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Abstract. We describe a method which can be used to interpolate function
values at a set of arbitrarily scattered points in a planar domain using bivariate
polynomial splines of any prescribed smoothness. The method starts with an
arbitrary triangulation of the data points, and involves refining some of the tri-
angles with Clough-Tocher splits. The construction of the interpolating splines
requires some additional function values at selected points in the domain, but no
derivatives are needed at any points. The interpolation method is local and sta-
ble, has linear complexity, and provides optimal order approximation of smooth
functions.

§1. Introduction

Given a set of points V := {n;}?_; in the plane, our aim in this paper is to provide
a constructive method for solving the following problem.

Problem 1.1. Find a triangulation /A whose set of vertices include V, a space S
of C” splines defined on A, and a set of additional points {n;} ., such that for
every choice of the data {z;}N_,, there is a unique spline s € S satisfying

s(n;) = 2, i=1,...,N. (1.1)

We call P := {n;}_, and S a Lagrange interpolation pair, and refer to s as a Lagrange
interpolating spline.

We emphasize that the spline s solving Problem 1.1 must be uniquely deter-
mined from function values only, and no data on the derivatives of s are required.
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Although constructing Lagrange interpolation pairs sounds simple at first glance,
it is in fact a complicated problem, especially since we want a method which

1) is local in the sense that the value of s at a given point 7 is only influenced by
the data values z; at points 7; which are near n,

2) is stable in the sense that small changes in the data z; will result in a small
change in s,

3) has linear complexity in the sense that the number of operations required to
solve a problem with N data points should be O(N),

4) has optimal order approximation in the sense that if z; = f(7;) for some smooth
function f, then the interpolating spline s approximates f to the same order
as is achievable with local polynomials on individual triangles.

To reach these goals, both & and P must be carefully chosen. For r = 1,
Problem 1.1 was treated in a series of papers, see [9-11,13-16] and the survey
paper [12] for further references. Recently [8], we have solved the problem for r = 2.
The purpose of this paper is to treat the general case » > 0. Our approach here
will differ from previous work in that we will not need to color triangulations, but
instead process an initial triangulation to create a certain priority list of triangles.
Our construction is based on the following steps:

1) Choose an initial triangulation A(®) with vertices at the points of V.
2) Classify the triangles of A©) and put them into an ordered priority list.

3) Define the triangulation A by applying the Clough-Tocher split to subdivide
about half of the triangles of A(®),

4) Define the space S over the triangulation A by enforcing certain individual
smoothness conditions on appropriate classical superspline spaces.

5) Insert additional interpolation points into certain of the triangles so as to
uniquely and locally define a spline s € S on them.

6) Show that the smoothness conditions defining the space S uniquely determine
s € S on all of the remaining triangles.

The paper is organized as follows. In Section 2 we introduce some notation
and describe the Bernstein-Bézier representation of splines. In Section 3 we discuss
macro-elements needed for the construction, while in Section 4 we present a key
algorithm for classifying the triangles of the initial triangulation A, It also
establishes a priority list for the triangles which permits a local construction. In
Section 5 we state a result on constrained interpolation by polynomials that is
needed for our construction. The proof is delayed until Section 8 where an explicit
algorithm for choosing the points of P is given. The main result of the paper is in
Section 6 where we introduce the Lagrange interpolating pair P, S, and show that
the corresponding interpolation process is a stable local method. Error bounds for
the interpolant are given in Section 7. We conclude the paper with several remarks
in Section 9.



§2. Preliminaries

Given a triangulation A and integers 0 < r < d, we write
Si(A):={seC"(Q):s|pr € Py, all T € A}

for the usual space of polynomial splines of degree d and smoothness r, where Py is
the (df) dimensional space of bivariate polynomials of degree d. Given r < p < d,
we also need the associated space of supersplines

Sy (A) :={s € Sg(A) : s € CP(v), all vertices v of A}. (2.1)

As usual, s € C”(v) means that all polynomial pieces of s on triangles sharing the
vertex v have common derivatives up to order p at v. In this case, we say that s
possesses C? super-smoothness at v.

Throughout the paper we make use of the well-known Bernstein-Bézier repre-
sentation of splines. Given a triangle T' = (v1, v2,v3) in A with vertices vy, va, v,
let Dy := {fgk = (iv1 + jua + kvs)/d}itj+k=a be the associated set of domain
points. Then for every spline s in S9(A),

T pd
slr = Z Cijk Bijks (2.2)
t+j+k=d
where B, = 795 Ai M) \E are the Bernstein basis polynomials of degree d associated

with T'. Here, A, € P1, v =1,...,3, are the barycentric coordinates of T'. Thus, each
spline in 8Y(A) is uniquely determined by its corresponding set of B-coefficients
{ce}eepy o> Where Cer, = cg;.k, i+j+k=d, TeAand Dga := UTEA Dar-

Given T := (v1,vs,v3) and an integer 0 < m < d, let DI (v;) := {§£k 1>
d —m}, and associated with the edge e := (vq,v3), let ET(e) := {&; : i < m}.
We use the standard notation D, (v1) := [J{DZ (v1) : T has a vertex at vy} for the
disk of radius m around v;. The analogous sets associated with other vertices and
edges are defined similarly.

To describe smoothness conditions for splines, we recall some notation intro-
duced in [2]. Suppose that T := (v1, vy, v3) and T := (v, vs, v3) are two adjoining
triangles from A which share the oriented edge e := (vq, v3), and let

e d
slp= ) cijpBiy,
itjth=d

o ~  7d
5|T = E : Cijsz'jka
itj+k=d

(2.3)

where Bzfijk and Efjk are the Bernstein polynomials of degree d on the triangles T

and T, respectively. Given integers 0 < n < j < d, let 7', be the linear functional
defined on SY(A) by

n n

TS = Cndjion— D, Coptjonmtd—y Blu(v1)- (2.4)
v+put+r=n

3



These are called smoothness functionals of order n.
We note that a spline s € SY(A) is C™ continuous across the edge e if and only
if
n

T s=0, n<m<d, 0<n<r. (2.5)

m,e

In the sequel we shall make use of the T to define certain superspline spaces
by enforcing individual smoothness conditions. This is a standard procedure for
eliminating undesired degrees of freedom from spline spaces.

