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1. INTRODUCTION

It 1s the purpose of this paper to give a survey of some recent develop-

ments in the theory of classical solutions to elliptic and parabolic problems
involving moving surfaces. Problems of this type do not satisfy a superposition
principle for solutions and, hence, carry an inherent nonlinear structure. In fact,
it turns out that most of the equations describing the evolution of surfaces are
of quasilinear or even of fully nonlinear type. Additionally, these equations are
often of a nonlocal nature.
From a mathematical point of view it therefore seems tempting - as a first
step in the analysis - to look for weak solutions to these nonlinear equations.
In many applications, however, the corresponding mathematical model is ob-
tained under the assumption of the existence of a sharp and smooth surface
or moving boundary. Of course, one can try to follow a two-step procedure
of first constructing weak solutions and then, in a second step, analyzing the
actual regularity of a weak solution. Both steps are often closely tied to a
comparison principle. Hence, for problems without the luxury of a comparison
or maximum principle the above program is not at all obvious to realize. We
mention the quasi-stationary Stefan problem with surface tension, the Mullins-
Sekerka model, or the surface diffusion flow which do not satisfy a comparison
principle. For these problems neither existence of (even weak) solutions nor
uniqueness of (even classical) solutions was established until quite recently,
see [34, 35, 36, 40, 20, 21, 22]. On the other hand, there are moving boundary
problems for which one can guarantee existence of weak solutions (e.g. the Hele-
Shaw flow without surface tension, the Stefan problem with Gibbs-Thomson
corrections) but for which the actual regularity of weak solutions is still far
from being understood.

There is a different approach to problems with moving surfaces in which one
seeks a unique classical solution from the very beginning. In this approach one
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transforms a given moving surface problem by means of appropriate diffeomor-
phisms into a problem on a fixed reference domain and then evolves the dif-
feomorphisms. In this paper we present several problems with moving surfaces
for which the transformed equations lead to nonlinear evolution equations. It
turns out that these equations are of parabolic type (in the sense that the cor-
responding linearized equations can be treated by means of analytic semigroup
theory) and hence are accessible to well-established techniques for nonlinear
parabolic evolution equations, see [5, 6, 9, 24, 56]. This approach does not rely
on a comparison or maximum principle and, in fact, will provide existence and
uniqueness results of classical solutions to problems for which neither existence
of weak solutions nor uniqueness of classical solutions was previously known,
see the results in Sections 2 and 3.

A further advantage of this method is that we are able to specify ‘large’ func-
tion spaces of initial data on which the evolution equations under consideration
generate local semiflows. This means in particular that there is no loss of reg-
ularity as long as one does not encounter singularities. Furthermore, we show
that these semiflows possess a regularizing property in the sense that for posi-
tive time the solutions are smooth or even real analytic in space and time.
Any information on the dynamical behavior of these semiflows immediately
translates into information about the corresponding moving surface. This ap-
proach allows, for instance, to determine stability properties of equilibria, lead-
ing to new global existence results [36, 38, 40], even for well-studied problems
like the averaged mean curvature flow [39].

As already mentioned above, the analysis of the linearized problems is funda-
mental for this approach. In particular, we need sharp parameter-dependent
a priori estimates for the corresponding linear operators in order to ensure that
these operators generate analytic semigroups on appropriate function spaces.
However, we cannot rely on well-established a priori estimates for elliptic differ-
ential operators, since the linear operators coming from nonlocal moving surface
problems are usually not differential operators, but rather pseudo-differential
operators. For example, the linearization of the one-sided Hele-Shaw operator
without surface tension involves a first order hyperbolic differential operator
and a singular Green operator, see [37]. A similar situation, with an additional
first order elliptic pseudo-differential operator, is also described in Lemma 2.2
below. In order to obtain sharp resolvent estimates for operators of this type
we strongly rely on results and techniques of H. Amann’s theory of Fourier
multipliers on Besov spaces [6, 7].

2. FLOWS THROUGH POROUS MEDIA

We consider the flow of a quasi-incompressible Newtonian fluid through
a porous medium. More precisely, let R3 represent a homogeneous, isotropic,
and deformable porous medium. Let furthermore ¥ := R? x {0} be a fixed im-
permeable layer in R? and assume that some part of the region above the layer
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Y. is occupied by the fluid. Finally, we assume that there is a sharp interface
T'; separating at every instant ¢ the wet part Q; from the dry part R3\cl (Q:).
In order to describe a hydrological model for this flow, let p, v, p, and € denote
the density, the velocity, the pressure, and the strain tensor of the fluid phase,
respectively. Under suitable simplifying hypotheses, in particular assuming that
spatial changes of p and € are much smaller than the corresponding temporal
changes, the basic mass balance equation of the fluid phase is given by

V -v+nBop+ 0 =0, (2.1)

where 3 is the so-called fluid’s coefficient of compressibility and n is the solid’s
porosity, cf. [12], p.300. We now assume that

p = const. and n = const.

This assumption particularly permits to introduce the so-called velocity poten-
tial or piezometric head

m’
u(z,y) = p(g—py)—}-y, (z,y) ER*x R, (2.2)
where ¢ is the gravity acceleration, see [12], p.175, [23], p.32, or [29], p.24.
Assuming that the motion is governed according to Darcy’s law v = —kVu,

where k > 0 stands for the hydraulic conductivity, the mass balance equation
(2.1) becomes

—kAu+ pgnpoiu + 0t = 0. (2.3)
Finally, we introduce the compressibility « of the porous medium (cf. [12], p.
308) and we assume that the dilatation-pressure relation € = ap holds. This
relation is fulfilled if, e.g., one assumes that displacements of the solid phase
occur 1n vertical direction only, an assumption usually taken for granted in
hydrology of groundwater, see [12], p. 310. Using the relation £ = ap in (2.3)
we find

Sobiu —kAu=0 in €y, (2.4)
where Sy := pg(a + nfB) > 0 is called the specific storativity. Observe that
So = 0 for the flow of an incompressible Newtonian fluid through a rigid porous
medium, since in this case a« = § = 0.
Equation (2.4) governs the motion of the fluid in the domain €;. Let us now
discuss the boundary conditions on 9€; = X UT;. First, recall that X is assumed
to be impermeable for the fluid. Hence we have the no-flux condition

O3u=0 on X.

Next, we assume that the interface separating the fluid from the air is given as
a graph over R? of a time-dependent function f, i.e.,

[y :=Tu) = graph(f(t,-)).
Moreover, the free interface I'f;) is characterized by

(z,y) €Tyy <<= y=sup{z €R;p(t z, z) >0}
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If we neglect surface tension effects the pressure p is continuous, see [29], p. 18.
Hence, normalizing the atmospheric pressure to be equal to 0, we find

p(t,z,y) =0 for (z,y) € Tsp). (2.5)
Because of y = f(t, z), we obtain from (2.2) and (2.5) the boundary condition
u(t, @, f(t, ) = f(t,2), (2,1) €R?x[0,00). (2.6)

Finally, setting F(t,z) := y — f(t,z) for z = (z,y) € R? x R and ¢ > 0, the
interfaces {T'y(;y; ¢ > 0} are characterized by the conservation property that F'
is identically equal to 0 on {T';¢) ; ¢ > 0}. Consequently, we get

%F(t,z)zﬁtF(t,z)—i—Vf(t,z)z':O on Ty (2.7)

Again by Darcy’s law the velocity 2’ is given by —kVu. Since 0;F = —d; f and
VF = (=V3f,1), equation (2.7) becomes

O + k14 |VF20,u=0 on Ty,

where 0, stands for differentiation with respect to the outer unit normal. Sum-
marizing, we obtain the following set of equations:

SoOiu —kAu =0 1n Q
Osu = 0 b))
U on (2.8)
u=f on I},
Of + k1 +|Vf|?0,u =0 on OT,

where the constants k, Sy satisfy & > 0 and Sy > 0. Of course, system (2.8) has
to be completed by initial conditions and, as it turns out, by a normalization at
oo. We will specify appropriate initial conditions later depending on whether

So>0o0r S;=0.

Let us first take (2.8) as a model for the following general situation: Let n € N
with n > 1 be fixed and set

Ay :={f € BC'(R",IR) ; inf f(x) > 0}.
Given f € Ay, define
Qs = {(z,y) €R™; 0 < y < f(z)}.

