of finitely many eigenvalues with finite multiplicity. (2.7) 

(Note that the spectrum of -L corresponds to the eigenvalues of the eigenvalue problem 
(1. 16)0. Condition (2.7) is automatically satisfied for the quasilinear reaction-diffusion system 
described in the Introduction.) Finally, let Xc denote the finite dimensional subspace, obtained 
by the spectral projection, xc, to the spectral set ac and set rrS := id,, - 7~‘. Again, the space 
Xc is the abstract counterpart of (1.19). If 

g(n, U) := (A(O,O) - A@, U))U + F(IZ, u) - &F(O, O)u, (A, u) E A x X, , G-9 

the quasilinear equation (2.1), can be restated as 

ic + Lu = g(A, u), t > 0,A EA. (2.9), 

(Note that we need maximal regularity to justify the last step.) Finally, let gP E 
Ck(A x Xc x Us, X0) denote the modified function 

g, := g 0 (id,,, TJ, 0 < P 5 PO, (2.10) 

where Us is a neighborhood of 0 in U fl Xf and XT is a (direct topological) complement of X’ 
in X,. Moreover, r,, is defined by r,,(x, y) := x(p-‘x)x + y for (x, y) E Xc x Xl, where 
x E ZD(Sxc(O, 2)) denotes a smooth cutoff function for the closed ball gxc(O, 1) in Xc. We then 
infer that 

g,(& 0) = 0 for A E A, f3g,(O, 0) = 0. (2.11) 

We are now ready to state the following theorem. 

THEOREM 2.1 (existence of locally invariant manifolds). There exists pk E (0, p,,] and for each 
p E (0, Pk] there exists a neighborhood of 0 in A, denoted again by A = A(p), and a uniquely 
determined mapping 

such that 

and 

a = aP = ak,p E BCk(A x X’, Xf) 

a@, 0) = 0 for 13 E A, aa(0, 0) = 0 

(2.12) 

(2.13) 

Ilo@, x) - 0% 011,~; 5 bllx - x’ll, 

for a suitable constant b, 

I E A, x, x’ E xc (2.14) 

W(A) := 3ni,,(A) := graph(a(A, e)) (2.15) 
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is a locally invariant Ck-manifold for small solutions of the parameter-dependent quasilinear 
equation (2. l), . 

Let 

Z(‘) := Z(.,X,A) := z(*,x,A,o,p) 

be the (global) solution to the reduced ordinary differential equation 

i(f) + J%(t) = +&(A, z(t), o(12, z(t))), t E R, z(0) = x. 

Then 0 satisfies the (fixed point) equation 

i’ 

0 

a(&~) = e%c "g,(J, z(z, X, A), W,Z(T,X, A))) dt. 
-co 

(2.16) 

(2.17) 

(2.18) 

Finally, %?(A) contains all small global solutions of (2.1), for 1 E A. 

Proof. The parameter-dependent situation can be reduced to the setting in [5] by extending 
the spaces by the “parameter space” F. Note that this is a standard trick in this context. More 
precisely, set 

X0:= FxX,, X,:=FxX, 

and 

L := diag[O, L], g, = (03 g/A 

where diag[O, L] denotes the diagonal matrix with entries 0 and L. on the diagonal. It follows 
for the extended mapping g, that 

gP E Ck(A x xc x US) X,), g,(O, 090) = 0, dg,(O, 0,O) = 0. 

It is not difficult to see that L satisfies the assumptions of [S, Section 41. (Note that in the 
parameter-dependent case, similar conditions to [5, Section 41 can be imposed, yielding the 
required maximal regularity results.) It is plain that the spectrum of -L consists of 

a(-L) = 0(-L) u (O] and Xc = F x Xc, (2.19) 

where Xc denotes the eigenspace according to the spectral projection of the spectral set a, U (0). 
More precisely, let II’ be the spectral projection for (T, U (0) and set II’ := idx, - IIc. Then, 

IIc = diag[id,, rr’] and IIs = diag[O, ~‘1, (2.20) 

and, moreover, 

L, = diag[O, L,], L, = L,, (2.21) 

where we identify (0) x Xs with Xf and analogously (0) x X,S with Xl. The parameter- 
dependent equation (2.17) is equivalent to the extended ordinary differential equation 

i(t) + L,z(t) = I-Q&W, a@(t))), z(0) = x, (2.22) 

where z = (A, z) and x = (A, x). Then let z( * , x) := z( -, x, o, p) denote the (global) solution to 
(2.22) and set 

s k,p := lo: A(p) x xc --) x;; a(A, 0) = 0, I]cJ(x)ll I p, 

Il@~(x)lJ I bj, j = 1, . . . . k - 1, [a(k-l)~]l_ 5 bk), 
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endowed with the sup-norm. Hereby, A(p) denotes a O-neighborhood in A such that 
diam A(p) -+ 0 for p + 0. For a given CT E S,_, let G be defined by 

I 

0 

G(a)(x) := eTLsIIsgp(z(r, x), a(z(r, x))) dr. (2.23) 
--m 

Now, the same arguments as in [5, theorem 4.11 show that the mapping G has a uniquely 
determined fixed point cr = (Tk_ E Sk,p with 

a E BCk(A(p) X x’, Xs), da(0, 0) = 0, 

provided that p is sufficiently small. Note that the right-hand side in (2.23) is just another 
writing of (2.18). Since we know that graph(a) is a locally invariant manifold for the equation 

u + Lu = g,(u), u = (A u), u(O) = (1, uo), (2.24) 

and since this equation is equivalent to 

u + Lu = g&, u), NO) = &, (2.2% 

we can conclude that %‘(A) is locally invariant for (2.2Q, and, hence, for (2.9), (for sufficiently 
small solutions and i E A(p)). Note that (2.9), and (2.1), have the same solutions. (We need 
maximal regularity to handle the equation (2.9), .) This proves the assertions in theorem 2.1. n 

Remark 2.2. Theorem 2.1 ensures the existence of a finite dimensional Ck-center manifold, 
3n’ = graph(a), for the extended equation (2.24). Note that the second part of (2.13) implies 
that the space F x Xc is tangential to 3n’ at 0. 312’(L) = graph(a(A, *)) is an invariant 
Ck-manifold for the quasilinear equation (2. l), , but it is no longer tangential to Xc for L # 0. 
Nevertheless, it is sometimes convenient to call m’(A) a (parameter-dependent) center manifold 
too. 

It is known that the (parameter-dependent) quasilinear equation (2.1), generates a smooth 
semiflow on the continuous interpolation space X0, where CY E (1, /?) is the same constant as in 
(2.3). A proof, using maximal regularity results, is given in [25], see also [24, Section 71. (It is 
clear that the proofs can be adjusted to the parameter-dependent case. One can again use the 
same idea as in the proof of theorem 2.1.) On the other hand, the quasilinear equation (2.1), 
regularizes, which means that solutions immediately become more regular than the initial 
values are. We, thus, have the following situation: if u( *, uo, A) denotes a solution to (2.1), 
with ~(0, uo, A) = u. and with an initial value u. E X,, then u(t, uo, A) E X, for each 
t E (0, t+(u,, A)), the maximal interval of existence. We, thus, have two topologies where we 
can measure the solutions. One is the weaker norm of the space X, , where the initial values are 
taken from and where the equation governs a semiflow. The other one is the stronger norm of 
Xi, where solutions exist for each positive time. In [5, theorem 5.81, we have used this 
smoothing (or regularizing) property for solutions of parabolic quasilinear equations, and have 
shown that center manifolds exist in X, and attract solutions with initial data lying in the 
weaker space X, at an exponential rate. This is the best possible result we can expect. Once 
having established this (rather technically involved) result, we are awarded with the ability to 
leave the spaces of maximal regularity and formulate similar statements in any space lying 
between X, and X, . For comments as to why we must first invoke maximal regularity, see the 
remarks at the end of Section 5 in [5]. 
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For the sake of completeness, we state the result for parameter-dependent equations. Let 

u = U(‘, u,,Iz) (2.26) 

denote the solution to the parameter-dependent, quasilinear equation (2.1), and let 
[0, t+(u,, A)) be its maximal interval of existence. Then the following result holds. 