§3. Macro-elements

Suppose A is a triangulation of a polygonal domain €2, and that 7T is some triangle
in A. Our aim in this section is to describe two classes of macro-element spaces
which can be used to extend a superspline s € S;”(A\{T'}) to aspline § € S;”(A),
where S;”(A) is defined in (2.1). Here we are interested only in the cases where
r, p and d take on the related values

(3m,6m + 1), r = 2m, (3.1)

@J%:{@m+1ﬁm+$,r:2m+L
for r > 1, where m = |r/2].

Suppose T := (vy,vq,v3) and that e; := (v;,v;41) for i = 1,2,3, where we
identify vy = v1. Let Tor be the Clough-Tocher split of T' consisting of the three
triangles T; := (vp,v;,v;41) for i = 1,2,3, where vy is the barycenter of T. Let
é; := (v;,vp) for i =1,2,3.

The following lemma, which follows from the results in [1], can be used to
extend a superspline s defined on 2\ T to a superspline § defined on € in the
case where T is in the interior of €2, i.e., s and its derivatives are known along all
three sides of T. The lemma shows that by requiring the extension §|r to satisfy
some additional supersmoothness conditions inside of Tor, we can insure that it is
uniquely determined by the C” super-smoothness at the vertices of T" and the C"
smoothness conditions across the edges of T

Lemma 3.1. Givenr > 1, let p,d be as in (3.1), and let

__{5m+2, r=2m+1,

om+1, r=2m, (3.2)

where m = |r/2]|. Let §5 (Tcr) be the linear subspace of all splines g in Sy* (Ter)N
CH(vr) that satisfy the following additional smoothness conditions:

2m+1+itj

Tovirle, 9=0, 1<j<i, 1<i<r—-m-1, (3.3)
mittitig =0, 1<j<i, 1<i<r—-m-1, (3.4)
i g=0, 1<j<m-i+l, 1<i<m, (3.5)
=0, 1<j<m—i, 1<i<m-—1. (3.6)
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Then for any spline s in S7°(A\ {T}), there is a unique spline g € 8% (Tor) such

that
5. ]s on Q\T,
" lg, onT,

belongs to S;* ().

The following lemma is a consequence of the results in [17]. It can be used
to extend a superspline s defined on Q \ T to a superspline § defined on 2 in the
case where exactly one of the edges of T, say es, is on the boundary of €2, i.e.,
s and its derivatives are known along exactly two sides of 7. The lemma shows
that by requiring the extension 3|r to satisfy some additional supersmoothness
conditions inside of T, we can insure that it is uniquely determined by the C?
super-smoothness at the vertices of T, the C" smoothness conditions across the
edges of T', and certain additional smoothness conditions across the edges ey, es of
T.

Lemma 3.2. Let 7, u,p,d be as in Lemma 3.1, and let gg(TCT) be the linear
subspace of all splines g in S;*(Tcr) NCH(vr) that satisfy the following additional
smoothness conditions:

59 =0,  i-r+m+1<k<2%-2r—1, p+2<i<2r, (3.7)

(3

59 =0, i-r+m+1<k<i, 2r+1<i<d, (3-8)
ety =0, 1<k<r-m—i, 1<i<r-m-1. (3.9)

Then for any spline s in S (A \ T), there is a spline g € 8;(Tor) such that

s.-1s on Q\T,
" lg, onT,

belongs to 8;”(/A). Moreover, g (and thus also §) is uniquely determined by the
following special conditions across the edges e; and es of T':

nggl_w_l,elg: 0, 1<j5< Li_r+++1j, r—-m+1<i<r-—1, (3.10)
T e §=0, 1< < L7'_i+2—mHJ, r<i<p-—1, (3.11)
o i end =0, 1SJSLM%J, r—m+1<i<r-—1, (3.12)
T =0, 1§j_LM#J, r<i<p—1. (3.13)
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Fig. 1. The macro elements of Lemmas 3.1 and 3.2 for r = 2.

For r = 1 the macro element of Lemma 3.1 is the classical Clough-Tocher
element, while the macro element of Lemma 3.2 is defined by one additional indi-
vidual C?3 smoothness condition, namely Tg’@ g = 0. As an aid to understanding
these macro-elements spaces better, we now describe the cases r = 2 and r = 3 in
more detail, and illustrate them in Figures 1 and 2. Each dot in these figures rep-
resents a BB-coefficient associated with the domain point located there. Black dots
indicate BB-coefficients which are either determined from C” super-smoothness at
a vertex or from C” smoothness across an edge. To help understand the super
smoothness involved, we have used light grey to indicate the C'* super-smoothness
at vp, and darker grey to indicate the C? super-smoothness at the vertices of T'. The
white strips indicate the individual super-smoothness conditions used to eliminate
undesired degrees of freedom.

For r = 2, we have m = 1 and (p, u,d) = (3,6,7). Then in Lemma 3.1 there
is one special condition corresponding to (3.5), namely 7'557631 g = 0, see the white
strip in the top triangle of Fig. 1. In Lemma 3.2 there are three conditions of
type (3.8), namely Tf,é2g =0, ¢« = 5,6,7. Moreover, in this case, there is one
additional smoothness condition corresponding to (3.11), namely 77, 5 = 0. These
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Fig. 2. The macro elements of Lemmas 3.1 and 3.2 for r = 3.

four special conditions are shown as white strips in the bottom triangle of Fig. 1.

