Long Monochromatic Cycles
in
Edge-Colored Complete Graphs

Linda Lesniak
lindalesniak@gmail.com

Drew University
and
Western Michigan University

May 2012
The **circumference** $c(G)$ of a graph G is the length of a longest cycle in G.

Theorem 1 (Faudree, Lesniak & Schiermeyer 2009)

Let G be a graph of order $n \geq 6$. Then

$$\max\{c(G), c(\overline{G})\} \geq \left\lceil \frac{2n}{3} \right\rceil$$

and this bound is sharp.

Comment: The proof of Theorem 1 depended heavily on the ramsey number for two even cycles.
Notation (Fujita 2011): Let \(f(r, n) \) be the maximum integer \(k \) such that every \(r \)-edge-coloring of \(K_n \) contains a monochromatic cycle of length at least \(k \). (For \(i \in \{1, 2\} \), we regard \(K_i \) as a cycle of length \(i \).)

Thus, Faudree et al. proved \(f(2, n) = \left\lceil \frac{2n}{3} \right\rceil \) for \(n \geq 6 \).
Comments:

1. To show that $f(r, n) \geq k$ we must show that every r-edge-coloring of K_n contains a monochromatic cycle of length at least k.

2. To show that $f(r, n) \leq k$ we must exhibit one r-edge-coloring of K_n in which the longest monochromatic cycle has length (exactly) k.
Using affine planes of index $r - 1$ and order $(r - 1)^2$ Gyárfas exhibited r-edge-colorings of K_n in which the longest monochromatic cycle had length $\left\lceil \frac{n}{r-1} \right\rceil$. In fact, $f(r, n) \leq \left\lceil \frac{n}{r-1} \right\rceil$ for infinitely many r and, for each such r, infinitely many n.

Conjecture 2 (Faudree, Lesniak & Schiermeyer 2009)

For $r \geq 3$, $f(r, n) \geq \left\lceil \frac{n}{r-1} \right\rceil$.
Using affine planes of index $r - 1$ and order $(r - 1)^2$ Gyárfas exhibited r-edge-colorings of K_n in which the longest monochromatic cycle had length $\left\lfloor \frac{n}{r-1} \right\rfloor$. In fact, $f(r, n) \leq \left\lfloor \frac{n}{r-1} \right\rfloor$ for infinitely many r and, for each such r, infinitely many n.

Conjecture 2 (Faudree, Lesniak & Schiermeyer 2009)

For $r \geq 3$, $f(r, n) \geq \left\lceil \frac{n}{r-1} \right\rceil$.
However, Conjecture 2 is not true as stated. For example, K_{2r} can be factored into r hamiltonian paths. Giving each path a different color shows that $f(r, 2r) \leq 2$, whereas the conjecture would give $f(r, 2r) \geq \left\lceil \frac{2r}{r-1} \right\rceil = 3$.
Theorem 3 (Fujita 2011)

For $1 \leq r \leq n$, $f(r, n) \geq \left\lceil \frac{n}{r} \right\rceil$.

Proof.

Arbitrarily color the edges of K_n with r colors. Let G_i be the maximal monochromatic spanning subgraph of G with color i for $1 \leq i \leq r$. Then some G_{i_0} contains at least $\frac{n^2}{r}$ edges. So,

$$|E(G_{i_0})| \geq \frac{\binom{n}{2}}{r} = \left(\frac{n}{r}\right)\left(\frac{n-1}{2}\right) \geq \frac{\left\lceil \frac{n}{r} \right\rceil - 1}{2} (n-1).$$

Thus G_{i_0} contains a cycle of length at least $\left\lceil \frac{n}{r} \right\rceil$.

(Erdös & Gallai 1959)
Fujita determined $f(r, n)$ for $n \leq 2r + 1$ and proposed:

Problem 4 (Fujita 2011)

For $r \geq 2$ and $n \geq 2r + 2$ determine $f(r, n)$.