THEOREM 2.3. There exists o > 0 such that 

for t E (0, t +(u, , A)) and (A, uo) E A x U, sufficiently small, as long as rr’u( - , u. , I) is 
contained in a small neighborhood of 0 in Xc. 

Proof. Let X, := (X0, Xi), be a continuous interpolation space, y E (0, 1). Hereby, Xi and 
X0 are the extended spaces defined in the proof of theorem 2.1. It then follows that 
X, = F x X,, cf. [26, proposition 3.41. Now, the results in [5, Section 51 together with (2.20) 
provide the proof. n 

3. STABILITY 

We shall show that the dynamical behavior of small solutions of the parameter-dependent 
equation 

G(t) + Lu(t) = g(& u(t)), t > 0, u(0) = ug (3-l), 

is determined by the behavior of small solutions of the reduced ordinary differential equation 

z(t) + &z(t) = M& z(t), a(& z(t))), tlz m, z(0) = 7fuo. (3.2), 

Hence, the invariant manifolds nt’@) provide a reduction to a finite dimensional differential 
equation. Loosely expressed, the invariant manifolds %?(A) carry the dynamics of small 
solutions to (3. l), . We assume for the remainder of this section that A is a (sufficiently small) 
neighborhood of 0 and fix 1 E A. 

We briefly recall the definition of stability and asymptotic stability. Let X then be a metric 
space and 9: D c IR+ x X + X be a (local) semiflow. A subset M c X is called stable, if there 
exists for each neighborhood U of M another neighborhood, V, of A4 such that t’(x) = 00 and 
y+(x) C U for each x E V. M is asymptotically stable if it is stable and there is a neighborhood 
W of M such that 

V’(X) + M for t + co, x E W. 

Finally, M is uniformly asymptotically stable if A4 is asymptotically stable and C# + A4 for 
t + 00 uniformly in x E W. 

LEMMA 3.1. Let z( -) := z( -, x0, A) := z(- , x0, A, cr, p) be the global solution of the reduced 
differential equation 

i(t) + &z(t) = +g,(L, z(t), a(& z(t))), t E I?, z(0) = x0 (3.3),,, 
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and let x(e) := x(*,x,, A, p) denote the solution of 

x(t) + &X(l) = n’g,(& x(t), y(t)), x(0) = x, : = 7-ho, (3.4),,, 

where x(t) = TC“U(~), u(t) = rP~(t) and u solves the equation 

h(t) + Lu(l) = g,(& u(t)), t E (O,t+(% 9 A)), u(0) = ug. (3.5),,, 

Then there exist positive constants k, and k, such that 

IN) - x(t)11 5 k, ekztllro - 0, xo)lla, t E (0, t +&l, A)), (3.6) 

and for u. belonging to a sufficiently small neighborhood, ‘u, = U,,(p), of 0 in U,. 

Proof. Let q > 0 be fixed. Then there exists A4 2 1 such that 

llemrLcIl .ecxcj 5 MeIS, t 2 0. 

x(a) and z( .) are given by the variation of constants formula, and we obtain 

(3.7) 

-t 
z(t) - x(t) = 

/ 
e+“L~~C[g,(~~ z(7), a(A, z(7))) - g,(A, x(t),y(r))] dr. 

.O 

An analogous argument to [5, proposition 5.3(i)] and (3.7) yield 

lIz(t) - x(t)11 5 ~ML(P) 
/ 
” e(f-7)%(7) - ~&~(7))ll~, d7 

<O 

+ C~Lx(P) e(‘p”Sllz(7) - x(7)11 dr. 

Gronwall’s lemma then yields (multiply both sides of the inequality with e-‘” and then use 

Gronwall’s lemma) 

Ilz(t) - x(t)11 5 cMUP) ekzt e-“lily(7) - a(~, x(7))llx, dr, t E (0, t+(u,, A)) 

where kz := cML,(p) + q. We now invoke theorem 2.3 and get 

s 

f 
em”/y(7) - a@, x(7))/, dr I IV,~]~~ - o(h, xo)llol ” e-(~+w)Tra-l dr 

0 ! .O 

I N, r(a) IIYO - dJ.~XO)ll,. 
(II + a)” 

Now the assertion follows for kl := cLM,(p)N,T(a)(~ + o)-~. n 

We can assume that the neighborhood U, is given by 

‘u, := iB,=(O, r,_) X iB,;“(O, r,). (3.8) 

Hence, theorem 2.3 holds true for all initial values in this set. We assume that r is fixed such that 

(3.9) 
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PROPOSITION 3.2. Let y C [B,=(O, r) be a compact subset of Xc and suppose that y is stable for 
the reduced equation (3.3),,, . Then there exists a neighborhood W7, of I- := {(x, a@, x)); 

x E 7) in X, such that: 
(a) each solution u(*, u,) := u( *, LQ,, A, p) to the equation (3.5),,, exists globally for initial 

values u0 E Wl, ; 
(b) there exists T I 1 and M I 1 such that 

&,(u(t, &J, r) 5 M(&(z(t, x0), Y) + e-‘1n2’Tkv0 - o(& x0)/,) 

for t 2 T and u0 E Wm. Here, d,,(u(t, u,), JI) denotes the distance in X, between u(t, u,,) and 
the set r and d,c stands for the distance of the indicated sets in Xc. 

Proof. Let T 2 1 be fixed such that the relations given in (3.13) are satisfied. Then we can 
choose a neighborhood (3, := O,(p) of r in X, such that each solution ~(a, uO) with u0 E (3, 
exists on the interval [0, T]. (Note that solutions u( *, q,) of the modified equation (3.5),,, with 
initial values in nt’(,I) exist globally, as is shown in [5, theorem 4.11. The same statement also 
holds true for the parameter-dependent case.) We can assume that (3, is given as 

0, = 
i 
(x,y) E Xc x Xi; x E &&,E), ((y - a(A,x)((, 5 &emkzTc I (3.10) 

1 

for some E I r. Here, k, and k, are given by lemma 3.1. Since y is stable, according to our 
assumption, we conclude that there exists 6 = B(E) such that 

z(t, x0) E LB,&, e/2) for t 2 0 and x0 E MY, 6). (3.11) 

Now, we define 

w7, := 0, n (&(y, 6) x XZ). (3.12) 

Assume that T 2 1 has been fixed such that 

1 

ge 
-k2T i 26, max(l, Ilill ecx,,x,j)Na emoT 5 l/4, (3.13) 

where b is defined in (2.14) and N, and o have the same meaning as in theorem 2.3. Let q 2 1 
be sufficiently large such that 

k 
-l e2k2T 5 l/4. 
9 

(3.14) 

Let u. = (x0, uo) E (3, be arbitrarily given. We then infer from (3.9), (3.10), (3.13), from 
(2.13)-(2.14), from the assumption y c BxC(O, T), and from E I r that 

IIY~II, 5 lb0 - d& xo)ll, + Ib(k xo)ll, 5 & emkzTE + bIix,ll 5 r,, 
1 

where we use 
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Thus, we have shown that 

0, c L&(0, r,) x f&$0, rs). (3.15) 

Hence, theorem 2.3 holds for all initial values (x, y) E 0,. Let q, = (x0, yo) E W?, be given and 
set ur := u(T, u,J. We shall show that ur E 0,. Note that ul = (x(T, x,,), y(T, y,,)). We then 
conclude with lemma 3.1 and (3.10), (3.11) that 

d(x(T, X0), Y) 5 d(z(T, &Jl Y) + llz(T, x0) - x(T, XCJII 

5 d(z(T,x,), v) + k, ek2rlly0 - o(A,x,)ll 5 E. 