For r = 3, we have m = 1 and (p,pu,d) = (4,7,9). Then in Lemma 3.1
there are three individual smoothness conditions, namely Tg,él g =0, 765’&;2 g=20
and T$’é1 g = 0. These are shown as white strips in the top triangle of Fig. 2. In
Lemma 3.2 there are nine individual smoothness conditions, namely one condition of
type (3.7), 78 5,9 = 0, six conditions of type (3.8), 75,9 =0, 1 = 7,8,9, k = i—1,4,
one condition of type (3.9), Té,ésg = 0, and one condition of type (3.11), Tg{elg =0.
These individual smoothness are shown as white strips in the bottom triangle of
Fig. 2.

§4. Decomposing a Triangulation

Given a set of points V in R?, let A(®) be a triangulation consisting of ng triangles
with vertices at the points V. We say that two triangles in A(®) are neighbors
provided they have a common edge. We say that they touch provided they have a
common vertex. The key to our construction of a Lagrange interpolating pair giving
a local and stable solution to Problem 1.1 is the following algorithm for separating
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the triangles of A() into classes 7o, ..., 77. The algorithm also creates an ordering
(priority list) T4, ..., Ty, of the triangles of A(©),

Algorithm 4.1.

0) Repeat until no longer possible: choose an unmarked triangle T that does not
touch any marked triangle. Put T in Ty and mark T.

1) Repeat until no longer possible: choose an unmarked triangle T that touches
some marked triangle at only one vertex of T. Put T in 7; and mark T.

2) Repeat until no longer possible: choose an unmarked triangle T that touches
marked triangles at exactly two vertices of T', but is not a neighbor of any
marked triangle. Put T in T3 and mark T'.

3) Repeat until no longer possible: choose an unmarked triangle T' that is a
neighbor of exactly one marked triangle but does not touch any marked triangle
at the opposing vertex. Put T in T3 and mark T.

4) Repeat until no longer possible: choose an unmarked triangle T that touches
marked triangles at all three vertices of T', but has no marked triangle as a
neighbor. Put T in Ty and mark T.

5) Repeat until no longer possible: choose an unmarked triangle T that is a
neighbor of exactly one marked triangle and also touches a marked triangle at
the vertex opposite the shared edge. Put T in s and mark T.

6) Repeat until no longer possible: choose an unmarked triangle T' that is a
neighbor of exactly two marked triangles. Put T in T¢ and mark T

7) Put all remaining triangles in Tr.

Algorithm 4.1 defines an ordering 73,...,T,, of the triangles, where the tri-
angles are listed in the order in which they are marked in the algorithm. The
algorithm is easy to program, and is efficient enough to decompose very large tri-
angulations (e.g. with ng = O(10%)) in a few seconds on a standard PC. Note that
for a given triangulation, there may be many choices at each step, so obviously the
decomposition is not unique. Fig. 3 shows an example of a triangulation which has
been decomposed by this algorithm, where each triangle is labeled according to the
class to which it belongs.

The next lemma establishes some simple properties of the decomposition.
These properties will be used to prove the locality of the spline interpolation method
described in Section 6.

Lemma 4.2. Suppose Ty, ...,T; are the classes of triangles created by Algo-
rithm 4.1. Then

1) No two triangles in the class Ty can touch each other.

2) Any two neighboring triangles must be in different classes.

3) If two triangles in the same class T; touch at a vertex v, then they must also
touch a triangle in one of the classes T; with 0 < j < min(3,¢— 1) at the same
vertex v.



Fig. 3. A decomposed triangulation: triangles from the class 7; are labeled with 3.

4) I~f v is a vertex of a triangle T' € Ty, then v must also be a vertex of a triangle

TeToUTLUTs.

Proof: The first assertion is obvious. We now establish 2). The claim is obvious
for the classes 7g, 71, T2, T4, since a triangle in one of these classes cannot have any
marked neighbor at the time it is marked. To check 2) for the remaining classes,
suppose that 7 and T are neighboring triangles in the same class 7;, and that T is
marked before T. If i = 3, then before T' was marked, T did not share an edge with
any marked triangle, and so T would have been assigned to the class 77. If ¢ = 5,
then before T was marked, T did not share an edge with any marked triangle, and
so would have been assigned to the class 74. If ¢ = 6, then before T" was marked,
T would have shared only one edge with marked triangles, and so would have been
assigned to the class 75. Clearly, two triangles in 77 cannot be neighbors, and we
have established 2).

To establish 3), first note that after marking all triangles in classes 7o, ..., T3,
all vertices will belong to marked triangles. This establishes the claim for ¢ =
4,5,6,7. Now suppose two or more triangles in 7; touch at a vertex v, and let T, T
be the first two marked by Algorithm 4.1. If v is not a vertex of some triangle in
7o, then before T was marked, T would not have touched any marked triangle, and
so would have been put in class 7p. A similar argument shows that 3) holds for the
class 73. The statement is trivially true for 73, since two triangles in 73 can touch
only if they are both neighbors of some triangle in 7o U 73 U 7.

We now establish 4). Assume that v is a vertex of T € T3 and that T is the
first triangle chosen by Algorithm 4.1 that contains v. Then T ¢ T; with 0 < j < 3.
We claim that T’ cannot be in T3, since if it were, then before T was marked in the
algorithm, 7" would have had only two marked vertices, and hence would have been
assigned to class 7. O



§5. Interpolation with B-Polynomials

In this section we discuss interpolation with bivariate polynomials where certain of
the B-coefficients are set in advance. Given 1 < r, let p and d be as in (3.1), and
suppose T := (v1, vy, v3) is a triangle. Let

(0, i=0,

DT (v1), =1,

. D;f(vl) U D;f(vz), =2,
T\ DT (v1) U DT (v5) U ET ({v1, va)), i=3, (5-1)

Dg(vl) U Dg(vz) U DZ(’U?,), i =4,

\ Dg(vl) U Dg(vz) U DZ(’U3) UET((vg,v3)), i=5

Fig. 8 shows examples of the sets A% for i = 0,...,5 for (r,p,d) = (1,1, 3) and
(r,p,d) = (2,3,7). Domain points in the sets A% are marked with open circles in
the figure.