Rest of the talk:

1. Determine $f(r, 2r + 2)$.
2. Determine $f(r, sr + c)$ for r sufficiently large with respect to s and c.
3. Open questions.
Theorem 5 (Ray-Chaudhury & Wilson 1971)

For any \(t \geq 1 \), the edge set of \(K_{6t+3} \) can be partitioned into \(3t + 1 \) parts, where each part forms a graph isomorphic to \(2t + 1 \) disjoint triangles.

Theorem 6 (Fujita, Lesniak & Toth 2012+)

For \(r \geq 3 \), \(f(r, 2r + 2) = 3 \). For \(r = 1, 2 \), \(f(r, 2r + 2) = 4 \).

Outline of proof for \(r \geq 4 \).

By Theorem 3, \(f(r, 2r + 2) \geq \left\lceil \frac{2r+2}{r} \right\rceil = 3 \).

We show \(f(r, 2r + 2) \leq 3 \) by exhibiting an \(r \)-edge-coloring of \(K_{2r+2} \) in which the longest monochromatic cycle is a triangle.
Case 1: \(r = 3k+1 \).

Then \(n = 2r + 2 = 6k + 4 \). Begin with a coloring of the edges of \(K_{6k+3} \) on the vertices \(v_1, v_2, \ldots, v_{6k+3} \) with colors \(c_1, c_2, \ldots, c_{3k+1} \) according to Theorem 5.
Case 1 (continued).

\[c_{3k+1} : \]

\[\begin{array}{c}
V_2 & V_3 & V_5 & V_6 & \cdots & V_{6k+2} & V_{6k+3} \\
V_1 & & & & & & \\
V_{6k+4} & & & & & & \\
\end{array} \]
Case 1 (continued).

\[c_{3k+1} : \]

\[c_{1} : \]

\[\text{etc.} \]

\[c_{2k+1} : \]

\[2k + 1 \leq 3k \]
Case 2: \(r = 3k + 2 \).

Then \(n = 2r + 2 = 6k + 6 \). Begin with a coloring of the edges of \(K_{6k+3} \) on the vertices \(v_1, v_2, \ldots, v_{6k+3} \) with colors \(c_1, c_2, \ldots, c_{3k+1} \) according to Theorem 5.

\[K_{6k+3}: \]

\[c_1: \]

\[c_2: \]

\[c_{3k+1}: \]

\[2k+1 \]
Case 2: \(r=3k+2 \).

Then \(n = 2r + 2 = 6k + 6 \). Begin with a coloring of the edges of \(K_{6k+3} \) on the vertices \(v_1, v_2, \ldots, v_{6k+3} \) with colors \(c_1, c_2, \ldots, c_{3k+1} \) according to Theorem 5.

\[K_{6k+3}: \]

\[c_1: \]

\[c_2: \]

\[c_{3k+1}: \]

One unused color \(c_{3k+2} \)
Case 3: $r=3k$.

Then $n = 2r + 2 = 6k + 2$. Begin with a coloring of the edges of K_{6k+3} on the vertices $v_1, v_2, \ldots, v_{6k+3}$ with colors $c_1, c_2, \ldots, c_{3k+1}$ according to Theorem 5.

In this case we used one extra color and have one extra vertex. We recolor to remove color c_{3k+1} so that the longest monochromatic cycle is a triangle. Thus

$$f(r, 2r+3) \leq 3.$$
Case 3: $r=3k$.

Then $n = 2r + 2 = 6k + 2$. Begin with a coloring of the edges of K_{6k+3} on the vertices $v_1, v_2, \ldots, v_{6k+3}$ with colors $c_1, c_2, \ldots, c_{3k+1}$ according to Theorem 5.

In this case we used one extra color and have one extra vertex. We recolor to remove color c_{3k+1} so that the longest monochromatic cycle is a triangle. Thus $f(r, 2r + 2) \leq f(r, 2r + 3) \leq 3$.