On the other hand, theorem 2.3, the second part of (3.13), and T 1 1 give 

]IY(T,YJ - o(~,x(T,~~))Il, 5 IliIlc~~,,x,,~ae-“TllYo - ~(~,~dll, 

5 1/4llY, - aL %ll,. 

Summarizing, we see that ur E 0,. But then, u2 := u(T, u,) exists as well and it follows that 

d(x(T,x,), Y) 5 d(z(T,x,), Y) + I]z(T, x,) - x(T,x,)ll 

5 MT, x,), r) + k, ek2TllY, - &L xdl. 
Observe that z(T, x1) = 2(2T, x,,). Thus, (3.11) gives z(T,, x1) E ii&&, ~12) and we obtain 

d(zU’,x,), Y) + k ekZTIbl - dkxlk 5 E. 

Now we can conclude as before that u2 E 0,. By repeating these steps we obtain the result that 
solutions with initial values in W?, indeed exist for each I 2 0. Using theorem 2.3, lemma 3.1, 
(2.14) and the fact that q 2 1, a simple computation shows 

d,,(u(t, u,), r) I (1 + 6) dAz(t, x0), Y) + 
[ ( 

k 
$ ekZt + 

N 
Le-“t qIIYo - d~,xdl, tl-CI 

> 1 , (3.16) 

for each t 2 0. By setting a(t, u,,) := (l/(1 + b))d,,(u(t, u,), r) - dxc(z(t,xo), y), (3.16) can be 
restated as 

a(t, uo) 5 
k 
-! ekzt + + e-“’ 
4 1 4llYo - wJoL (3.17) 

Observe that 

a@, %) 5 WmllYo - ~(L%)llnr t E [T, 27-1, (3.18) 

due to (3.13) and (3.14). Now let t E [2T, 3T]. Then a(t, u,J = a(.~, u(T, uo)) with s E [T, 2T]. 
Since u(T, u,) belongs to 0, we obtain, as in (3.16) and (3.18), 

a(t, u,) 5 W%ily(T,~,) - dn, x(T, xo))ll,, t E [2T, 3T]. (3.19) 

Since 

]]Y(T, yO) - o(A, x(T, xo))ll, 5 Ilill~, emaT IIY, - au, %k 5 W4)llYo - a@, xo)lla~ 

thanks to theorem 2.3 and (3.13), we get a(t, uo) I (1/2)‘qlly, - a(A,x,)ll, for t E [2T, 3T]. 
An induction argument then shows that 

a(& Q) 5 uwqllY0 - @A %)ll,~ t E [nT, (n + l)T], n L 1. (3.20) 
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We can now infer from (3.20) that 

529 

a(t, uo) 5 2q e -f’n2’TIIY0 - o(A, %)ll,~ t 1 T. 

This completes the proof of proposition 3.2. n 

We can now state a stability result for solutions to the equation (3. 1)x, provided we know 
that there exists a stable set for the reduced equation (3.2), . Proposition 3.2 shows that we can 
measure the distance of u( -, u,) in the stronger topology of the space Xi, even if the initial 
values are taken in the weaker space X,. (Since quasilinear parabolic equations regularize, 
solutions immediately belong to X, for t > 0.) This makes it possible to state results in any 
Banach space lying between X, and X,. So let us assume that X is a Banach space with 
X, + X Q X, . Moreover, assume that the quasilinear equation (2. l), governs a (continuous) 
semiflow on an open subset U of X, i.e. the mapping 

u [O, t+(%, A)) x 1%1 + u, (l, %J -+ u(t, u0, A) (3.21) 
Ug E u 

is continuous, where u( a, u. , A) denotes the solution to the equation (3. l), , (which is equivalent 
to the quasilinear equation (2.1),). Then the result reads as the following theorem. 

THEOREM 3.3. Let y be a compact subset of Xc with y c [BxC(O, r) for a sufficiently small r > 0. 
(a) Assume that y is stable [asymptotically stable resp. uniformly asymptotically stable] for 

(the flow of) the reduced ordinary differential equation (3.2),. Then the set 

r := lx, a@, x)); x E y) c X’(l) (3.22) 

is stable [asymptotically resp. uniformly asymptotically stable] in X for (the flow of) the 
equation (2. I), . 

(b) If y is unstable, I is unstable in X as well. 

Proof. (a) Assume that r satisfies (3.9) and r I p for a fixed p. We first claim that the 
solutions of (3.2), and (3.3),,, (resp. (3.1), , and (3.5),,,) coincide for small initial values. 
Owing to the definition of the modified function g,, it suffices to show that all solutions of 
(3.3),,, (resp. (3.4),,,) are contained in &=(O,p). The first part of the claim immediately 
follows from (3.1 l), since we assumed that E I r I p. The second part can be derived from 
(3.1 l), lemma 3.1, and proposition 3.2b. (We can decrease E, if necessary.) Thanks to 
proposition 3.2, each solution u(. , uo) of (3.1), with u. E Wa exists globally and 

&(u(t, u,), I) 5 M’(&(z(t, x0), Y) + e-f’n2’Tll_vo - a(& xo)llx) (3.23) 

for t 1 T. (We have assumed that the norm of X is weaker than the norm of Xi, but stronger 
than the one of X, .) This gives us information on the behavior of u(t, uo) for f 1 T. If t belongs 
to the compact interval [T, T], where t will be defined below, we use (3.16) and note that 

dx(Nt, Q), r) 5 c d,&(t, x0), y) + 
k 
-! ek+ + $&e -of 
4 > 

db’o - Nhxo)ll, 
I 

, (3.24) 

for an appropriate constant c. We are now ready to prove the stability of I’. Let U, then be an 
arbitrary neighborhood of I in X. It follows from (3.21) and the compactness of I that there 
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exists T > 0 and a neighborhood V of I such that 

u(t, x, A) E u, for (t, X) E [0, T] x (I/ il WJ. (3.25) 

Observe that we can infer from (3.23)-(3.25) (by decreasing E if necessary, see the definition of 
W7, and (3, in (3.12), respectively (3.10)) that 

u(l, u0, A) E u, for t E I?+, u. E Vx Wl,, 

showing the stability of I. The remaining assertions of (a) are immediate consequences of the 
definitions and (3.23). Note that (b) is obviously true. n 

Remarks 3.4. Note that proposition 3.2 contains a stronger result than we actually quoted in 
theorem 3.3. Indeed, proposition 3.2 shows that the set I attracts solutions in the topology of 
X, , even if the initial values belong to the weaker space X,. Note that this result again takes 
the regularizing property of quasilinear parabolic equations into consideration. Thus, we could 
sharpen theorem 3.3 by stating that I is stable [asymptotically resp. uniformly asymptotically 
stable] in the stronger norm of Xi. (We then slightly modify the definition of stability in an 
obvious way.) 