The following theorem follows from a more general result to be established
below, see Theorem 8.2. Let

(K, 1 =0,
K—a, 1=1,
Kk — 2a, 1= 2,
@i 1= 9 k—2a—0b, 1=3, (5-2)
Kk — 3a, 1 =4,
Kk —3a—b, 72=25,

where K := (df), a:= (pf), and b := (T‘ZH). The following table lists the values

of a; for selected values of r, p, d.

(6 7)) a1 (D) (0 %] (6 7] (6]
10 7 4 3 1
36 | 26 | 16 | 13 6
95 | 40 | 25 | 19 | 10

O g W

Lo N~
W =D
=W Ofla

Theorem 5.1. Given 0 < ¢ < 5, let p be a polynomial of degree d whose B-
coefficients corresponding to domain points in the set A% are given. Then we can
explicitly choose a set of c; points P& in T such that the o; remaining B-coefficients
of p are uniquely determined by the values p(€) for & € Pk, where the points in the
sets Pk can be defined in terms of the barycentric coordinates of T, so that the
relative position of the points is the same for every triangle T, independent of the
size and shape of T'.
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Fig. 4. The set P for Example 6.2, where r = 1 and (p, 1,d) = (1,2, 3).

§6. Construction of a Lagrange Interpolation Pair

Given r > 1, let m = |r/2] and let (p, u,d) be as in (3.1)—(3.2). We now define
a spline space S of smoothness r and degree d and a corresponding point set P
so that P,S form a Lagrange interpolation pair, and thus can be used to solve
Problem 1.1. We also show that the corresponding interpolant is local and stable.

Let A(®) be a triangulation with vertices V that has been decomposed into
classes Tp,...,7T7 by Algorithm 4.1, and suppose that Ti,...,T,, is the ordering
of the triangles induced by the algorithm. For each T' € 7; with 0 < ¢ < 5, let
Ar := A% be the set defined in (5.1), where by Lemma 4.2, we may assume that
if T := (v1,vy,v3), then v1,vy,v3 are numbered so that the vertices and edges
appearing in the definition (5.1) of A% are those vertices and edges of T" which
are shared by a triangle in a lower class. For each T € T;, let Pr := P& be the
corresponding set defined in Theorem 5.1.

Definition 6.1. Let A be the triangulation obtained from A(®) by applying the
Clough-Tocher split with center vt to each triangle T in the classes Tg and T7. Let
S be the subspace of splines s in S;*(A) such that

1) For each triangle T € T7, s € C*(vr) and s satisfies the additional smoothness
conditions (3.3)—(3.6) of Lemma 3.1.

2) For each triangle T € Tg, s € C*(vr) and s satisfies the additional smoothness
conditions (3.7)—(3.9) and (3.10)—(3.13) of Lemma 3.2, where e; and es are
the two edges of T shared by triangles which appear earlier than T in the list
Th,...,Tp,.

11



Set

P = QPTj =4J U pr (6.1)

i=0TET;

Clearly,
5
#P =" a;N;, (6.2)
1=0

where N; is the number of triangles in class 7; and «; is as in (5.2). We give two
examples to illustrate the choice of Lagrange interpolation points.

Example 6.2. Let A be the triangulation of 41 triangles which has been de-
composed as shown in Fig. 3, and let r = 1.

Discussion: In this case NO = 5, N1 = 6, N2 = 2, N3 = 1, N4 = 4, N5 = 5,
Ng = 7, and Ny = 11. The Clough-Tocher split is applied to 18 triangles of A(®),
and therefore the resulting triangulation A consists of 77 triangles. Here p = 1,
d = 3, and using the values of «; listed in the table in Sect. 5, it follows from (6.2)
that the cardinality of P is 107. One explicit choice of P is shown in Fig. 4, where
the points in P are shown as dots, and the Clough-Tocher splits are indicated by
the dotted lines. O

Example 6.3. Let A be as in Example 6.2, and let r = 2.

Discussion: Here p = 3, d = 7, and using the values of «; listed in the table in
Sect. 5, it follows from (6.2) that the cardinality of P is 420. The dots in Fig. 5
show one explicit choice of an interpolation set P. The example can be compared
with Example 14 in [8], where a different set P was constructed, see also Fig. 9
below. O

Following standard terminology, we say that an interpolation method based on
a Lagrange interpolation pair P, S is local provided there is an integer £ such that
for every triangle T, the B-coefficients of s|7 depend only on the values z, at the
points P Nstar®(T). Here star’(T) := T, and for i > 1, star®(T) is the union of the
set of all triangles which touch a triangle in star®~!(T"). Moreover, we say that the
method is stable provided there exists a constant C' depending only on the smallest
angle in A(®) such that the B-coefficients of the spline s interpolating data Zp as in
(1.1) are bounded by C max,cp |2y|-

We are now ready to prove the main result of the paper, namely that the P
and S of Definition 6.1 form a Lagrange interpolating pair. At the same time we
show that the corresponding interpolation method is local and stable.

Theorem 6.4. Let S and P be as in Definition 6.1. Then given any real numbers
{#n}nep, there exists a unique s € S such that s(n) = z, for alln € P. Moreover,
the computation of the B-coefficients of s is a local and stable process. In particular,
for every domain point £ € Dy a, there exists a triangle T € AO) and a set

12



Fig. 5. The set P for Example 6.3, i.e. m =1, r =2 and (p,u,d) = (3,6,7).