The boundary of this unbounded C'-domain is given by ¥ U T, where ¥ :=
R” x {0} and T’y := graph(f).
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2.1. Incompressible fluids in rigid porous media. If we consider the flow
of an incompressible fluid in a rigid porous medium, the specific storativity Sy
vanishes, cf. (2.4). In this case (2.8) is a model case for the following moving
boundary problem

Au =0 in Q
O,u=0 on X
u=f on Iy (2.9)
limy (g y)|soo u( (z,9)) = ¢ on [0,7]
hf+ky/1+|Vf2hu=0 on Ty
f(0,)) = fo on R7,

where fy € Ag is a given initial data and ¢ is a given positive constant. To
formulate our results for system (2.9), let A*+*(R™), k € N, a € (0, 1), be the
closure of the Schwartz space S(R") in the usual Holder norm of BUCk+2(R").
It is also convenient to write h¥+% := h*+* 4 ¢ Let now

U:={f€Ao; feh*(R")}

and consider for a given f € U the following elliptic boundary value problem
on the unbounded domain Q¢

Au = 0 in Qy

O, u = 0 on X

W= f m (2.10)
lim u(z,y) =ec.
[(@,y)|—+o0

It can be shown that there exists a unique classical solution u; of (2.10), see
[33], Section 2. We are now prepared to introduce the following domain of
parabolicity for problem (2.9):

Vi={f€U; dnprup(z, f(z)) < 1+ |Vf(2)|))~", zeR"}.  (2.11)

Obviously, f = ¢ belongs to V. Additionally, it can be shown that V is an open
neighborhood of ¢ in BUC?***(R") and that its diameter in BUC?T(R™) is
unbounded. Our main result for the moving boundary problem (2.9) reads as
follows:

Theorem 2.1. Given fq € V, there exists a unique maximal classical solution
to (2.9), i.e., there exists a marimal t+ =1 (fo) > 0 and a unique pair (u, f)
such that

u(t, ) € hg+a(Qf(t)), t e [0,t+),
feC(0,tt),V)nCH[0,tt), R1t>(R™)).
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In addition, we have the following smoothing property for the solution:
u(t,) € C*(Qr), t€(0,tF), feC¥((0,th) xR"),
where C¥ stands for the set of all real analytic functions.

Let us explain some steps of the proof of Theorem 2.1. The full details can be
found in [32, 33]. First we reduce system (2.9) to a single evolution equation
for the moving interface. For this let V. := V' — ¢, and observe that 1, is an
open neighborhood of 0 in A%+ (R™). Given g € V,, define

pg(z,y) = (2, (1 —y)(c+g(z))) for (z,y) €,
where @ := R” x (0,1) is now a fixed reference domain. Tt is not difficult
to see that ¢, is a diffeomorphism of class C***, mapping © onto Qc44. Let
¢y = uopg and wiv = wvo gog_l denote the corresponding pull-back and
push-forward operator, respectively, and let

Alg)v = —pgAlplv),  Bilg)v:=keg(viV(glv)ni), i=0,1, (2.12)

for v € h2+*(Q) be the corresponding transformed operators. Here, =; is the
trace operator with respect to ¥ and T4, respectively, and n, := (—Vg, 1)
and ng := (0,—1) stand for the outer normal direction on I'cy, and on X,
respectively. The solution operator for the transformed elliptic boundary value
problem on 2

Alglv = w in Q
v = h on Iy
Bi(g)v = 0 on Iy (2.14)
lim v(z,y) =0,
[(z,y)| =00

is denoted by R(g), where T'; := R” x {i}, i = 0, 1. More precisely, given
(w, h) € h*(Q) x h?T2(Ty), it can be shown by classical methods (cf. Appendix
C in [32]) that there exists a unique solution R(g)(w,h) of (2.14) in h2T%(Q).
Tt is convenient to split the operator R(g) into R(g) = S(g9) ® T'(g), where
S(g) := R(g)|h*(Q) x {0} and T(g) := R(g)|{0} x h?**(Ty). Of course, using
the notation from (2.10), we have @ju; —c = T'(g)g with ¢ = f — c. Hence it
is not difficult to see that the moving boundary problem (2.9) is equivalent to
the abstract evolution equation

d .
Eg—}-(l)(g):o, g(0)=go in A'FTHRM), (2.15)

where ®(g) := Bo(9)7(9)g, 9o := fo — ¢, and where we identify in the following
Ty with R™. More precisely, if (u, f) is a classical solution to (2.9) with initial
data fo € V, then g := f—cis a solution to (2.15) with initial data go := fo—e¢,
and vice versa: if g is a solution to (2.15) with initial data gg € V. belonging
to C([0,t1), Vo) NCL([0,tT), A1+ (R™)), then the pair (pIT(g)g +c,g+¢) is a
classical solution to (2.9) with initial data fo := go + ¢. Consequently, we will
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focus our attention on the abstract evolution equation (2.15).

Observe that the diffeomorphism ¢, depends analytically on g. Hence, express-
ing the coefficients of the transformed operators A(g) and By(g) in terms of ¢,
and using the inverse function theorem, one can verify that & depends analyti-
cally on g € V.. More precisely, Proposition 3.1 [33] and Lemma 4.3 [32] yield:

Lemma 2.2. We have ® € C¥(V,, h1T*(R™)) with

9®(g)h = Bo(9)T(9)h + dBo(g)[h, T (9)g] — Bo(9)S(9)0A(g)[h, T (9)g],
for g € V. and h € h?**(R"). Here

s=0"

0By()[hv] = - Bolg + shel . 9Ag)[h,v] = CAg + sh)o|

~ds
for v € h2T(Q).

In order to further investigate the linearization of ®, it is convenient to intro-
duce the following notation. Given two Banach spaces E; and Ej such that F,
is continuously and densely injected into Fgy, we denote by H(F1, Eq) the set
of all A € L(FE1, Ep) such that —A, considered as an unbounded operator in Eq
with domain F, generates a strongly continuous analytic semigroup on Ej.

In the following we fix g € V. The operator By(g)T(g) is a pseudo-differential
operator of first order and it is called the generalized Dirichlet-Neumann opera-
tor, [8, 30, 48]. Tt can be shown that Bg(g)T(g) € H(h*T*(R™), h1T*(R™)), see
Corollary 6.3 in [32]. The operator dBqg(g)[-, T(g)g] is a first order hyperbolic
differential operator, whereas By(g)S(9)0A(9)[, T(g)g] is a first order pseudo-
differential operator. Hence, the full linearization d®(g) is the sum of three first
order pseudo-differential operators. However, the following result holds true:

Theorem 2.3. Given g € V., we have
9%(g) € H(h*+*(R™), ATH*(R™)).

The main ideas of the proof of Theorem 2.3 can be summarized as follows: First
we associate to each of the operators

Bo(9)T(g9), 0Bol(9)[-,T(9)g], and — Bo(g)S(9)0A(g)[-, T(9)g]

Fourier multiplier operators Fy, Fy, and F3 by freezing the spatial variable
z € R™. Using then the fact that each g € V. satisfies

c+g(z)
1+ |Vg(z)[?

cf. (2.14), it can be shown that F := Fy + F3 + F3 is a regularly elliptic Fourier
multiplier of first order in the sense of H. Amann, see [6, 7]. For details we refer
to Section 3 in [33]. Subtle perturbation techniques then allow to carry over
the generation property of F' to d®(g), cf. Section 6 in [32].

Ont1[T(9)9](z,0) + >0, zeR”
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Based on Theorem 2.3 we can now rely on maximal regularity results in the
sense of Da Prato and Grisvard [24], see also [9, 56, 65], to find a unique solution

g € C([0.£%), V) N CH([0,%), AT+ (R™))

of the nonlinear equation (2.15). The regularizing property of the solution,
i.e., the fact that g is actually real analytic in (0,¢%) x R”, follows from the
equivariance of problem (2.9) with respect to spatial translations, and again
from maximal regularity. We will explain this method, which relies on an idea
of S.B. Angenent [9, 10], in detail for the flow through a deformable porous
medium discussed below.