Our proof follows [7, theorem 6.1.41, where a related result for semilinear equations is given. 
The same proof has also been used by [lo, theorem 3.41 in the context of fully nonlinear 
equations. Our contribution for quasilinear equations differs in some points from theirs. First, 
we get the stronger result mentioned above. This enables us to state results for any Banach space 
lying in betweenX, and X, . Hence, we can leave the spaces of maximal regularity. Second, we can 
weaken the assumptions in [7, lo] to a certain extent, allowing y to be stable and then still 
getting the stability of I. (Where [7, lo] require y to be uniformly asymptotically stable.) 

4. HOPF BIFURCATION 

Many interesting problems in physics, chemistry and biology are governed by quasilinear 
parabolic equations depending on a parameter, i.e. by an equation of the type 

We assume that 

c(t) + A@, u(t))u(t) = F(l, u(t)), t > 0. (4.1), 

A = (-no, lo) for some I, > 0. (4.2) 

As discussed in the Introduction, the behavior of solutions may change abruptly if some 
eigenvalues of the linearized equation (say the linearization at 0) crosses the imaginary axis. 
Using our results of Sections 2 and 3 we obtain the existence of finite dimensional manifolds 
312’(L), locally invariant under the flow of (4.1), and containing all the local recurrence. This 
provides a reduction to an ordinary differential equation on a finite dimensional space. Then 
we may use bifurcation theorems for ordinary equations and finally return to the original 
equation. We focus our attention on Hopf bifurcation. Assuming that a pair of simple 
eigenvalues of the linearized equation crosses the imaginary axis with nonzero speed (and there 
are no other eigenvalues on the imaginary axis), we show that a family of periodic solutions 
emerge from the equilibrium. We will be particularly interested in the case in which bifurcation 
to stable periodic orbits occurs. Thus, we will assume that the remaining part of the spectrum 
remains in the left half-plane. 
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We assume that all the appearing spaces are real. (We mean vector spaces over IR, the field 
of reals.) We will then use complexification wherever needed, e.g. in connection with spectral 
theory. We impose the same assumptions as in Section 2. In particular 

(-4,F) E Ck(A x u,, S(X,,X,) x X0), k 2 2, (4.3) 

F(A, 0) = 0, ?L E A, (4.4) 

such that 0 is an equilibrium for (4. l), , independent of A E A. Suppose, as in Section 2, that 
the spectrum of -(A(O, 0) - &F(O, 0)) admits a decomposition with a part os c [Re z < 0] and 
CJ= c ill?, where 

Let 

a, = ( fro,), 00 > 0, 

io, is a simple eigenvalue of -(A(O, 0) - &F(O, 0)). 

P(.) E Ck-‘((-c, E), a=) 

be the unique (local) continuation of the eigenvalue iw, of -(A(O, 0) 
A x (O), i.e. p(A) is (the unique) eigenvalue of 

-(A@, 0) - azF(& 0)) := -L(n) E ,e(X,) X0). 

(For the existence, cf. [20, lemma 2.1; 271.) Suppose that 

i.e. ,B@) crosses the imaginary axis with nonzero speed 
theorem. 

at I = 0. Then we have the following 

THEOREM 4.1. The quasilinear equation (4.1), has in a neighborhood of (0,O) E A x X, a 

0, 

(4.5) 

(4.6) 

(4.7) 

a2 F(0, 0)) along 

(4.8) 

(4.9) 

unique one-parameter family (I(s); 0 < s < E) of nontrivial periodic orbits which tend towards 
the equilibrium 0 as s + 0. More precisely, there exists E > 0 and a mapping 

(A(*), T(m), u(e)) E ck-‘((-&, E), IR x [R x X,) 

satisfying 

such that 

(J(O), T(O), NO)) = (0,2X/@, ,019 

T(s) := r@(s)) 

is a nontrivial orbit of (4. l),,, of period T(s) passing through u(s) E X, for each 0 < s < E. If 
0 < si < s2 < E, then I’@,) # I@,). 

The family (I(s); 0 < s < E) contains every nontrivial periodic orbit of (4.1), lying in a 
suitable neighborhood of (0, T(O), 0) E A x IR x Xi. 

Proof. Owing to theorem 2.1, small periodic solutions of (4.1), are contained in m’(A). 
Hence, it suffices to look for periodic solutions of the reduced differential equation 

i(t) = -&z(t) + n’g,(& z(t), o@, z(t))) =: h,@, z(t)), te R, (4.lO)A 
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where L := L(0). Henceforth, we will suppress p and write h(A, z) instead. Note that 

h E Ck(A x XC, XC), h(A, 0) = 0, A E A, (4.11) 

thanks to (2.1 l)-(2.13) and the fact that gP E Ck(A x Xc x Us, X0). Thus, we may differen- 
tiate h(L, *) with respect to the second variable and we obtain, by invoking (4.8) and the 
definition of h, 

&h(A,O) = -ncL(A)[id,c + &a(A,O)]. (4.12) 

In particular, 

f!&/?(O, 0) = -7fL = -L,. (4.13) 

It follows from (4.5), (4.6) that the (two dimensional space) Xc is spanned by 

(X’)c = ker((-L,), - io,) @ ker((-L,), + iw,). (4.14) 

Here, (X’)c stands for the complexification of Xc and (Lc)c denotes the complexification of 
the linear operator L, E AI?( Let 

z0 := < + iz;l E ker((-L,), - io,), r, rl E R (4.15) 

be a fixed eigenvector to the eigenvalue iw, of (-L,), . Moreover, let 

K(‘) E Ck-‘((-&, E), a=) (4.16) 

be the unique (local) continuation of the eigenvalue io, of Jzh(O, 0) along A x (0). Next we 
shall show that (4.9) implies Re $0) # 0. Hence, the transversality condition for equation 
(4.1), will be recovered for the reduced equation (4.1O)x. To prove this claim we consider the 
following two eigenvalue problems 

]&h(& O)]c@) = K(&(A), (4.17) 

[-ua,~(~) = Pc(~MJ), (4.18) 

where A E (--E, E) for E sufficiently small. Note that the corresponding eigenvectors, z(e) and 
v(e), depend (k - 1)-“continuously differentiable” on A. Moreover, 

u(0) = z(0) = zo E (X’)c. (4.19) 

Let ker([(-L,),]’ - io,) be the kernel of the dual of ([(-L&l - io,) and let w := u + iv E 

ker([(-L&l’ - icoo) be a linear form such that 

(U, 0 = -(V, rl) = 1, (U, r7) = (V, 0 = 0. (4.20) 

Note that [12, lemma 26.231, for example, ensures its existence. We now differentiate (4.17) 
with respect to I and evaluate at A = 0. We infer from (4.12), (4.13) and (2.13) that 

ri-(O)z(O) = -[x’L(O) id,= + nCL~x~,o(O, O)lcz(0) + ([-L,], - ~(O))i(o). (4.21) 

Noting that &a,a(O, 0) E 2(X’, Xs) and that L leaves the space Xf invariant, we get 

K(0)zo = [-nci(0)lczo + ([-L,], - io,)i(O), (4.22) 
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where z(0) = z0 according to (4.19). Differentiating (4.18) with respect to il and using (4.19) 

yields 

/.i(O)zo = [-i(O)l,zo + U-L], - &Jw. (4.23) 

We now apply the linear form w to both sides of (4.22) and get 

2i(O) = (w, [--TI=L(o)Icz~). (4.24) 

Note that this follows from (4.20) and ([(-&),I - iw,)w = 0. On the other hand, we may 

apply [(n”)c]‘w to (4.23). It follows that 

2/j(O) = (w, [-n’L(O)lcz~>. (4.25) 

For this, observe that 

([(n’),l’w, U-L], - &&J(O)) = (w, WM-Llc - bJw)>. 