I'¢ C P Nstar®(T) such that c; depends only on the values of {z; }ner,. In addition,
there exists a constant C' depending only on the smallest angle in A(®) such that

ce| < Cnme%flznh (6.3)

for all ¢ € Dd,A-

Proof: Given {z,},cp, we show how to uniquely compute the coefficients of s,
one triangle at a time, where we go through the triangles T1, ..., Ty, of A in the
order defined by Algorithm 4.1. Let 7y,..., 77 be the classes of triangles created
by the algorithm. We say that a vertex of A is a type-k vertex if it is a vertex of a
triangle in 7%, but not a vertex of any triangle in 7; with 0 < j < k. Note that by
part 3) of Lemma 4.2, every vertex of A(®) must be of type 0,1,2 or 3.

We first consider triangle 7' := T;. By Theorem 5.1, the B-coefficients of s
restricted to this triangle are uniquely determined by the interpolation conditions
at the ap = (df) points in Pr. In this case ' = Pr C star(T), and (6.3) holds
with Cp := || My ||, where M := {Bg(n)}gepdmnepT is the matrix corresponding
to interpolation at the points of Pp. Similarly, s is uniquely defined on each of the
other triangles in the class 7y, since by Lemma 4.2, two triangles in class 7y cannot
touch each other. At this point in the process, s is uniquely determined on all of
the triangles of class 7y. Moreover, since s € CP(u) for every vertex u of A, it
follows that all of the B-coefficients c¢ of s corresponding to domain points £ in
the disks D, (u) are also uniquely determined for all type-0 vertices u of A(%). For
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these &, we have I'¢ C star(T), and (6.3) holds with a constant Cy depending on
Co and the smallest angle in A,

Now suppose we have completed the computation of c¢ for all domain points
in the triangles Ty, ...,T;_1, and let T := T; € 7;. Then by the definition of 7y,
there must be a vertex w of T' where T touches at least one of the triangles in
{T1,...,T;—1}, and does not touch any of these triangles anywhere else. Let T, be
the first such triangle, which by the ordering must be in 75 U 7. Statement 3 of
Lemma 4.2, implies T, € 7y, and thus u must be a type-0 vertex. But then we
already know the coefficients c; of s corresponding to domain points { € Ay :=
DT (u). The coefficients corresponding to the remaining domain points in Dgr
are uniquely determined by interpolation at the points of Pr, and are computed
by solving a linear system of a; equations, where «; is as in (5.2). This system
can be written in the form M;z = y, where z is the vector with components
{¢n}neDy Ay in lexicographical order, and y is the vector with components {2, —
D cean C¢ Bg(n)}nepT in the same order, and where M; := (Bg(’l’]))gepd,T\AT’nepT.
It follows that for all £ € Dy, I'e € TUT, C star’(T), and (6.3) holds with
Cr = ||M;H|(1+ Co||[M;!|]). We emphasize here that T can touch other triangles
T in class 77 at u, but even if it does, the coefficients of s do not depend on {z,}
since u is a type-0 vertex.

neT

Suppose we have now completed all triangles in 7;. Then for every type-1
vertex v of A, we can use the smoothness condition s € C?(v) to determine the
B-coefficients c¢¢ of s corresponding to domain points £ € D,(v). For these &, we
have I'¢ C star?(T) and (6.3) holds with a constant C; depending on C; and the
smallest angle in A0,

Next, suppose we have completed all triangles T7,...,T;_1, and let T :=T; €
T2. Then there are two vertices u, v of T where T touches triangles in {77, ..., T;_1},
and T does not touch any of these triangles anywhere else. Let T}, and T, be the
first triangles in the ordering which touch 7' at u and v, respectively. Statement
3 of Lemma 4.2 implies T, and T, are in 7y U 7Ty, i.e., u and v are vertices of
type 0 or 1. But then the B-coefficients of s corresponding to domain points in
Ar = Dg(u) U DZ(’U) are already uniquely determined. The coefficients of s
corresponding to the remaining domain points in D4 7 are now uniquely determined
from the ag interpolation conditions at points n € Pr. This involves solving a
system with matrix My := (Bg('l’]))gepdﬁT\ATmepT. For these coefficients we also
have T'¢ C star?(T) and (6.3) holds with a constant Cy which now also depends on
|M5Y||. Once we have completed all triangles in 73, then for all type-2 vertices w,
we can use the smoothness condition s € CP(w) to determine the B-coefficients of
s corresponding to domain points & € D,(w). For these £, we have I'y C star®(T)
and (6.3) holds with a constant Cy depending on C5 and the smallest angle in A(©).

Suppose we have completed all triangles T1,...,T;_1, and let T := T; € Ts.
Then T shares an edge e := (u,v) with some triangle in {T3,...,T;_1} and does
not touch any triangles in {T3,...,T;—_1} except at points on this edge. Let T be
the first triangle sharing e. By statement 2 of Lemma 4.2, T e To U T1 UT,, and
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thus u and v must be vertices of type 0,1, or 2. (In fact, an argument similar to the
proof of statement 4) in Lemma 4.2 shows that u and v must be vertices of type 0
or 1, see the triangle labeled with a 3 in Fig. 6). This means that the coefficients
ce corresponding to £ € DT (u) U DI'(v) are already uniquely determined. Now
using the C" smoothness across e, we can uniquely determine the coefficients of s
corresponding to the set E (e) from coefficients of s|z. It follows that for these
¢, T¢ C star?(T) and (6.3) holds. We then uniquely determine the coefficients
corresponding to the remaining domain points in Dg 7 by solving the linear system
corresponding to interpolation at the a3 points of Pr, and we again have I'c C
star?(T'). For these coefficients (6.3) holds with a constant Cs now depending also
on |[M; |, where M3 := (Bg(n))gepdj\AT,nepT with A7 := DT(u) U DI (v) U
ET(e). Once we have completed all triangles in 73, then for all type-3 vertices w
we can use the smoothness condition s € CP(w) to determine the B-coefficients of
s corresponding to domain points & € D,(w). For these £, we have I'y C star®(T)
and (6.3) holds with a constant Cs depending on Cs and the smallest angle in A.
At this point we have uniquely determined all coefficients corresponding to domain
points in D, (u) for all vertices u of A,

Now suppose we have completed the triangles 7T4,...,T;_1, and let T :=T; €
T4. Then T := (u,v,w) can touch other triangles in {77,...,T;_1} only at its ver-
tices, and must touch at least one such triangle at each vertex. Let T,,,T,,T,, be
the first triangles touching at u, v, w, respectively. By statement 4 of Lemma 4.2,
these vertices must be of type 0,1, or 2, and thus the coefficients c¢ for § € D;‘f(u)
are already uniquely determined. The coefficients c¢ corresponding to the remain-
ing domain points in Dy 7 are then uniquely determined from the interpolation
conditions at the points of Pr. It follows that for all £ € Dyr, I'¢ C star®(T)
and (6.3) holds with a constant C, that now also depends on |[M;'||, where
My := (BE(1))¢eDy r\Armepr With Az := D} (u) U D} (v) U D} (w).