\square
We’ve determined \(f(r, n) \) for \(n \leq 2r + 2 \).

Problem 7

* Determine \(f(r, sr + c) \) for integers \(s, c \geq 2 \).

Comment: \(f(r, sr + c) \geq \left\lceil \frac{sr+c}{r} \right\rceil \geq s + 1 \) by Theorem 3.

We’ll show that \(f(r, sr + c) = s + 1 \) for \(r \) sufficiently large with respect to \(s \) and \(c \).
Theorem 8 (Chang 2000)

Let $q \geq 3$. Then for t sufficiently large, the edge set of $K_{q(q-1)t+q}$ can be partitioned into $qt + 1$ parts, where each part is isomorphic to $(q-1)t + 1$ disjoint copies of K_q.

Comment: Chang’s result was stated in terms of resolvable balanced incomplete block designs. Thank you, Wal Wallis.

Comment: $q = 3$ in Theorem 8 is our previous Theorem 5.
Theorem 9 (Fujita, Lesniak & Toth 2012+)

For any pair of integers \(s, c \geq 2 \) there is an \(R \) such that \(f(r, sr + c) = s + 1 \) for all \(r \geq R \).

Comment: For \(s = c = 2 \), \(R = 3 \) (Theorem 8).

Outline of Proof.

1. We show \(f(r, sr + c) \leq s + 1 \) with an \(r \)-edge-coloring of \(K_{sr+c} \) in which the longest monochromatic cycle has length \(s + 1 \).
2. Since \(f(r, n) \) is monotone increasing in \(n \), we may assume that \(sr + c = (s + 1)st + (s + 1) \) for some \(t \).
Outline of Proof (continued).

3. Color the edges of $K_{(s+1)t+(s+1)} = K_{sr+c}$ with $(s + 1)t + 1 = r + \frac{c-1}{s}$ colors using Chang’s Theorem for $q = s + 1$.

\[c_1 : \quad K_{S+1} \quad K_{S+1} \quad \cdots \quad K_{S+1} \]

\[\vdots \quad \vdots \quad \cdots \quad \vdots \]

\[c_{(s+1)t+1} : \quad K_{S+1} \quad K_{S+1} \quad \cdots \quad K_{S+1} \quad s \text{t+1} \]
Outline of Proof (continued).

4 For \(r \) sufficiently large with respect to \(s \) and \(c \) we can recolor to reduce the number of colors by \(\frac{c-1}{s} \) without creating monochromatic cycles of length greater than \(s + 1 \).

\[\square \]

Comment: To remove one color class, we need at most

\[
\log \frac{s(s+1)+1}{s(s+1)} \left(\frac{s}{s+1} r + \frac{c}{s+1} \right)
\]

other classes. Thus we can avoid \(\frac{c-1}{s} \) color class with the remaining \(r \) classes if

\[
\left(\frac{c - 1}{2} \right) \log \frac{s(s+1)+1}{s(s+1)} \left(\frac{s}{s+1} r + \frac{c}{s+1} \right) \leq r,
\]

which is true for sufficiently large \(r \) compared with \(s \) and \(c \).
Some open questions:

1. Determine $f(r, n)$ for n “large” with respect to r.

Comment: We know $f(r, n) \geq \left\lceil \frac{n}{r} \right\rceil$ for all $1 \leq r \leq n$.

Comment: We know $f(r, n) \leq \left\lceil \frac{n}{r-1} \right\rceil$ for infinitely many r and, for each such r, infinitely many n.
2. The proof that $f(2, n) = \lceil \frac{2n}{3} \rceil$ for $n \geq 6$ depended heavily on the Ramsey number for two even cycles. Can the Ramsey number for three even cycles be used to determine $f(3, n)$ for n sufficiently large?

Theorem 10 (Benevides & Skokan 2009)

There exists an n_1 such that for every even $n \geq n_1$, $r(C_n, C_n, C_n) = 2n.$