Remarks 2.4. a) The first analytic results for problem (2.9) are due to
Kawarada and Koshigoe [51], see also [52]. These authors construct in the
case n = 1 for suitable initial data in the Sobolev space H'¥(R) a solution in
C([0,T], H*¥*(R))NnC([0, T], H(R)) by a Nash-Moser iteration. This approach
leads to a serious loss of regularity for solutions. In addition, there are no
uniqueness results in [51, 52].

b) We treat (2.15) as a fully nonlinear equation, although the operator ®(g) =
Bo(9)T'(9)g has a quasi-linear structure in the sense that, given g € V., the
mapping [h — Bg(g)T(g)h] is a first order linear operator. This quasi-linear
structure 1s not useful in our situation, since the nonlinear dependence in & 1is
of first order as well.

¢) Given g € V., let f = g + ¢. Then we have

Onrus(z, f(2) < (1+ [VF@ID™!,  zeR, (2.16)
where uy is the solution of the elliptic problem (2.10). Relation (2.16) should be
seen as a parabolicity condition for (2.9) in the sense that the corresponding
linearized problem is well-posed and induces a strongly continuous analytic

semigroup on h'*®(IR"), provided (2.16) holds true, whereas the same linearized
problem is backwards parabolic if

Ontrug(z, f(x)) > (L+|VFf(2))~!,  zeR™
On the other hand, letting p(z,y) = us(z,y) — y for (z,y) € R™ x [0, 00),
it follows from the strong maximum principle that 9,4 1uy(z, f(z)) < 1, since

Vp is orthogonal to T'y. We do not know whether or not problem (2.9) is still
well-posed if condition (2.16) is replaced by the condition d,41ug(z, f(z)) < 1.

d) Tt can be shown that

dBo(9)[-,T(9)9] — Ba(9)S(9)0A(9)[, T(9)g] — 0
in L(A%**(R"), h1T2(R™)) as ll9]|p2+a @@= — 0. Since Bq(g)T(g) belongs to
H(h*F>(R™), 1+ (R™)) it follows therefore from Lemma 2.2 and well-known
perturbation results for the class H(h**®(R"), A1+ (R™)) that there is an g >
0 such that
9®(g) € H(R***(R"), R (R™)),
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provided [|g||p2+a®n) < €0. Let us emphasize that there are arbitrarily large
g € Ve and that Theorem 2.3 does not rely on a smallness condition.

2.2. Quasi-incompressible fluids in deformable porous media. We con-
sider now the flow of a quasi-incompressible fluid in a deformable porous
medium. In this case the specific storativity Sy is positive, cf. (2.4), and (2.8)
leads us to the problem

Ou—Au =0 in Q
Gu=0 on X
u=f on Iy
limy(z g)jse0 u(- (2,9)) = ¢ on [0,7] (2.17)
6uf + by TFIVPau =0 on T
f(0,:) =fo on R™
u(0,)) = uo in Qy,,

where now fy € Ag and ug € BUC' (§2;,) are given initial data. As before, ¢ and
k are positive constants. In contrast to problem (2.9) we treat system (2.17)
in appropriate Sobolev spaces rather than in Holder spaces. To formulate our
results, we fix p > n + 2 and denote by W] the Sobolev-Slobodeckii spaces
of order ¢ > 0, i.e., W7 is the usual Sobolev space if ¢ € N, whereas W7
stands for the Besov space By, if o > 0 is not an integer. Furthermore, in the
following we fix s € (0,1/p), @ € [I/p,1 = ((n+ 1)/p)], and v € (0,¢). Given
g € W2ts—1/p (R™), it follows from well-known trace theorems that there exists
an extension § € W2T¢(R"+1) of g such that supp(g) C R" x (—3/4,3/4) and
such that §|R” x {0} = g. For technical reasons we introduce some further
notation. Given f € Ag, let g := f — ¢ and set

w(f) = sup [IVei(z,9)]* + (1 = y)0ns1d(z,y) — Gz, y)]]/*.

(zy)eQ

Later on, the quantity w(f) will be useful to construct an appropriate diffeo-
morphism, mapping again the reference domain Q onto Q.4,. Now let

Vi={f € Ao; f e WETP(R™), w(f) < min(1,7)},
where, for simplicity, we write Wy.=WJ+c 020
Theorem 2.5. Let p > 0 be given. Then there exists a § > 0 such that for
any fo € V and ug € W21*(Qy,) satisfying
[|uo — C||W2+s(ﬂfu) <p ||an+1u0||BUC°‘(ﬂf0) <4,
10n-+120T o llyya4s=1/7 gy <6
and the compatibility conditions

ug|T' s, = fo, On1u|Z =0,
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there exists t+ := t*(uq, fo) and a unique mazimal classical solution (u, f) of
problem (2.17) in the class

FeC(o 1), VynCH(0,44), W FTVPRM) 0 02 ((0,1+) x R)
u(-,) € C=(Qy 1), u(t,-) € BUCT*(Qyy), t€[0,7),
where Qp v := {(t, (z,y)) € (0,T) x R"*1; (2,y) € ﬁf(t)}.

Before we prove Theorem 2.5, let us add the following comments.

Remarks 2.6. a) Theorem 2.5 extends earlier results obtained in [31], since we
are now able to prove the analyticity of the free interface I'; and the smoothness
of the potential u.

b) There is a different approach in weighted Hélder spaces to problem (2.17)
outlined in [14, 13]. Recently, a (different) L,-theory for problems of type (2.17)
was proposed in [66, 67].

¢) Our regularity result for the moving boundary I'; also extends results in
[53], where, under the assumption of the existence of classical C-solutions,
the C'°°-smoothness of the moving boundary is proved. No existence results
are presented in [53]. In contrast, Theorem 2.5 guarantees the existence of
classical solutions and we further establish the actual regularity of the moving
boundary.

d) Observe that the constant function (u, f) = (e, ¢) is a solution to (2.17).
This trivial solution should be regarded as an equilibrium of system (2.17).
Furthermore it is not difficult to verify that V is an open neighborhood of ¢ in
Wats = P (mn).

Proof of Theorem 2.5 (i) In a first step we provide an appropriate extension
for g € Wfﬂ_l/p(ﬂ%”) to a function on the whole of R™+!. For this, let yo be
the trace operator with respect to ¥ and let

¥o € LWET =P (R, Wit (R™HY), ke (2.18)

be the coretraction of v constructed in [69], Theorem 2.7.2. Tt follows from
formula (2.7.2.42) in [69] that v possesses the following translation equivari-
ance

TaYog = ¥5Tag, a€RT, g€ WP (RY),
where
(ra9)(z) :=g(z +a) and (rv)(z,y) :=v(z+a,y)

for g € Wf-l_s_l/p(ﬂ%”), v E Wlf‘*‘s(ﬂ%”"'l), and (z,y) € R™ x R. Next we pick
n € C(R) with supp(n) C (—3/4,3/4) and 5(y) = 1 for y € [-1/2,1/2].
Given g € Wi—'—s_l/p(IR”), set

(pog)(z,y) == n(¥)(169) (. y), (z,y) €Q. (2.19)
Recall that Q := R"™ x (0, 1). Obviously, we have

Tapog = poTag, a €R", g€ WETTIP(R™), (2.20)
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For simplicity we often write g := pog.

(i1) Let Ve := V — ¢, pick g € V, and set

eg(z,y) = (2, (1 —y)(c+3(z,y), (z,y) €.