Once we have finished with all triangles in 74, we can deal with the triangles
in 75 in the same way, except now if T := T; € 75, then it shares some edge e
with a completed triangle T which must be in 7, ...,7a. Then the coefficients
ce corresponding to £ € E (e) are uniquely determined from coefficients of s|z,
and we have T¢ C star*(T), and (6.3) holds for all £ € Dyr with a constant
Cs that now also depends on ||M; ||, where My := (Bg('l’]))gepd’T\ATﬂ?EpT with
Ar := DT (u) U DT (v) UDT(w) U EF (e).

To complete the proof, we note that if T € T4, then by Lemma 3.2 the coeffi-
cients c¢ of s corresponding to § € Dy 1., are uniquely determined from coefficients
in neighboring completed triangles lying in 7o U --- U T5. It follows that for these
¢, T¢ C star*(T), and (6.3) holds with a constant Cs depending on Cjs and the
smallest angle in A, Similarly, if T € 77, then by Lemma 3.1 the coefficients
ce of s corresponding to { € Dy 1., are uniquely determined from coefficients in
neighboring completed triangles lying in 7o U --- U Tg. It follows that for these
¢, T¢ C star®(T), and (6.3) holds with a constant C; depending on Cg and the
smallest angle in A, O
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Fig. 6. An example where T'¢ is contained in star®(T') but not in star*(T).

The proof of Theorem 6.4 shows that the dimension of § is equal to the car-
dinality of the set P, which is given by the formula in (6.2). The theorem shows
that in the worst case, a coeflicient ¢ with § in triangle T of A depends only
on data in a set ¢ which is contained in star®(T'). In Fig. 6 we give an example
to show that this worst case can occur. The numbers in the triangles indicate the
classes to which they belong. Suppose & is the point marked with a black dot in
the triangle in class 77 on the far right. We claim that the value of ¢ depends on
the value of z,,, where 7 is a point in P (marked with a circle) lying in the triangle
on the far left. The arrows indicate the direction of propagation, and the triangles
in the chain of influence are shown in grey. The points in P in these triangles are
symbolized with a darker shade of grey.

As is clear from the proof of Theorem 6.4, the worst case of star®(T) only
appears in very particular constellations, and for most £, the set I'¢ is much smaller.
For instance, it is easy to see that in Examples 6.2 and 6.3 the worst case is star3(T).
We illustrate this in Fig. 7, where the longest chain of influence is the set of triangles
colored grey.

§7. Bounds on the Error of Interpolation

Given a set V of points in a planar domain ©, let A(®) be some initial triangulation of
) with vertices at the points of V. Suppose P and § form a Lagrange interpolation
pair as in Definition 6.1, where S is defined on the refined triangulation A obtained
from the triangulation A by splitting certain triangles as in the definition. Then
for every f € C(2), there is a unique spline Zf € S such that

Zf(n)=fm), mnePr

Clearly, this defines a linear projector Z mapping C(€2) onto S. We now give an
error bound for f—Z f and its partial derivatives D;"Dg in the infinity norm. Similar
results hold for general p-norms.
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Fig. 7. A maximal chain for Examples 6.2 and 6.3.

Theorem 7.1. Suppose f lies in the Sobolev space W1 (Q) for some 0 < m < d.
Then
ID3 Dy (f = Zf)lla < Kh™ 77| fl i1 0, (7.1)

for 0 < a4+ < m. Here |- |m+1,0 is the usual Sobolev semi-norm, and h is the
mesh size of A®). The constant K depends only on the smallest angle in A,

Proof: Fix 0 < m < d, and let f € W™T1(Q). Let T be some triangle in A, and
let Qr := star®(T), where T € A(® with T C T. Note that T = T if and only if
TeT, i=0,...,5 Then it is well known, cf. Lemma 4.6 in [6] or Lemma 4.3.8
in [3], that there exists a polynomial ¢ := gy € Py, such that

1D Dy (f = @)ller < Ko 107 flmi1 00, (7.2)

for 0 < a+ B < m, where Ky is an absolute constant and |Qr| is the diameter of
QT. Now
Q7| <11 h, (7.3)

implies
IDEDE(F = Q)llar < Ky K™= fl,u 1 00, (7.4
with K; := 1111 K. Since Zq = ¢, we have

IDEDE(f —Zf)llr < |DEDE(f — q)llr + |1 DIDEL(f — )l

In view of (7.4), it suffices to estimate the second term. By the Markov inequality
[20],
IDZDEL(f — g)llr < K2 b~ Z(f — g)||z, (7.5)

where again K2 depends on the smallest angle in 7T'.
Now suppose Z(f — @)t = > ¢ep, c§Bg. Since the Bernstein basis polyno-
mials form a partition of unity, this implies

Z(f — < max |cgl.
IZ(7 = )llr < max e
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But by Theorem 6.4,

< - < — D
el <C_max (/=) <CIf ~allas, €€ Dar,
where C is a constant depending only on the smallest angle in A(®). Combining
the above inequalities leads immediately to

IDeDE(f —Zf)llr < Ksh™ P flni1.00, (7.6)

and taking the maximum over all 7' in A gives (7.1) with a constant K > 0 that
depends only on the smallest angle in A(®). O

§8. Constrained Interpolation with B-Polynomials

In this section we discuss interpolation with bivariate polynomials where certain
of the B-coefficients are set in advance. The results here provide a proof of Theo-
rem 5.1. First we state a simple lemma.