Since there exists a (unique) decomposition of C(O) = C,(O) + G,(O) E Xc 0 XS, the right-hand 

side reduces to 

(w, (7rC)c([-Llc - iolJ)ti,(O)> = (w, (]-&I, - &J&(O)) = 0, 

where we use that ([-L], - io,) is reduced by the decomposition X, = Xc @ Xf and finally, 
that w belongs to the kernel of the dual operator. Therefore, we have 

K(O) = k(O), (4.26) 

which is now a transversality condition for the ordinary differential equation 

i(t) = h(lZ, z(t)) (4.27)~ 

in the two dimensional space X’. Hence, [12, theorem 26.251 ensures the existence of a 
one-parameter family (I; 0 c s < E) of nontrivial periodic orbits in a neighborhood of 
(0,O) E A x Xc. More precisely, there exists E > 0 and 

(A(.), T(e), x(a)) E &‘((-&, E), IR x II? x XC) 

satisfying the properties of [12, theorem 27.111. Set u( *) := a@(*), x(m)). Then 

(A(.), T(a), u(e)) E @‘((-&, E), IR x IR x Xi). 

Finally, if 

I(s) := (o@(s), y(s))), (4.28) 

the first part of theorem 4.1 immediately follows. We are left to prove that each nontrivial 
periodic orbit in a neighborhood of (0, 2n/w0, 0) belongs to (I(s); 0 < s < E]. Indeed, if I 
denotes a periodic orbit of (4.1),, lying in a small neighborhood of 0 in Xi, I’ has to be 
contained in m’(A). Obviously, the projection of I on Xc is a periodic orbit to the reduced 

equation (4.27), and, hence, belongs to the family (y(s); 0 < s < E]. According to the definition 
in (4.28), I is, thus, part of (I(s); 0 < s < ~1. n 

Remarks 4.2. (a) Assumption (4.5) can be relaxed in several directions. First, we could allow the 
spectrum to have some eigenvalues in [Re z > 01. Then there exist invariant manifolds nt’“(L) 
“belonging” to a,, := a, U (o(-[A(O, 0) - &F(O, 0)]) fl [Rez > 0]), cf. [5, remark 4.2b]. For 
additional generalizations of conditions (4.5) and (4.9) we refer to [17, 18, 281. 
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(b) Our formulation of theorem 4.1 is taken from [12, 191. In the latter paper, the existence 
of bifurcating periodic solutions for a quasilinear equation is proven by using the 
Ljapunov-Schmidt reduction. 

(c) We were not able to locate statement (4.26) in the literature, although it is certainly 
known. 

5. STABILITY CONDITIONS. AN ALGORITHM 

In this section we formulate conditions which guarantee that the bifurcating periodic 
solutions of theorem 4.1 are stable. These conditions will lead to an algorithm which involves 
(in principle) known information and is (in principle) numerically computable. The algorithm 
works for ordinary differential equations, for semilinear evolution equations and quasilinear 
parabolic evolution equations. Although stability conditions have been proven before for the 
first two classes of equations, it is hoped that our presentation will give some new insights even 
in this context. In any case, we do not know of similar results which were able to cover the 
equations presented in the Introduction. It is hoped that this section reveals some new insights 
even for ordinary differential equations in finite dimensional spaces. However, we are foremost 
interested in quasilinear reaction-diffusion systems. For the reader’s convenience, we include 
the following results for two dimensional differential equations, which stand at the beginning 
of our analysis. 

PROPOSITION 5.1. Let K( *) be the unique local continuation of the eigenvalue io, of a2 h(0, 0) 
along A x (0). Suppose that 

Re K(0) > 0, 

where h E Ck(A x Xc, Xc) denotes the map in (4.27). Let 

(A(*), T(.),x(*)) E Ck-l((-&, E), IR x lR x XC) 

be the functions defined in the proof of theorem 4.1. Assume that 

sl(s) > 0 for s > 0 (“supercritical bifurcation”). 

Then each orbit y(s) is asymptotically stable. 
If 

s&) < 0 for s > 0 (“subcritical bifurcation”), 

then each of the orbits y(s), 0 < s < E, is unstable. 

Proof. The assertions follow from 
dim Xc = 2 in our context. n 

Thanks to the results of Section 3, 
invariant manifolds m’(L). Hence, it 

[12, theorem 27.111 and a(&h(O, O))\(*io,) = (21, since 

the recurrence of all solutions is contained in the locally 
suffices to state stability results for bifurcating solutions 

of the reduced equation (4. lo), . The next result, which is taken from [12, theorem 27.141, now 
describes conditions, whether supercritical or subcritical bifurcation occurs. We include it for 
the reader’s convenience. Assume that 

h E Ck(h x Xc, Xc) with k ZE 3. 
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We recall that 

(X’)c = ker([a,h(O, O)]e - io,,) 0 ker([&h(O, O)lc + ho). (5.1) 

PROPOSITION 5.2. Suppose that we have chosen a basis ln, , n2) on the two dimensional space Xc 
such that the linear mapping &h(O,O) can be represented by 

0 00 

[ 1 -wo 0 

with respect to this basis. Moreover, let 

P(& Y) := (&x9 Y), P2(X, Y)) := h(O, 6, Y)), 

where (x, y), respectively (pi, p2), are the coordinates with respect to the basis (ni , n2). Let 

6:= oo[affpl + ala&d + a:a2p2 + a,3p2] - a:t#a,a,pl + a:$a;p2 

- a,a2$a;p1 - a&da&72 + a:p2a,a2p2 + ala2p2a;p2. 

Then if 6 C 0, the occurring bifurcation is supercritical and the periodic orbits which emerge 
from the trivial solution are asymptotically stable. If 6 > 0, we have subcritical bifurcation. 

Here, we use the notation a,ajpi for a,a,$(O, 0) etc. 

Let us now introduce some simplifying notation. We set 

C#J&) := -A@, U)U + F(A, u), for A E A, u E X, . (5.2) 

We can assume that A has been decreased such that all occurring formulas are defined for 
A E A. Moreover, we suppress A in our notation whenever 1 = 0. Note that X, and X0 admit 
a decomposition, X, = Xc @ Xi and X0 = Xc @ Xl, into a stable subspace and the space Xc 
(belonging to the eigenvalues (Rio,)). We can identify an element .z E Xc with its coordinates, 
(x, y), in the fixed basis (ni , n,]. Moreover, we identify the direct sum with the product of its 
factors. Hence, we write 

+(x9 Y, v) = (d’(x, Y, u), 62(x, Y, v), 93(x, Y, 0)) := do(x, Y, u), 

where ((x, y), v) E Xc x Xi. Moreover, (+‘, c#J*) denotes the coordinates of the part of C$ in Xc, 
expressed in the basis (n,, n2], and +3 E X,S is the part of C$ in Xi. We set 

h(l, s) = n3,(2 + a(& z)), 

P’(X, Y) = #(x9 Y, @x9 Y)), i E 11,2], (5.3) 

where we now write 

o(x, Y) := o(O, (x9 Y)), (5.4) 

slightly abusing notation. Remark that 4 “stands for the full equation”, while v, denotes the 
equation reduced through the locally invariant manifolds, see (5.3). We show that derivatives 
of v, can be expressed by the derivatives of 4 and 0. Note that we only have to deal with A = 0. 
We thus omit any reference to the parameter. 
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LEMMA 5.3. Let cp be given by (5.3). Then 

akaj~j(O, 0) = a,C)j$‘(O, 0, O), i,j, k E ]1,2], 

&13~a~&(O, 0) = a,a,aj$‘(O, 0,O) + a,aj$‘(O, 0, o)a,a,o(o, 0) + aka,&(o, 0, O)a,ajo(O, 0) 

+ a,a,d4o, o, o)akaj@o, o), i,j, k, I E ]1,2]. 