As in [31] Lemma 2.2 one shows that V. is an open neighborhood of 0 in
Wp2+s_1/p(R”), and that, given g € V,, we have

Py € Diﬁ1+a(9a Qc+g)a Yopg € Diﬁl—i—a(za I‘c-}-g)'

As in (2.12) we now define the transformed operators
Alg)v = =g (Aplv),  Bilg)v :=keg(viV(pl)|ni), i=0,1

for v € W;(Q), where ng := (=Vyg, 1) and n; := (0,—1) denote the outer
normals on I'cy, and T'g, respectively. To express the coefficients of these op-
erators in terms of g € V¢, let G(g) := ¢+ § — ®0p41§, where w(z,y) :=1—y
for (z,y) € Q, and denote by Gjx(g) = (05¢4|0kq), 1 < j, k < n+1, the
components of the metric tensor induced by ¢,. It is not difficult to verify that

det[G,x(g9)] = G(g) and that the inverse [G7%(g)] of [G;x(g)] is given by

_ I -
R
TO2g
0 1 0 G(gg
[G7Hg) = | : : (2.21)
TOn g
0 0 1 G(gﬁ’
wd1§ wd2g TOng 14|71V 5|2
L G(g) G(g) G(g) G3(g) A
Then we have
1 n+1 )
Alg)v = e D" 0;(G(g)GT* (g)dkv), v E WI(Q). (2.22)
7,k=1

By the construction of the extension operator pg, in particular by the choice of
7, one easily verifies that the boundary operator By is represented as

_ - k 2 iy
Bo(g)v = ’f; —0;970(9jv) — eTP) (L+[Vgl*)v0(dnt1v), (2.23)
whereas By (g)v = (k/c)y1(On41v). Finally, we need

Po.g) = =T m(Bola)o),  (v.9) € (@) x Ve
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Assume now that (u, f) is a solution to problem (2.17). Setting ¢ := f — ¢ and
v := gy (u — c), one shows that (v, g) is formally a solution to

v+ A(g)v+ F(v,g) =0 in (0,7]xQ
v=yg on [0,T]xTy
Opy1v =0 on [0,7]x Ty
limy(zg)| o0 v(, (2,9)) = 0 on [0, 7] (2.24)
0:g+ Bo(g)v =0 on (0,7] x Ty
v(0,:) = vg in Q
9(0,:) = go on Ty,

(iii) We shall now focus our attention on the transformed system (2.24). In
order to introduce an appropriate notion of solutions to (2.24), let

Eo = W2(Q) x Wyt 77(1y)

Ey = {(v,g9) € WZT(Q) x Wo T P (0o) 5 yov = g, 31 0ngav = 0.

Each of these spaces is given the natural topology, i.e., the product topology
for Ey and the relative topology for E;. It follows from the trace theorem that

Ey is a closed subspace of W2**(Q) x Wp2+s_1/p(F0) and it can be shown that
Fj is dense in Fy, see Lemma 3.1 in [31]. Observe further that the “stationary”
boundary conditions of (2.24) are incorporated in the space Ej.
Next let Dy := {(v,g) € E1; g € V.} and define
T(z) := (A(g)v + F(v,9), Bo(g)v) for z=(v,g) € Ds.

It is not difficult to see that D; is an open subset of E;. Moreover, using the
representations (2.22) and (2.23) one verifies that

Imec” (Dl, Eo). (225)

Recalling the definition of Ey, system (2.24) is equivalent to the abstract evo-
lution equation

d
Ez +T0(z) =0, 2(0) =20 := (vo,g90) in FEq. (2.26)

More precisely, given zo = (vo,g0) € D1, we call z = (v,g) a classical W;-
solution to (2.24) if and only if

z € C([0,T], D) nC*([0,T], Eo) (2.27)

and z satisfies the equations in (2.26) pointwise on [0, 7. Using the diffeomor-
phism @, one shows that each classical W —solution 2 = (v, g) of (2.24) gives
rise to a classical solution to (2.17) by setting f := g + ¢ and

u(t, (z,9) = (P v(@t) (@,9) +e, tE[0,T], (2,9) € Aoy,
cf. Lemma 2.4 in [31].
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(iv) We know from (2.25) that, given z = (v,g9) € D;, we have 9ll(z) €
L(E1, Ep). Unfortunately, in order to guarantee that dTI(z) belongs to the class
H(F1, Ep), we need a smallness assumption for ». More precisely, given p > 0
and § > 0, let

Wos :=1{(v,9) € Di; |[Yllz4sp < p, [[Ont19]|a <6, [[700n+19]l145p <6},
where || - || and || - ||o stands for the norm in W7 and BUC®, respectively.

The following crucial result for 9TI(z) was proved in [31], Corollary 3.6: Given
p > 0, there is a § > 0 such that

OIl(z) € H(E1,Ey) forall z€ W,s. (2.28)
Based on (2.28) we can now apply results of A. Lunardi to find a unique solution
of system (2.24). Indeed, given zg = (vo, go) € W, s, Theorem 2 in [55] and an
extension argument (cf. Theorem 3.8 in [31]) show that there exists a unique
maximal classical W -solution to (2.24) on [0, (vo, 90))-
(v) Let us now verify that the interface constructed above depends analytically
on the space and time variables. For this we fix p > 0 and choose § > 0
such that (2.28) holds. Let W := W, ;. We fix (vo,g90) € W and let z =
(v,9) € C(I, W) n CY(I,Ey) denote the unique solution of (2.24) on [0, 7],
where T' € (0,%%(vo, go)) is fixed and T := [0, T]. Additionally, let Iy := (0, T7.
Given g € (0,1) and a Banach space E, let

C'g([, E) :={u € BUC(I, E)nC?(Iy, E); lime’  sup llu(s) = ut)lls =0},
=0 e<s<t<2e |5_t|ﬁ

where C(Iy, E) denotes the space of all locally g-Hélder continuous functions
from Iy to E. It is not difficult to verify that C’g([, E), equipped with the norm

llu(s) = u(®)l|z g
ul| -5 = ||ul|oo + sup &’ sup , ueCy(I,F),
I Hcﬂ(I’E) leflos 2¢€ly  e<s<t<2e s —t|? 'B( )

is a Banach space. The space C’é‘hﬁ (I, E) consists of those u € C’g([,E) such

that u’ belongs to Cg (I, E) too, given the obvious norm. Of course, C’gf’@(f, E)
is also a Banach space. With this notation, it follows from (2.28) and Theorem
I11.2.5.6 in [6] that
(CH(I, Eo), CH(I, Ex) N Cy+ (1, Ey))
is a pair of maximal regularity for the family {0IT(w) ; w € W}, that is,
d

(5 + 0M(w), tr) € Tsom(C (I, B1) N Cy*P(I, Eo), C{(I, Eo) x Ey), (2.29)
for every w € W, where tru := u(0) for u € Cg([, E4). For later purposes we
also need the following additional regularity of the solution z of (2.26)

z € CH(I, E1) NCyP (1, Ey), (2.30)

which is guaranteed by Theorem 8.1.1 in [56].
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(vi) Next we collect some useful properties of the solution z = (v,g) and TI
concerning translations in space and dilation in time. Given ¢ € R™ and w =
(r,h) € Eo, let Tqw 1= (7(q,0)7, Tah), cf. (2.20). It follows from (2.20)-(2.23)
that

T,(W)yCW and 7,JI(w)=T(r,w), a € R, we W. (2.31)

Let now (A, u) € (1 —¢,14¢) x R™, with £ > 0 sufficiently small, be given and
set

2apu(t) = mpz(At), tel
Since 7, (W) C W, we find that z, ,(/) C W. Additionally, we have
2, € C(IL,W)NCHI, Ey). (2.32)

Examplarily, let us show that the first component vy , = m,v(At) of zx
belongs to C(I, W;"'S(Q)). Obviously, we have

v+ h) = o) = T+ ) —v(M))
+ (T(enyu = Tou)v(AL).
Hence, using the fact that the set of all translations {7, ; ¢ € R"} forms
a strongly continuous group of contractions on WI?‘*‘S(Q), and the fact that
ve C(I, W;"'S(Q)), we conclude that vy , € C({, Wﬁ"’s(Q)). Let now
Iy ,(w) := AlI(w) — Dyw, weW,

where D,w := ((¢|Vgv), (#|Vg)). Using the translation equivariance of II, cf.
(2.31), one shows that z , solves the evolution equation

d
EZA7N+H)\7H(Z>\7H):O7 tel, Z)\VH(O) = zp. (233)

Moreover, since (u|Vg) involves only tangential derivatives and since [v —
(u|Vzv)] is a first order operator, it is not difficult to see that solutions to
(2.33) are unique in the class (2.32), cf. the proof of Theorem 3.8 in [31].

(vii) In the following, let A be an open neighborhood of (1,0) in (1—¢, 14£) xR"™.
Moreover, we set D := C(I,W) N Cg([, Eq) N Cé-l_’@(f, Ep). Given (A, p) € A
and w € D, we define

F(w, (A p)) = (%w + MI(w) — Dyw, w(0) — 20).