Lemma 8.1. Let p = wq, where p € Py, ¢ € Pgq—1, and w € Py is non-constant.
Let u # 0 be an arbitrary vector which does not point in the direction of the line
W = {(x,y) : w(z,y) = 0}, and let D, be the associated directional derivative.
Let v be some point in R? and let m > 0.

1) If w(v) = 0, then Dip(v) = 0 for i = 0,...,m implies Diq(v) = 0 for i =

0,...,m—1.
2) If w(v) # 0, then Dip(v) = 0 for i = 0,...,m implies Diq(v) = 0 for i =
0,...,m.

Proof: For any v, Dyw(v) # 0 and Djw(v) = 0 for all j > 2. But then
Dip(v) = w(v)D!q(v) + iDyw(v)Di~1q(v) for all ¢ > 1. This immediately im-
plies 1). Statement 2) follows by a simple induction. O

We are now ready to discuss the interpolation problem of interest here. Suppose
T := (v1,v2,v3) and define e; := (v;, v;41) for i = 1,2, 3, where we identify vy = v;.
In order to state a general result, we define DZ; (v;) to be empty if p; = —1.
Similarly, we take the set EZ (e;) to be empty if r; = —1.
Theorem 8.2. Let r;,p; > —1 for i = 1,2,3. Suppose we are given the B-
coefficients c¢ of a polynomial p corresponding to domain points £ in the set

3
I':= Dd,T N U [DZZ (’Uz) U E,’;I:(ez)},
=1

and Dg 1 \T # 0. Then we can explicitly choose n = (dgz) —#I points ty,...,t, in
the interior of T' such that the remaining B-coefficients of p are uniquely determined
by the values {p(t;)}7;.

Proof: It is enough to show how to choose n points ¢y, ...,%, in the interior of T
such that if we set the B-coefficients c¢ of p to zero for all { € T', then p(t;) = 0 for
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1 =1,...,n implies p = 0. We proceed by induction on d. The result is trivial for
polynomials of degree d = 0. We now establish the result for polynomials of degree
d, assuming it holds for polynomials of degree d — 1. There are three cases.

Case 1: Some r; > 0. Without loss of generality we may assume that ry > rg, 3.
Suppose we set the B-coefficients c¢ of p to zero for all £ € I'. This implies that for
1 = 1,2, 3, all derivatives of p at the vertex v; vanish up to order p;, and the cross
derivatives of p associated with the edge e; also vanish identically for ¢ = 0,...,r;.
Since 71 > 0, this implies that p vanishes identically on the edge e;. It follows from
Bezout’s theorem that p = wgq, where q is a polynomial of degree d — 1 and w # 0
is a linear polynomial which vanishes on e;. By Lemma 8.1, the derivatives of ¢ up
to order ps vanish at vz and the derivatives of ¢ up to order p; — 1 vanish at v; for
1 = 1,2. Moreover, the cross derivatives of q associated with the edge e; vanish up to
order 1 —1, while those associated with the edges e; and e3 vanish up to order r5 and
73, respectively. It follows that all B-coefficients of ¢ corresponding to domain points
inl':=Dg_17N [Dpl_ (v1) UDZ;_]_('UQ) UDZ (vs) UEL _(e1) UEE (e2) UEZ (e3)]
are zero. Note that #F = #I' —d — 1. Now by the inductive hypothesis, there
exist (d+1) #I' = n points in the interior of T such that ¢(¢;) =0fori=1,...,n
implies ¢ = 0. But p(t;) =0 for ¢ = 1,...,n implies ¢(¢;) =0 for i = 1,...,n, and
we conclude that p = 0.

Case 2: r; = ry =r3z = —1 and some p; > 0. Without loss of generality, we may
assume p; > pa, p3- The assumption on the r; implies p;+p;+1 < d—1fori=1,2 3.

Let T := Dy_y,7 N [DX _;(v1) UDZ (v3) UDZ (v2)]. Note that #I = #I — d + p;.

By the inductive hypothesis, we can choose m = (dH) #F =n — d+ p; points
t1,...,tm in T, so that if ¢ is a polynomial of degree d — 1 whose B-coefficients
corresponding to domain points in I' vanish, then ¢(¢;) = 0 for i = 1,..., m implies
q is identically zero. Now choose any line W passing through v; that does not
pass through vy or vs, or any of the points t4,...,%,,, and choose any d — p; points
tm+1s---,tn on W in the interior of T. Suppose p € P is such that its B-coefficients
corresponding to domain points in I' vanish and p(¢;) = 0 for i = 1,...,n. To
complete the proof, it suffices to show that p = 0. Clearly, g := p|w is a univariate
polynomial of degree d with the property D g(vi) = 0 for i = 0,...,p;, where
w # 0 is an arbitrary vector which points in direction of W. Since g(t;) = 0 for
1=m+1,...,n, p vanishes on W, and by Bezout’s theorem, we can write p = wgq
where ¢ € P4—1 and w # 0 is a linear polynomial that vanishes identically on the
line W. By Lemma 8.1, the derivatives of ¢ up to order p; — 1 vanish at v; while
the derivatives up to order p; vanish at v; for ¢+ = 1,2. This implies that the B-
coefficients of ¢ corresponding to domain points in r Vamsh Since p(t;) = 0 implies
q(t;) =0fori=1,...,m, it follows that ¢ and thus also p must be identically zero.