Proof. Pick any i, j, k, I E { 1,2). It follows from the chain rule that the derivative of (5.3) 
with respect to thejth coordinate is given by 

4+4+(x, v) = aj+Yx, Y, 4x, Y)) + a,#(x, Y, o(x, Y))aj@X, v). 

Taking the derivative along the kth coordinate we now obtain 

%.aj&(x, Y) = a,aj+‘(x, Y, 4x, YN + haj+‘(x, Y, 4x, ymd, Y) 

+ w,4Yx, Y, C-J(X, Y))aj& Y) + &G, Y, 4x, ym,dx, y)aje, Y) 

+ wb, Y, @c y)hajWY Y). (5.5) 

By evaluating (5.5) at (x,y) = (0,O) we infer from the second part of (2.13) that the first 
assertion in lemma 5.3 holds true. We proceed by taking the derivative of (5.5) with respect to 
the Ith coordinate and then evaluate at the point (x, y) = (0,O). We now note that those terms 
containing first derivatives of o vanish, thanks to (2.13). Hence, we only have to take into con- 
sideration those terms which include derivatives of c of second and third orders. Moreover, we 
have to pay attention to a,a,a,+‘(O, 0, 0), which is found by taking the derivative a, of the very 
first term in (5.5). Observe that third order derivatives of 0 can only occur from the last term 
of (5.5), namely as 

a, 4’(0,0,0)&& ajo(O, 0). (5.6) 

Note that a,4’a,a,aja(O, 0) = n’&a,a,ajo(O, 0) = rc’[-La,a,aja(O, 0)], where n’ denotes the 
projection to the one dimensional space span Ini). Since a,a,ajo(O, 0) E Xf, due to (2.12), and 
-L is decomposed by Xs, we see that -L&d, dja(O, 0) E Xi and, hence, lies in a complemented 
space of span (ni). Therefore, (5.6) does not provide a contribution. Finally, derivatives of 
second order of 0 (without additional first order derivatives) can only stem from the terms at 
the second, third and fifth place of the right-hand side of (5.5). Summarizing, we have proven 

lemma 5.3. W 

PROPOSITION 5.4. 
0 

a,a,a(O, 0) = e%Vfg(O, O)[eCrLcn,, eeTLcnj] dr. 
--oo 

More precisely, we have for c(r) := cos(w,r) and s(r) := sin(o,r) 
0 

a&o, 0) = 
I-.. 

eTLqa:43c(7)2 - 2a, a,$3c(7)s(7) + a,2@s(7)2] dr, 

0 
a,a,a(o, 0) = 

.r 
eTL+3f43c(7)s(7) + a, a2ti3(c(7)2 - ~(7)~) - a;+3c(7)s(7)l dt, 

-cc 

i’ 

0 
a;o(o, 0) = eTLs[aT43s(7)2 + 28, a,&(tp(7) + a,2&(7)2] d7, 

-rn 

where akaj$i := akaj$‘(O, 0,O) and g = g(A, U) for (A, U) E A x X,. 
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Proof. We will again suppress I = 0 in our notation and simply write a(x, y) = ~(0, (x, y)) 
and 

E!((% u). r4 := g(0, (6, u), V))? (5.7) 

where ((x, y), V) E Xc x Xi. Note that the functions g and gP coincide for small values of 
(x, y). Taking derivatives at 0 only requires information within an arbitrary small neighborhood 
of 0. Hence, we can always use the “original” function g instead of the modified g,, which 
was actually needed for the fixed point argument of Section 2. Note that g(. , *) E 
C’(X’ x Xi, XJ), where we again identify Xc x Xf with Xc @ Xs. Theorem 2.1 shows that (T 

satisfies the (fixed point) equation 

i 

0 

dX,Y) = eTLs~“g(z(~, (x, Y)), dz(r, (x, Y)))) dr. (5.8) 
-m 

Let h, k E X’ be given and let x := (x, y) E X’. Then we may differentiate (5.8) and we first get 

.i 

0 

&T(x)h = eTLsnsdg(z(r, x), o(z(s, x)))[d,z(r, x)h + da(z(r, x))d,z(r, x)hl dt, 
--m 

and also 

i 

0 

d2a(x)[/z, k] = eTL~7C(d2g(z(~, x), a(z(r, x))) 
-m 

x Pzz(7, x)h + do(z(t, x))d,z(r, x)h, a&, x)k + c3o(z(t, x))a,z(r, x)kl 

+ dg(z(r, x), a(z(t, x)))[derivatives of a(z(r, e)) and z(t, .)I) dr. 

Recall that z( *, x) is the solution of the (ordinary) differential equation 

i(t) = -&z(t) + &z(t), o(z(t))), t E I?, z(0) = x (5.9) 

on Xc. Owing to (2.11) (which actually is a restatement of the very same property of g) and 
(2.13), it follows that z(t, 0) = 0 is the solution of (5.9) with initial value x = (0,O). (2.13) then 
tells us that a(z(7,O)) = 0. We can then infer from (2.11) that 

Hence, 

&!(z(r, O), o(z(r, 0))) = 0, 5 E IR. 

0 

d2a(0, O)[h, k] = 
5 

e%rsd2g(0, O)[J,z(r, O)h, a2z(t, O)k] dr. 
-co 

(5.10) 

We will now give a representation for the derivative a2z(r, 0) of the solution to (5.9). Using a 
well-known result in the theory of ordinary differential equations, cf. [12, theorem 9.21, and the 
fact that ag(O, 0) = 0, we obtain that a,~(*, 0) solves the linearized problem 

c(t) = -L,v(t), tE IR, v(0) = idxc, 

in 2(X’). It then follows that 

a2z(r, 0)h = eCLch for T E IR (5.11) 



538 G. SIMONETT 

and we can write 

0 

d2a(0,0)[h, k] = e7%r”~2g(0, 0)[e-7Lch, e-7’ck] dr. (5.12) 
-cc 

The first assertion of proposition 5.4 is now an immediate consequence of the well-known 
relation 

13/$ljO(0, 0) = d20(0, O)[&) rzj], 

where a, and ak denote the partial derivatives with respect to thejth and kth coordinates in the 
basis (ni , n,]. (Note again that a(x, Y) := o(0, (x, Y)) in slight abuse of the notation of Section 
2.) Using the representation of a,h(O, 0) = -L, with respect to the basis (nr , n,), cf. propo- 
sition 5.2, we obtain 

-rL,, _ e - 
[ 

cos(0, r) sin(w, r) 

- sin(o, t) 1 cos(oo r) ’ 
TE R. (5.13) 