Recall that 7 is compact and that W is open in E;. Moreover, one has the
embedding C’g([, Ey) = C(I, Ey), cf. Proposition IT1.2.1.1 in [6]. Hence we find
that D is open in Cg([, Eq )N Cé"”@(f, Ey). In summary, we see that dom(F) =
D x A is an open subset of (C’g([, Ey)nN C’é+ﬁ(1, Ep)) x R**1 In addition, it
follows from (2.25) that

F e C¥(Dx A, CJ(I, Ey) x Er).
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The derivative 01 F' of F' with respect to w € D is given by
d
O F(w, (1,0)h= (Eh—kaﬂ(w)h,h(O)). (2.34)

Observe that F(w, (A, 1)) = 0 holds true if and only if w is a solution to the
evolution equation (2.33). Observe also that we have (z,(1,0)) € D x A, cf.
(2.30), with F(z,(1,0)) = 0. In addition, it follows from (2.34), (2.29) and
Theorem 2.6.1 in [6] that

O F(z,(1,0)) € Isom(CS (I, E1) N C5*P (1, Eo), CJ(I, Eq) x Er)).

Consequently, the implicit function theorem guarantees the existence of an open
neighborhood Ay of A and a unique mapping

(A, 1) = wy ] € C¥(Ao, C(I, W) N CH(I, E1) N Cy* (I, Ey))
such that F(wx , (A, #)) = 0. Since Cé-h@(f, Egy) C CY(I, Ep), we find by the
unique solvability of (2.33) in the class (2.32) that
[(\, 1) = 23 4] € C¥(Ao, C(I, W) N CH(I, E) N Cy*P (I, Ep)). (2.35)

(viii) We now show that the interface depends analytically on the spatial and
temporal variables. For this let gy , := 7,g(At) be the second component of
zx,u- By (2.35) we particularly have

[(A, 1) = gxu) € C¥(Ao, CH (I, Wi+ 1P (Tyg)). (2.36)
Moreover, given (k,v) € N x N” an induction argument shows that
tk+|7|8f’agg(t) = aﬁalg)\,uk)\,p):(lﬁ)(t)a te Ia

cf. the proof of Theorem 4.4 in [33]. In particular, we have g € C*°((0,7T) xR"™).
Also the fact that

g €CY((0,T) x R™) (2.37)
follows from (2.36). Indeed, representing g , by its Taylor series, and using
Sobolev’s embedding theorem, one shows that, given (tg,20) € (0,7) x R™,
there are positive constants r and M such that

|0F 0% g(t, @) [P H 1T < MEly!
for all (k,v) € N x N” and all (¢, z) € B((t0, z0), 7).

To verify the smoothness of v, consider the semilinear parabolic equation
v+ A(g)v+ F(v,g) =0 in (0,7] xQ
v=g9 on [0,T]xTg
Opp1v =0 on [0,7T]x Ty
v(0,") = vg in Q

for the function v. Combining (2.37) with (2.18), (2.19), (2.22), and (2.23)
we find that all coefficients of A(g) and F(-,g) are smooth. Hence, it follows
from well-known regularity results for semilinear parabolic initial boundary
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value problems, cf. Corollary 9.4 in [4], that v belongs to C*((0,T) x Q). This
completes the proof. m

Remark 2.7. Although we prove that the function g appearing in (2.24) (and
yielding the interface f = g + ¢ in (2.17)) is real analytic, we only get C'*°-
regularity of the corresponding potential v. Since we use a cut-off function in
our construction of the extension operator pg, the regularity of v cannot be
improved to real analyticity in the framework presented here. We leave it as
an open problem to find an extension operator sharing all properties of py but
implying in addition the analyticity of the coefficients A(g) and F(-, g). If such
an extension operator exists the analyticity of v follows from [41] Theorem 3.3.1.

3. VOLUME PRESERVING MEAN CURVATURE FLOWS

Let T' = {['(¢);t > 0} be a family of closed compact hypersurfaces in R*+1,
n > 1. In this section we consider the evolution of I' under the assumption that
the normal velocity V' of T is given as a function of the mean curvature H (t) of
each individual surface T'(¢), i.e., V(t) = F(H(t)). Of course, both quantities V
and H have to be given an appropriate orientation. More precisely, we adopt
the sign convention that V(¢) and H(t) are positive for a locally expanding
family of hypersurfaces and for a locally convex hypersurface, respectively. Let
At) = fF(t) do(t) denote the surface area of T'(¢) and assume that each surface
T'(¢) is smooth. Then it follows from the first variation of the area functional,
cf. Theorem 4 in [54], that

In particular, we observe that A(t) is monotone as a function of ¢ if [ H (¢)V (¢)
has a sign. The most prominent and most simple example of this type is cer-
tainly the mean curvature flow, where the normal velocity is given by V() =
—H(t). We shall present below some further examples for which [V (¢)H(t)
has a sign.

Assume now furthermore that each surface T'(¢) encloses a well-defined domain
Q(t) in R™*! and let wvol(t) := fﬂ(t) dz denote the volume of Q(t). Then one
has

%Uol(t): / V(t)do(t) = / F(H@#)do(t), t >0, (3.2)

') ')

cf. Theorem 2E in [47]. Therefore the evolution equation V = F(H) is volume
preserving, provided fF(t) F(H)do(t) = 0. This holds true for instance if F' =

div(X) for some vector field X, since T'(¢) is closed.
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3.1. The averaged mean curvature flow. We consider the evolution equa-
tion

V(t) = F(t) — H(t), T(0) =Ty, (3.3)
where H := |['(¢)|7! fF H do(t) is the average of the mean curvature. Obvi-

ously, this ﬂow is Volume preservmg. Moreover, (3.1) shows that

ldit = / H(H - H)do(t) = — /(H — H)%do(t) <0,
n

T(t) T(t)
since Ff(H — F)da = 0. Thus the flow (3.3) decreases the area A(¢). The

averaged mean curvature flow has been identified as the singular limit of a
nonlocal Ginzburg-Landau equation [15].

3.2. The surface diffusion flow. We consider now the evolution equation
V(t) = ArH(t), T(0) =Ty, (3.4)

where Ar(;) stands for the Laplace-Beltrami operator on T'(¢). Again this flow
is volume preserving, i.e.,

d .
Evol( )= / Vdo(t) = / divr(yy gradpyy H(t) do =0,
(t) T(t)

and area decreasing

;EA /HVdO' :/[Ap() 1H do(t) / |gradr; H| do(t) < 0.
T(t) T(t)

The surface d1ﬁusron flow (3.4) was first introduced by Mullins [60] to model
surface dynamics for phase interfaces when the evolution is governed only by
mass diffusion in the interface. It has also been examined in a more general
mathematical and physical context by Davi and Gurtin [26], and by Cahn and
Taylor [19].

3.3. The intermediate surface diffusion flow. The surface diffusion flow
(3.4) and the averaged mean curvature flow (3.3) are formally connected by the
so-called intermediate surface diffusion flow given by

V() = Arg (o — BAre) " (H(t) = F(t), t >0, T(0)=Ty,  (3.5)

where a and § are positive constants. Indeed, fix ¢ > 0, set 3 := T'(¢) and let
A denote the Ly(X)-realization of Ay, Furthermore let H = lJ‘ and write
AJ_ = A|H

We first consider the case § = 1 and let @ > 0 tend to 0. Since 0 € (A1) we
have

lim(a — A )™ = —-A7" in L(H),

a—0
suggesting that solutions to (3.5) should converge to solutions of the averaged
mean curvature flow (3.3) as &« — 0 and g = 1.
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To consider the case @« = 1 and § — 0, recall that —A; is m-accretive on H.
Hence the Lumer-Phillips theorem implies that

(1 — ﬁAL)_l = l(l — AJ_)_l — 1y In ﬁs(H)
g g
as B — 0, cf. Lemma 1.3.2 in [61]. Here L,(H) denotes the space Hom(H)
given the strong operator topology. In this case one therefore expects that the
solution to (3.5) should converge to solutions of the surface diffusion flow. We
mention that this formal connection between (3.5) and the flows induced by
(3.3) and (3.6), respectively, was first formulated in [19].