Case 3: 1, = p;, = —1 for + = 1,2,3. In this case I' is empty and there are no
constraints on the coefficients of p. By the inductive hypothesis, we can choose
m = (d‘gl) =n —d — 1 points ty,...,t,, in the interior T such that ¢(¢;) = 0 for
1 =1,...,m implies ¢ is identically zero. Now choose any line W that does not pass

through any of the points ¢4, ..., ¢y, and choose any d+1 points ¢, 41,...,t, on W
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Fig. 8. Typical point sets in Theorem 8.2 for d =3 and d = 7.

in the interior of T. Suppose p € Py is such that p(¢;) =0 for i = 1,...,n. Clearly,
g := p|w is a univariate polynomial of degree d. Since g(t;) =0 for i = m+1,...,n,
p vanishes on W, and by Bezout’s theorem, we can write p = wq where g € Py_1
and w # 0 is a linear polynomial that vanishes identically on the line W. Since
p(t;) = 0 implies ¢(t;) = 0 for i = 1,...,m, it follows that ¢ and thus also p must
be identically zero. O

We note that the points tq,...,¢, of Theorem 8.2 can be defined in terms of
barycentric coordinates, which means that their relative positions are the same in
every triangle, regardless of its size or shape. Moreover, a slight modification of
the arguments given in the proof of Theorem 8.2 show that if the set U?Zl EF (e;)\
I' is non-empty, then the points from this set (lying on the boundary edges of
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T) can be chosen as a subset of {t1,...,t,}. In particular, this guarantees that
we can interpolate at the given set of points V (see Problem 1.1). Examples of
point constellations obtained from the inductive process described in the proof of
Theorem 8.2 as well as for this modification are shown in Fig. 8. In this figure, the
interpolation points are shown as small filled circles, while B-coefficients which are
set in advance are shown as larger open circles. The two columns to the left show
the configurations for cubic polyomials, while the two columns to the right show
examples of chosen points for polyomials of degree seven. This figure shows all
point configurations Pr, T € T;, + = 0,...,5 needed to construct sets P which can
be used with the C! and C? spline spaces S described in Theorem 5.1. The example
also shows that the interpolation points do not necessarily have to be located at
domain points.

§9. Remarks

Remark 9.1. Lagrange interpolation with C! splines was investigated in [9-11,13—
16] using splines of various degrees on either triangulations or triangulated quadran-
gulations. All of these results depended on certain colorings of the triangulations
or quadrangulations, and in [4,16] the approximation order was established with
the help of weak interpolation techniques rather than the direct approach used
here. Lagrange interpolation with C? splines was treated recently in [8], and was
also based on a certain coloring algorithm. The idea of extending local polynomial
pieces to splines using smoothness conditions has been used before in scattered data
fitting, for example in [5] in the bivariate case and in [19] for the trivariate case.

Remark 9.2. For given smoothness r, it is possible to modify our construction by
using polynomials of degree 1 < m < d for triangles of class 7p. In this case we
would need only (m; 2) interpolation points in each such triangle. We then apply
degree-raising to turn each such polynomial into one of degree d, and proceed as
before. For example, using linear polynomials, we would not need to introduce
any additional interpolation points in the triangles of class 73. However, using
polynomials of degree m, we can only expect order m + 1 approximation rather

than order d + 1.

Remark 9.3. Local Lagrange interpolation methods are useful for the construc-
tion and reconstruction of surfaces and for scattered data fitting problems. A
major advantage is that they do not require knowing or approximating values of
derivatives, i.e. only Lagrange data is needed. One way to use them would be in a
two-stage process, where in the first stage one constructs a C° linear spline based
on a very fine triangulation, which in turn is interpolated by our C" method on a
coarser triangulation. See [10,14,16] where numerical results based on this idea are
discussed.

Remark 9.4. The Bernstein-Bézier representation used here is not only a theoret-
ical tool, but is also of practical importance, since all of the computations needed
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to construct a spline can be done directly with the Bernstein-Bézier-coefficients. In
particular, there is no need to construct basis functions.

Remark 9.5. As noted above, the matrices which appear in the various linear
systems arising in the computation of our interpolating spline do not depend on
the size or shape of triangles in the triangulation. This means that there are only
a small number of fixed matrices which can be precomputed and inverted once and
for all.

Remark 9.6. Given a Lagrange interpolation pair P, S, it is clear that for each
§ € P, there exists a unique spline L¢ such that

Lg(?]) = (55’7,, n e P.

These are the fundamental splines or cardinal splines associated with P. Following
the arguments in the proof of Theorem 6.4, it can be seen that for all ¢ € PN T,
the support of L¢ is contained in star®(T'), see Fig. 6.

Remark 9.7. Suppose P and S are as in Theorem 6.4. Then clearly P describes
a nodal minimal determining set for S in the sense that setting the values z, for
n € P uniquely determines a spline in §. If P C Dy A, then the set P is also a
minimal determining set in the classical sense that if we set all B-coefficients of s
corresponding to the points of P, then s is uniquely determined. This means that
for each point £ € P, there exists a unique spline I~J§ such that ¢c =1 and ¢, =0
for all n € P\ {¢}. These basis functions are different from the basis functions
in Remark 9.6, and in general have smaller supports. In fact, it can be seen from
similar (but much simpler) arguments that the maximal support of ig is contained
in star? (where we measure the supports as in Theorem 6.4). For C! cubic splines
and C? splines of degree seven, it is possible to choose P C Dy A, which follows
from the constructions given in [8,10,16].

Remark 9.8. In [10,15] the concept of separable quadrangulations and triangula-
tions was introduced. If we apply the algorithm from [15] to construct a separable
triangulation A, from AO) first, and then apply Algorithm 4.1, we obtain only
five classes of triangles, namely T;, i € {0,4,5,6,7}. In this case the support of the
fundamental splines L¢ from Remark 9.6 is contained in star®(T'), where T' € Agep.

Remark 9.9. It has been conjectured [18] that Theorem 8.2 holds if we choose
{t1,...,tn} = Dgr \T. This has been verified for all d < 7, see [8].
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