If c(r) := cos(oor) and s(r) := sin(o,r), we then get 

Let 

e -%, = (C(T), --s(r)), e-%r2 = (s(t), c(r)), r E R. (5.14) 

g((x, Y), u) = (&+(x7 Y), v), g2((x, Y), u), S3((K Y), u)), ((x9 Y), v) E XC x XS 

denote the components of g : = g(0, *) in X’ x Xi. (Note that we drop II = 0 from our notation 
and collect (x,y) E Xc). It is obvious that 

nsa2g(0, 0) = aVg(o, 0) = a2g3(o, o), (5.15) 

where a2 stands for the second order Frechet derivative of g E @Xc x Xf, Xl). Note that 

g((x, Y), u) = M-G Y), u) + diag(&, L,)((x, Y), u), ((KY), u) E XC x Xi, 

due to the definition of g and 4, cf. (2.8) and (5.2), thus, showing that the second derivatives 
of g and 4 coincide. With (5.15) we can restate (5.12) as 

.i 

0 

a20(0, o)]h, k] = &a2~((0, 0), O)[ePLch, ePLck] dr. (5.16) 
-cc 

We are left to give a representation of a243(0, 0, O)[emTLcn,, eeTLcn2]. Observe that a2$3(0, 0,O) 
denotes the “total” (Frechet) derivative of 43 E Ck(XC x Xf, Xi). (We do not hesitate to 
change notation and write $3(0, 0,O) for ti3((0, 0), O).) Note first that the group ePLc leaves the 
space Xc invariant. Thus, there will be no contribution from the “partial” derivative with 
respect to the “third” variable u E Xf. We only have to take 

a,$=43(o, 0, O)[e-%r,, ePLcn2] 

into consideration, and, thus, end up with derivatives with respect to x and y. An easy 
computation, using (5.14), shows 

a&&o, 0, O)]c(r)n, - s(r)n,, w4 + cm21 

= a:$3~(s)s(r) + a,a,@(& - s($) - a:@c(r)s(r), 

where we simplify notation by a, a2$3 := a, a2+3$3(0, 0,O). The remaining two formulas of 
proposition 5.4 follow by adjusting the last step to this situation. n 
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Remarks 5.5. (a) Let 

f(t) := a$$%(t)s(t) + a,a,f#J3(C(t)z - s(t)2) - a;&(t)s(t) (5.17) 

and let u(s) E BC(lR, Xi) n BC’(R, X,“) be the (unique) bounded solution of the Cauchy 
problem 

C(l) + &u(t) = f(l), ten?. 

Then we obtain 

a,%o(O, 0) = u(O), 

due to the representation of a, a2 ~(0, 0) in proposition 5.4 and [5, theorem 2.41. This shows that 
a, a, ~(0, 0) is the value of the (uniquely determined) bounded solution v(e), evaluated at zero. 
Analogous statements hold true for the remaining terms of proposition 5.4. Note that the 
“formulas” of proposition 5.4 involve derivatives ajak$3 and the knowledge, how the 
semigroup eetL acts on the stable subspace Xl. These are (in principle) known “quantities”. 
Moreover, the integrals appearing in proposition 5.4 are (in principle) numerically computable. 
We have, thus, derived an algorithm which is able to provide computable conditions for 
stability. The algorithm comes out of our proofs and statements. We just have to follow the 
procedure stated in proposition 5.2 and then use the expressions in lemma 5.3 and proposition 
5.4. An application to a “concrete” quasilinear reaction-diffusion system will be given 
elsewhere. 

(b) The situation simplifies if 

a,aj+3(0, 0,O) = 0, j, k E ]1,21. 

Proposition 5.4 then shows that akajo(O, 0) = 0 and we can infer from lemma 5.3 that 

6 = o,[a:# + ala;& + a:a# + a;@] - afga,a,# + a;41a:+2 

- a,a2#a;# - a&pa&P + a;42a,a2+2 + a,a242a;#. (5.18) 

If a,aj4’(0, 0,O) = 0 for each combination of i E (1,2,3], j, k E (1,2), 6 has the simple form 

6:= o,[a:# + ala;@ + afa2+2 + a;@], 

where a,a,aj4i = a,a,aj4’(0, 0,O). 

(5.19) 

(c) The stability condition of proposition 5.2, which always holds for a two dimensional 

ordinary differential equation, is taken from [12, theorem 27.141. It corresponds to [6, p, 1261, 
except for a different scaling factor. The derivation in [12] simplifies the calculations in 

[6, PP. 11 l-1261 a great deal, see the remark on p. 125 of [6]. Our conditions in proposition 5.4, 
though, are different from the formula (4A.6) of [6, p. 1341, which seems to work best only in 
three dimensional spaces. We would also like to draw attention to the references quoted in [28]. 

We can now combine the results of the last sections and state our main result on Hopf 
bifurcation for (abstract) quasilinear evolution equations. Assume that the mapping in (3.21) 
generates a semiflow on an open subset U of X, where X can be any space lying between X, 
and X, (including both of them). Then we have the following theorem. 
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THEOREM 5.6 (Hopf bifurcation for quasilinear equations). Let 

Lc(l) E +[A(& 0) - V(I, WI) 

be the (unique) local continuation of the eigenvalue io, of -[A(O, 0) - azF(O, 0)] along 
A x (0). Assume that 

$(Rep(L))lk=, > 0, (5.20) 

a(-[A@, 0) - a,f(n, O)])\(+-ioO) c [Rez < 0] (5.21) 

for sufficiently small values of A. 
Then the quasilinear equation (4. l), has in a neighborhood of (0,O) E A x X a unique 

one-parameter family [T(s); 0 < s < E] of nontrivial periodic orbits which tend towards 0 as 
s + 0. More precisely, there exists E > 0 and a mapping 

(A(*), T(e), U(‘)) E CkP’((-&, E), iR x IR x X) 

satisfying 

such that 

(A(O), T(O), u(0)) = (0,27r/%, O), 

T(s) := T(u(s)) 

. . 
is a nontrivial orbit of (4.1),(,, of period T(s) passing through U(S) E X for each 0 < s < E. 
If 0 < s1 < s2 < E, then I-@,) # Us,). 

The family (T(s); 0 < s < E] contains every nontrivial periodic orbit of (4.1), lying in a suit- 
able neighborhood of (0, T(O), 0) E A x IR x X. 

If 

sl(s) > 0 for s > 0 (supercritical bifurcation), 

then each orbit y(s) is asymptotically stable in X. 
If 

s&s) < 0 for s > 0 (subcritical bifurcation), 

then every orbit y(s), 0 < s < E, is unstable in X. 
Finally, the stability algorithm derived in proposition 5.2, lemma 5.3 and proposition 5.4 

applies. 