A rigorous study of these singular limits will be the topic of a separate paper.
Here we shall establish, as a first step in the analysis, well-posedness of (3.5) and
some global existence results. Hence, for the sake of simplicity, set « = =1
and consider the evolution equation

V(t) = Ary(1 — Argy) "' H(t), t >0, T(0) = T. (3.6)
Observe that
Argy(1 = Apy) T H (t) = divpgy[gradre (1 — Apgy) ™ H(1)],

so that the flow (3.6) preserves the volume, cf. the remark following (3.2).
Observe also that Ar(t)(l - Ar(t))_l 1s a non-positive self-adjoint operator in
L2(T'(t)). Hence the flow (3.6) is area shrinking too, see (3.1).

This model has recently been derived by Cahn and Taylor [19] to model growth
laws for morphological change for a class of problems where surface diffusion
is the transport mechanism and the only driving force is the reduction of total
surface free energy.

3.4. The Mullins-Sekerka flow. The Mullins-Sekerka model is a nonlocal
evolution law in which V' is given by the jump across the interface of the nor-
mal derivative of a function being harmonic on either side and which equals
the mean curvature of the moving interface. More precisely, let Q be a bounded
connected domain in R”*! with a smooth boundary dQ. Suppose I'y is a com-
pact hypersurface being the boundary of an open set Q7 which is compactly
contained in Q. Additionally, we set QF = Q \cl(Q5). We are looking for a
family T' := {T'(¢) ; t > 0} of hypersurfaces, separating at each instant the
domain Q into the domain Q7 (¢) enclosed by I'(t) and Q% (¢) := Q \cl(Q™ (¢)),
and a function u : Q — R such that

Au=0 in Q\T()
u=H on T(¢)

dyu =0 on 00 (3.7
V = [0yu] on T(¢)

Iy,

—

—~
o

=
I
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where 0,u denotes the normal derivative of u on 9 and

[0,u] := O,ut — d,u~
stands for the jump of the normal derivative of u across T'(t), with u® := u® (- )
being the restriction of u to Q% (¢).
Let us now reduce system (3.7) to a single evolution equation of the form
V(t) = F(H(t)). For this, fix ¢ and let h € h'**(['(¢)) be given. It can be
shown (cf. Lemma 2.2 in [35]) that there exists a unique solution u; € A'+*(Q)
satisfying

Au =0 in Q\T()
h on T(#)

O,u =0 on 09Q.
Hence, letting F'(h) := [9,u3], system (3.7) reduces to

V()= F(H(t)), t >0, T'(0) = Ty. (3.8)

It 1s easy to see that F' is an operator of first order in the sense that the
inclusion F(h'*%(T'(t))) C h*(T(t)) holds true. In addition, we mention that
F'is a nonlocal operator.

Assume now that there is a smooth solution T' to (3.8). Then we have

I(t)

() Q

u

and

d%vol(t) = / Vdo(t) = / [Opup)do(t) = —/Aqua: =0,
NG NG Q

showing that (3.8) is volume preserving and area decreasing. System (3.7) was

introduced by Mullins and Sekerka [59] to study solidification and liquiditation

of materials of zero specific heat. This model is also closely related to the quasi-

stationary two-phase Stefan problem with surface tension, cf. [36].

In the calculations above we always assumed existence of a smooth solution. In
order to justify these arguments, let us first establish the following existence

and uniqueness result for the flows induced by (3.3), (3.4), (3.6), and (3.8).

Theorem 3.1. Assume that 0 < 8 < 1 and let Ty be a compact, closed,
connected, embedded hypersurface in R*t! of class h'1P. Assume additionally
in the cases of the surface diffusion flow (3.4), the intermediate surface diffusion
flow (3.6), and the Mullins-Sekerka model (3.8) that T'q is of class h?*7.

a) Each of the flows induced by (3.3), (3.4), (3.6), and (3.8) has a unique
classical solution T = {T'(¢); t € [0,T)}, where T := T(Ty) is the mazimal
eristence time. Moreover, the mapping [t — T(t)] is smooth on (0,T) with
respect to the C*-topology and continuous on [0, T) with respect to the h'17-
topology in the case (3.3) and with respect to the h**P-topology in the cases
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(3.4), (3.6), and (3.8), respectively.

b) Let X be a smooth hypersurface and suppose that the initial data Tg is a h'17-
graph over ¥ in the case (3.3), and a h**P-graph over % in the cases (3.4),
(3.6), and (3.8), respectively. Then the mapping ¢ = [(t,Tq) — T(t)] defines a
smooth local semiflow on an open subset of h'tP(X) in the case (3.3), and on

an open subset of h*1P(X) in the cases (3.4), (3.6), and (3.8), respectively.

Let us explain the proof of Theorem 3.1 in the case of the intermediate surface
diffusion flow (3.6). A proof of the assertions concerning the flows induced by
(3.3), (3.4), and (3.8) can be found in [34, 35, 39, 40].
(i) We first parameterize an appropriate neighborhood of T'g. More precisely,
given a > 0, there exists a smooth hypersurface ¥, with outer unit normal p,
and pg € h2+ﬁ( with ||pol|c1(zy < @/2 such that zdp—i—po,u is a diffeomorphism
of class C**# mapping ¥ onto I'y. For @ > 0 small enough the mapping

X : ¥ x (—a,a) =R X(s,7) =5+ ru(s)
is a smooth diffetomorphism onto its image R := im(X). We split the inverse
of X into X~! = (S, A), where

SeC™®(R,X) and A€ C®(R,(-a,a))

is the metric projection of R onto ¥ and the signed distance function with
respect to X, respectively.
Let now 0 < fp < f<a <1 be fixed and set

U:={peh®**(=); [Ipller() < a}.
For T'> 0 and p € C*((0,7T],U N C* (X)), define
P, Rx(0,T] =R, (x,t)— Alz)— ((),

t).
At any instant ¢ € (0,77, the zero-level set ') : ( ,1)(0) is a smooth
compact connected hypersurface. The normal Veloc1ty of {Tpy; t € (0,71} is
then given by

Oep(s,t)

V(s 1) = —tP5t) ,
(s,1) = Vo @y (2, 0)] 2 x (s, ps.0)) (

s eTx(0,T].  (3.9)

Observe that
Ty ={z € R™"; 2= X(s,p(s,t)), s€X}, te(0,7] (3.10)
Hence, letting 8,(;)(s) := X (s, p(s,t)) for s € X, we see that 0, is a diffeo-

morphism, mapping X onto I';;). We need some further notation. First let

Ly(s,t) := |Va®,(x,1)]|__ X(spary (1) €T x(0,T].

Moreover, let 871 be the pull-back metric on X, where 7 is the usual Euclidean
metric. We denote by A, and H, the Laplace-Beltrami operator and the mean
curvature of (X, 9;‘,77), respectively. Then we have

H,=6:Hr, and A0 =0 Ar,, pel, (3.11)
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where Ap, and Hr, stands for the mean curvature and the Laplace-Beltrami
of (T',,n), respectlvely Finally, we set

G(p) == —L,05(Ar, (1 — Ar,)"'Hr,), peU

and we consider the evolution equation

Cora) =0, p(0)=p (3.12)

where pg is determined by [g. We set W := h?*#(Z) N U. A function p :
[0,T) = W is called a classical solution to (3.12) if

peC([0,T), W)n C=((0,T) x C=(%))

and if p satisfies (3.12) pointwise. By construction, the intermediate surface
diffusion flow and (3.12) are equivalent in R: If p is a classical solution to
(3.12) then T' := {T'y); t € [0,T)} is a classical solution to (3.6) such that
Loy CR,t€[0,T). Co nversely7 if T':= {T'(¢);t € [0,T)} is a classical solution
o (3.6) with T'(¢) C R, then the above construction yields a classical solution
o (3.12).

(i) From (3.11) we easily deduce that

(1-A) "0 =6(1—Ap,)"", pel.

Hence we find G(p) = —L,A,(1 — A,)"'H,, implying that
Glp)=L,H,—L,(1-A,)"'H, pel.

Tt is known, see Lemma 3.1 in [38], that the mean curvature operator carries a
quasi-linear structure in the sense that there exist functions

P e C™(U,LA*F(X),h%(T))) and @Q € C=(U,h'*Fo (D)) (3.14)

such that
Hy,=P(p)p+Q(p) for peh***(ZT)nU.

Additionally, given p € U, the linear operator [h — P(p)h] is a uniformly
elliptic operator of second order. Since L, belongs to h1*P0 (%) and is strictly
positive, it follows that L,P(p) € H(h***(X), h*(X)). Finally, let

Flp):=L,[(1=A,)7""H, = Q(p)], peU.

Then it is not difficult to verify that F € C°(U, h'tPo(%)), cf. the proof of
Lemma 2.1 in [40]. We are now prepared to apply H. Amann’s general theory
of abstract quasilinear parabolic evolution equations. In order to verify the
hypotheses of [5], let Eq := h*(X), By := h?T%(X), and let Ey := (Eq, E1))
6 € (0,1), be the continuous interpolation spaces between Fy and Fj. Since
the little Holder spaces are stable under continuous interpolation, we find 0 <
0o < 01 < 02 <1 such that

Eoy = K490(S), B, = h**90(%)

8,00

Eg, = h**P(D).

bl
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The above considerations show that
[p = (L, P(p), F(p))] € C=(U,H(*T*(X), h%(T)) x h'+Po(%)).

Hence Theorem 12.1 in [5] guarantees the existence of a unique solution p €
C([0,T),W)n CH(0,T), h*(X)) to (3.12). An additional bootstrapping argu-
ment as in the proof of Theorem 1 in [35] shows that p € C*°((0,7T), C*(X)).
This completes the proof. m

Using Alexandrov’s characterization of embedded surfaces of constant mean
curvature, cf. [1], it is not difficult to verify that Euclidean spheres are the only
embedded equilibria for each of the flows induced by (3.3), (3.4), (3.6), (3.8).
Since these flows also preserve the volume and decrease the surface area, the
isoperimetric inequality suggests that global smooth solutions should converge
to spheres. In fact, in certain situations it is possible to rigorously justify this
heuristic argument. The main idea here is to use the framework of Theorem 3.1
and some techniques from maximal regularity to construct a finite dimensional
stable center manifold to each of the above flows. In a second step we then shall
identify this stable manifold as the set of all equilibria. Therefore we conclude
that if a solution starts close to this manifold, i.e., close to some sphere, it
exists globally and converges to the manifold, i.e, to some sphere. The precise
statement reads as follows:

Theorem 3.2. Let S be a fired Fuclidean sphere and let M denote the set
of all spheres which are sufficiently C1*P-close to S in the case (3.3) and suf-
ficiently C**P_close to S in the cases (3.4), (3.6), (3.8). Then M attracts at
an ezponential rate all solutions which are C**P-close in the case (3.3) and
sufficiently C**P -close to M in the cases (3.4), (3.6), and (3.8). In particular,
all solutions starting from such a neighborhood exist globally and converge expo-
nentially fast to some sphere as t — co. The convergence is in the C*-topology

for any fized k € N.

Proof. We provide a proof for the intermediate surface diffusion flow (3.6).
The details for the cases (3.3.), (3.4) and (3.8) can be found in [38, 39, 40].
(i) For simplicity we assume that 3 = & is the Euclidean sphere of radius 1
with center at the origin. We first calculate the Frechét derivative of G at 0. For
this we note that the mapping [p — G(p)] : h2T*(S) N U — h%(S)) is smooth.
We obtain

OG(O0)h = —0(LyAp(1 = A) ™Y pmolh, Hol = LoAo(1 = Ao) ™ 9H o,
for h € h?**(X). But Lo =1 and Hy = 1, so that
LA, (1=A) " Hy=L,(1—=A,) 'A,Ho =0, peh>*(S)NU.
Consequently,

d
8(LPAP(1 - Ap)_1)|p=0[ha HO] = d_E(LahAah(l - Aah)_l)H0| 0.

e=0 =
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The derivative of the mean curvature operator is given by

1
(7’L + Ao),

n

8Hp|p=0 =
see [38], Lemma 3.1. Hence we find
1
3G(O) = ;Ao(l - Ao)_l(n + Ao)

ii) Next we locate the spectrum of A := —9G(0). For thislet {Vj;1 < k < n+1}
be the spherical harmonics of degree 1 and set Yy = 1. Then it is known that

N = span{Yy,..., Y41} = ker(Ag(1 — A)_l(n + Ag)).

We conclude that 0 is an eigenvalue of A of multiplicity n+2. Assume now that
A € C* and h € h?+(8) satisfy (A + A)g = 0. It follows that h € N1, where
the orthogonal complement is taken with respect to the La(S) inner product.
Next, observe that there are positive constants ¢; and ¢ such that

(A7'glg) < —cilglg),  ((n+ Ao)glg) < —calglg) (3.15)

for all ¢ € h?2**(S) N N1, where (-|-) denotes the inner product in Ls(S).
Writing w := (1 — Ag)~/%h we find

0= ((\+ A)IAT ) = AHIATA) + -((n + Ag)u).

(3.15) implies that A < 0. Since h2+*(8) is compactly embedded in h%(S) we
have that the spectrum of A consists of a sequence {uy ; k € N} of eigenvalues
with pp < pr—1 < -+ < g1 < po, where pg = 0 has multiplicity (n + 2).
(iii) In a next step we briefly sketch the construction of a locally invariant
center manifold M€ over N. Let Y := |S|7'1 and let Pg := Zié(g|Yk)Yk for
g € h"(8). Then P is a continuous projection of A" (S) onto N parallel to ker( P),
and it is easy to verify that P commutes with A, that is, PAg = APg = 0 for
every g € h?t%*(S). Therefore, N = im(P) and ker(P) are complimentary
subspaces of h?*%(8) that reduce A. To simplify the notation we write 7¢ = P
and 7 = (1 — P), and we define h2t*(S) := n*(h?+*(S)). It follows that
o(n°A) = {0} and o(7*A) C (—00,0). For this reason, N and h2+%(S) are
called the center subspace and the stable subspace of A, respectively. We can
now apply Theorem 4.1 in [65], see also [56] Theorem 9.2.2. These results imply
that, given m € N*, there exists an open neighborhood Uy of 0 in N and a
mapping

vy € C™(Up, h2T*(8)) with ~(0) =0, 9v(0) =0
such that M := graph(y) is a locally invariant manifold for the semiflow gener-
ated by the quasilinear evolution equation (3.12). M® is an (n + 2)-dimensional
submanifold of A%+ (S). Moreover, M€ attracts solutions of (3.12) that start in
a sufficiently small h2*7# (8)-neighborhood Wy C W of 0 at an exponential rate,
and M° contains all small equilibria of (3.12), see [65] Theorems 4.1 and 5.8.

iv) Step (iii) shows that M¢ contains all small equilibria of (3.12). We show
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that M€ in fact coincides with M near 0. Suppose that S8’ is a sphere which is
sufficiently close to 8. Let (z1,. .., zn+1) be the coordinates of its center and let
r be its radius. Recall that & C R?*! is the unit sphere centered at the origin
and let zg := 1 — r. If p measures the distance of § to 8’ in normal direction
with respect to §, then it can be verified that

n+1

2
(1+20)" = ((L+p)Ye —2)"
k=1
Here we used that the spherical harmonics Y, £ = 1,--- n+ 1, are given as
the restrictions of the harmonic coordinate functions [z — x]. Let Yy := 1.

Solving the above identify for p, we obtain that &’ can be parameterized over
S by the distance function

n+1 n+1 n+1

p2) = aYi— 1+ | O i) + (1 +20)2 = > 22, (3.16)
k=1 k=1 1

+

£
I

where z 1= (20,...,2n41) € R™"2 If O is a sufficiently small neighborhood
of 0 in R™*2 then it is clear that any sphere S’ which is close to 8 can be
characterized by (3.16) with z € O. The mapping [z = p(2)] : O = h?2T%(8) is
well-defined and smooth. Let M := {p(z); z € Up}. We conclude that M C M°,
since M consists of spheres, which are the equilibria of the intermediate surface
diffusion flow. We intend to show that M = M?¢. This follows, for instance, if
we can verify that 7¢(M) is an open neighborhood of 0 in N. In order to show
this we investigate the mapping

F:0—= N, F(z) := n°p(z).