Proof. Note that (5.20) and (4.26) imply [Re ri(O)] > 0, where K(.) denotes the continuation 
of the eigenvalue iwO of &h(O, 0). The results then follow from theorem 4.1, proposition 5.1 
and theorem 3.3 (cf. also the last part of the proof of theorem 4.1). Moreover, proposition 5.2, 
lemma 5.3 and proposition 5.4 apply, giving the quoted stability algorithm. n 

6. PROOF OF THEOREMS 1.1 AND 1.2 

We will briefly explain how the quasilinear reaction-diffusion system (l.l), fits into the 
abstract framework of Sections 2-5. This part relies on the work carried out in [5, Sections 
7-81. We shall show that there exist Banach spaces X, and X0, satisfying all the assumptions 

of Sections 2-3. Our approach to handling the nonlinear boundary conditions uses, implicitly, 
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the extrapolation setting, cf. [l, 2,291. It is shown in [5] that we can find suitable defined 

extrapolation spaces such that the device of maximal regularity can be used. 
Let (@.(A, u), @(A, u)) be a (formal) boundary value system, where @.(A, U) is defined in (1.3) 

and 63(1, U) stands for the boundary operator introduced in (1.5). Note that we may identify 

(@(A, u), 63% u)) * ((a&, *, u)), (a#, -9 u)), %(& .I u), &(& *, u)), (6.1) 

where I E A and u belongs to an appropriate function space, say u E C(d, G) to fix ideas. 
Assume for the moment that A and u are fixed. Then let X := .$(lRN) and set 

E;(n) := CP@, X)“’ x P(sz, X)” x L,(Q, X) x L,(XJ, X) (6.2) 

with a generic element e := ((Ujk), (aj), Q, b,), where p E (0, 1). In general, we write 

e(& U) := ((ajk(A,', U)), (aj(n*'9 U)), aO(A,*, U>, bO(l,', U)), (6.3) 

where (1, U) E A x C(b, G). Note that (6.2) defines a topology on the set of linear (formal) 
boundary value systems. Let &;(a) denote the (open) subset of lE$n), given by 

((aj/ctAz, -3 rl)), s(ajk(A, *9 rllvj) + C1 - 4)s 

(("jk(n,xO, VI), s(aj/c(n9x09 rllvj) + t1 - 4)~ 

(6.4) 

define normally elliptic boundary value systems for (each) (A, ~7) E A x G and each x0 E a. For 
details, see [l-3], especially for the proof that &g(sZ) is open in lEg(Q). 

In the following, all of the indicated function spaces are assumed to consist of RN-valued 
functions. For s E (0,2) and p E (1, w), let b;,,(Q) be the little Nikol’skii spaces, defined by 

~;,co(Q) := (L,(Q), H.%J))ll,,,, 3 (6.5) 

where (a, -)“,,a denotes the continuous interpolation method, see [3,29] and [5,24]. Moreover, 
let us define the Besov spaces 

B;,,(n) := (L,(Q), f&W,,,, I , (6.6) 

where (a, -)e,l stands for the real interpolation method, cf. [30,31]. It should be noted that 
(6.5) and (6.6) differ slightly from the definitions given in [5, Section 61. However, using 
reiteration properties of the real and the continuous interpolation method, it follows that the 
spaces coincide (except for equivalent norms). Finally, we set 

~;,co,@(~) := lu E b&@-8; (1 - &Ju = 01, s E (l/p, 1 + l/p). (6.7) 

(The restriction s < 1 + l/p avoids conflicts with the notation in some of the quoted papers.) 
Note that the function 6, the boundary characterization map, appears in (1.5). The space 
BS P,l,&C2) is defined analogously, where we also take s E (l/p, 1 + l/p). We can now set 

b&&@) : = w,vw in (Bz;“,,,@))‘, l/p < s < 1 + l/p, (6.8) 

where the duality pairing is induced by the standard LP1 x L, pairing. Note that the Besov 
space Z$S,,&Q) is densely embedded in L,@). Therefore, 

L,(a) ‘+ (B;;“, *u&Q)‘, 

(by identifying, as usual, the dual of LJCJ) with L,(Q)). Hence, (6.8) is well defined. Note 
that the space Bf,{“,(Q) (and, thus, B;{“,,,(Q)) is not reflexive. An obvious density argument 



542 G. SIM~NETT 

connects the definition (6.8) with [5; lemma 7.61. In general, i.e. if 6 is not the zero matrix, 
b;;:,,(Q) is no longer a space of distributions. Assume from now on that 

P E (n,m), l/p < s < 1 + l/p, p = p(s) > Is - II. (6.9) 

It has been proved in [5, theorem 7.1 l] that there exists for each e E &i(Q) an operator 

A(e) E ~01(~;,m,a3(Q), b;$,,(fi)), (6.10) 

(with 0 < a I 1 arbitrary), such that the mapping 

g;(Q) + ~@;,q3(~)~ q&B(Q)), ]e H 441, (6.11) 

is analytic. Moreover, 

(w, .4(e)& = a(e)(w, u), e E &$@), (w, u) E @;:&,(Q)) x b;,,,,(Q), (6.12) 

where 

W(e, U) := 
i 

? 
i(ajW, ajkakU) + (W, UjdjU + CZ,u)) dX + I (YW, h,yu) do 

,a L aa 

denotes the Dirichlet form associated with e E lEg(Q), and ([, q), <, q E RN, stands for the 
duality pairing in RN. Note that (b;:&(Q))’ f B:;:,.(Q) and that the Dirichlet form a(e) 
is (i.e can be extended to be) continuous and bilinear on each of the spaces B;;;,,(Q) x 

qJ,Cq&%, cf. ]5, corollary 7.31. Hence, (6.12) is meaningful. Observe that (6.10) is a state- 
ment on maximal regularity. We now fix 

n/p<r<l<s,<l+l/p, so-l<p<(r-n/p)Al/p (6.13) 

and 

cy = 1 - (so - 1)/2, /I E (1 - (so - r)/2, a). (6.14) 

Then let 

X, := q,m,&J) and x, := q&(n). (6.15) 

It can be shown that 

X, - b;,q$% X, + b~-,2~~‘)(~), , I 

see [5, proposition 7.131. Moreover, 

x, q q&q Q c’-“‘qsz), (6.16) 

thanks to (6.13), (6.14), Sobolev’s embedding theorem and [5, (7.22)]. Thus, 

U, := (U E X,; u(a) c G) (6.17) 

is an open subset of X,. Finally, we define 

A(L, U) := A(e(L, u)), F(d, u) := f(A, *, u) + y’g@, *, u), (A, U) E A x u, (6.18) 

where y’ denotes the dual of the trace operator 

y E q~;,,,(sz), qyjpf(asz)), 1 - l/p < C7 < 2 - So. 
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A x u, + q2), 
(6.19) 

(A, U) Y e@, U) := ((ajk(A,*, U)), (ajtA9*, U)), %(A, *, U), &G, *,U)) 

is C”, as can be seen from an analogous argument in [5, proposition 8.11. An inspection of 
[5, lemma 8.41 shows that 

](A, u) +-+ F(I, @I E cv x u,, x3). (6.20) 

We can now infer from (6.10), (6.11) and (6.19), (6.20) that the assumptions (2.2) and (2.3) of 
Section 2 are satisfied. Moreover, (1.15) and (6.18) imply that (2.4) holds as well. It should be 
noted that solutions of the quasilinear problem 

i(l) + A@, u(t))u(t) = &L u(t)), t>O,AEA (6.21)~ 

are, in particular, weak solutions of the quasilinear reaction-diffusion system (1. l), . Using the 
smoothing property of the “parabolic semiflow”, we obtain the result that solutions of (6.21)x 
are in fact classical solutions of (1 .l),_, cf. [3, 19, 291. Finally, it is not difficult to see that the 
spectrum of -L := -(A(O,O) - &F(O,O)) corresponds to the eigenvalues of the eigenvalue 

problem (1.16), . Thus, condition (1.18) can indeed be recovered in (2.6). Moreover, the space 
Xc, according to the spectral projection rc“, can be described by (1.19). Hence, theorem 1.1 

follows from theorem 2.1 and theorem 2.3 (see also remark 2.2). 
It is now clear that the assumptions of theorem 1.2 are recovered in (4.2)-(4.6). Moreover, 

X := Hi,,(Q) satisfies the assumption in (3.21), due to (1.14) and X, + x + X,, see [5, 
Sections 6 and 81. Theorem 1.2 now follows from theorem 5.6. n 
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