It is easy to see that the partial derivatives of /' with respect to z; at 0 € O
are given by 9,,F(0) = 1 and 9,, F(0) = Yy for 1 < k < n + 1. We conclude
that the Fréchet derivative F(0) of F' at 0 is given by

n+1
OF(0)h =Y hyYe,  heR™? (3.17)
k=0

Since the set {Y;} is a basis of N, we conclude that dF(0) € L(R"*2 N) is an
isomorphism. Consequently, the Inverse Function Theorem implies that F' is a
smooth diffeomorphism from O onto its image V := im(F'), provided O is small
enough. Therefore, 7°(M) is an open neighborhood of 0 in N which can be
assumed to coincide with the open neighborhood Uy constructed in step (iii).

v) Tt follows from step (iv) that the reduced flow of (3.12) on M?° consists ex-
actly of equilibria. Therefore, 0 is a stable equilibrium for the reduced flow and
we conclude that 0 is also stable for the evolution equation (3.12), see Theorem
3.3 in [64]. In particular, there exists a neighborhood Wy of 0 in h?+#(S) such
that solutions of (3.12) exist globally and converge to M exponentially fast
for every initial value py € Wy.
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(vi) As in [38] Theorem 6.5 and Proposition 6.6, one shows the following result.
Given k € N and w € (0, —p1) there exists a neighborhood Wy = Wy(k,w) of
0 in h2+#(8S) with the following property: Given pg € Wy, the solution p(-, po)
of (3.12) exists globally and there exist ¢ = c(k,w) > 0, T = T'(k,w) > 0, and
a unique zg = 2zo(po) € Ug such that

[(xp(t, po), @ p(t, po)) — (20, 7(20)) llcx < ce™||7* po — (7 po)|| 2+

for t > T. According to step (iv), (z0,v(z0)) is a sphere and the proof is now
complete. =

Remarks 3.3. a) By Theorem 3.1 the averaged mean curvature flow (3.3) gen-
erates a smooth semiflow on an open subset of h!+#(3). Moreover, Theorem 3.2
ensures that solutions starting sufficiently C'*P-close to a sphere exist glob-
ally. Since in every C'*#-neighborhood we also find non-convex surfaces, we
get global solutions to (3.3) emerging from non-convex initial data. Of course,
these global in time solutions are obtained as small perturbations of equilib-
ria. However, 1t seems that this result is not reachable by the techniques in
[42, 43, 49, 50].

b) Tt was shown in [18] by formal asymptotics that the surface diffusion flow is
the singular limit of the zero level set of solutions to the Cahn-Hilliard equation
with a concentration dependent mobility. Analytically, the surface diffusion flow
was investigated for curves in two space dimensions by [11, 28, 44].

¢) The results for the intermediate surface diffusion flow (3.6) obtained in The-
orem 3.1 and Theorem 3.2 are new. The only other analytic results we are
aware of are contained in [28]. As for the surface diffusion flow, the methods in
[28] seem restricted to curves in RZ

d) In contrast to the Mullins-Sekerka model (3.7), equations (3.3), (3.4), and
(3.6) make perfectly sense for immersed hypersurfaces. In fact, our methods
are general and flexible enough to extend Theorem 3.1 to the case of compact
closed immersed orientable hypersurfaces, see e.g. [40]. Observe that there are
immersed surfaces of constant mean curvature which are not Euclidean spheres,
cf. [70]. Consequently, the flows induced by (3.3), (3.4), and (3.6) admit equi-
libria which are not spheres. The stability properties of these non-embedded
equilibria are not known. We also refer to the numerical simulations in [40]
which show, for instance, that a four-leaf rose evolves in such a way as to ap-
proach a limiting configuration which is a triply covered immersed circle.

e) It is well-known that the maximum principle prevents embedded hypersur-
faces from developing self-intersections under the mean curvature flow. This is
no longer true for the averaged mean curvature flow and the surface diffusion
flow. Tt is shown in [58] that both flows can drive embedded hypersurfaces to a
self-intersection in finite time. This behavior was conjectured for the averaged
mean curvature flow in [42]. Moreover, it was suggested in [28] and later proved
[44] that the surface diffusion flow can drive a dumbbell curve of appropriate
shape to a self-intersection. The methods in [44] seem restricted to curves in R2,
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f) It is known that the averaged mean curvature flow preserves strict convexity,
cf. Theorem 1.3 in [50] and Theorem 4.1 in [42]. In contrast, the surface diffu-
sion flow and the Mullins-Sekerka flow do not share this property, see [57, 45].

g) The Mullins-Sekerka model arises as a singular limit of the Cahn-Hilliard
equation. This was formally derived in [62] and rigorously proved in [2] under
the assumption that there exist classical solutions to (3.7). The first existence
and uniqueness results for classical solutions to the Mullins-Sekerka model were
obtained in [34, 35] and independently for initial data in C3+# in [21]. It should
be mentioned that even existence of weak solutions to (3.7) in higher space di-
mensions was not established previously. In two dimensions, existence of global
weak solutions for initial curves that are small perturbations of circles was
shown in [20]. In [22] the authors prove existence of classical solutions starting
from small analytic perturbation of a circle. However, the methods of these
papers seem restricted to the plane setting. The Mullins-Sekerka model was
also analyzed in [27] for strip-like domains in R% Observe that Theorem 3.1
guarantees local existence for arbitrarily large initial data. Finally, the Mullins-
Sekerka model can also be obtained as an asymptotic limit of some phase field

models [16, 17, 68].

h) The Mullins-Sekerka model (3.7) describes solidification and liquiditation
phenomena of two materials which are separated by a connected interface. Of
course, in applications the situation is considerably more involved. In particular,
one usually has to deal with multi-component processes. The Mullins-Sekerka
model has also been proposed to account for aging or Ostwald ripening in
phase transitions. In general, the kinetics of a first order phase transition is
characterized by a first stage where small droplets of a new phase are created
out of the old phase, e.g., solid formation in an undercooled liquid. The first
stage, called nucleation, yields a large number of small particles. During the
next stage the nuclei grow rapidly at the expense of the old phase. When the
phase regions are formed, the mass of the new phase is close to equilibrium and
the amount of undercooling is small, but large surface area is present. At the
next stage, the configuration of phase regions is coarsened, and the geometric
shape of the phase regions become simpler and simpler, eventually tending to
regions of minimum surface area with given volume. The driving force of this
process comes from the need to decrease the interfacial energy. There have been
considerable efforts in finding a theory which describes Ostwald ripening, and
the Mullins-Sekerka model is a prominent candidate.

Since the mechanism of the Mullins-Sekerka flow shows a distinct nonlocal fea-
ture, the corresponding mathematical formulation leads to a strongly coupled
system of nonlinear evolution equations of third order. This multi-component
system will be the topic of the forthcoming paper [3].



MOVING SURFACES 27

1) The construction of center manifolds for finite dimensional dynamical sys-
tem is well-known. Its extension to quasilinear and fully nonlinear infinite-
dimensional semiflows (e.g. for ¢) is considerably more involved. To overcome
the technical difficulties involved with this situation we strongly rely on the
theory of maximal regularity, see [25, 56, 65].

J) Observe that the averaged mean curvature flow induces a nonlinear and non-
local operator of second order, meaning that the principal part of its lineariza-
tion is a second order elliptic operator. The same is true for the intermediate
surface diffusion flow. In this sense the surface diffusion flow is of forth order and
the Mullins-Sekerka model is of third order, where in the latter case the prin-
ciple part of the linearization is represented by an elliptic pseudo-differential
operator of third order. It is worthwhile to note that there are also first order
evolution equations driven by mean curvature, which conserve the volume and
decrease the area. Let us mention the Stokes problem with surface tension

—Av+Vp =0 in Q1)
dive = 0 in Q1)
T(v,p)v(t) = —H@)v(t) on T(¥)
V =0,u on TI'(¢)

I(0) = Ty,

where v, p, and T stand for the velocity field, the pressure field, and the stress
tensor of a liquid drop €(¢) with boundary T'(¢) moving freely under the in-
fluence of an exterior field and of surface tension. For a detailed study of this
problem we refer to [46, 63].

Acknowledgement. The authors are grateful to G. Prokert for carefully read-
ing the manuscript to this paper.
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