Smooth Macro-Elements on
Powell-Sabin-12 Splits
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Abstract. Macro-elements of smoothness C" are constructed on Powell-Sabin-
12 splits of a triangle for all » > 0. These new elements complement those
recently constructed on Powell-Sabin-6 splits [5,12], and can be used to construct
convenient superspline spaces with stable local bases and full approximation
power that can be applied to the solution of boundary-value problems and for
interpolation of Hermite data.
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§1. Introduction

A bivariate macro-element defined on a triangle T' consists of a finite dimensional
linear space S defined on T', and a set A of linear functionals forming a basis for
the dual of S. Usually the space S is chosen to be a space of polynomials or a space
of piecewise polynomials defined on some subtriangulation of 7. The members
of A, called the degrees of freedom, are usually taken to be point evaluations of
derivatives, although here we will also work with sets of linear functionals which
pick off certain spline coefficients.

A macro-element defines a local interpolation scheme. In particular, if f is a
sufficiently smooth function, then we can define the corresponding interpolant as the
unique function s € S such that A\s = Af for all A € A. We say that a macro-element
has smoothness C" provided that if the element is used to construct an interpolating
function locally on each triangle of a triangulation A, then the resulting piecewise
function is C" continuous globally. Macro-elements are useful tools for building
spaces of smooth splines with stable local bases and full approximation power.

Several families of C" macro-elements have been developed using polynomi-
als [17,19], and piecewise polynomials on appropriate splits, see [4,5,11,12,13,15],
and references therein. The purpose of this paper is to describe a family of C"

1) Department of Mathematics, Vanderbilt University, Nashville, TN 37240,
s@mars.cas.vanderbilt.edu. Supported by the the Army Research Office under grant
DAAD-19-99-1-0160

2) Department of Mathematics, The University of Georgia, Athens, GA 30602.

1



macro-elements based on the Powell-Sabin-12 split, see Definition 3.1. These new
macro-elements complement the existing families of C" macro-elements based on
the Powell-Sabin-6 split [5,12], and for compatibility make use of splines of the same
degrees, see however Remark 7.2. A major advantage of our new elements is that
certain geometric constraints required in the Powell-Sabin-6 case can be removed,
see Remark 7.4.

The paper is organized as follows. In Sect. 2 we review some well-known
Bernstein-Bézier notation. Our C7" family of macro-elements is introduced and
studied in Sect. 3, while Sect. 4 contains several supporting lemmas. We discuss
the approximation power of our new macro-elements in Sect. 5. In Sect. 6 we trans-
late our degrees of freedom into nodal functionals, and discuss a related Hermite
interpolation method and associated error bound. We conclude with remarks in
Sect. 7.

§2. Preliminaries

We use Bernstein—Bézier techniques as in [1-13,16,17]. In particular, we represent
polynomials p of degree d on a triangle T' := (vy, v, v3) in their B-form

i+j+k=d
where Bl‘.’ljk are the Bernstein basis polynomials of degree d associated with T. As
usual, we associate the coefficients ¢}, with the domain points £ := w

We write Dy 1 := {fi:gk}HjJrk:d.

Given a triangulation A, let Dg A := [Upea Da,r, and let S9(A) be the space of
continuous splines of degree d on A. Then it is well known that each spline in SY(A)
is uniquely determined by its set of B-coefficients {c¢}¢cp, ., where the coefficients
of the polynomial s|r are precisely {c¢}eep, onr. We recall that if T := (v1, v, v3),
then the ring of radius m around vy is RJ, (v1) := {&]_,, ; : j +k = m} and the
disk of radius m around vy is DI (vy) := {££k ci>d—m}. If vis a vertex of A,
we define the ring R,,(v) of radius m around v to be the set of all domain points
on rings RI (v) where T is a triangle with vertex at v. The disk D,,(v) of radius
m around v is defined similarly.

In this paper we are interested in subspaces S of S9(A) which satisfy additional
smoothness conditions. Following [6], to describe smoothness we shall make use of
smoothness functionals defined as follows. Let T' := (v1, v2, v3) and T := (vg, v3, V2)
be two adjoining triangles which share the edge e := (v, vs), and let ¢;;; and &,
be the coefficients of the B-representations of s and s, respectively. Then for any

n<m<d, let Te'm be the linear functional defined on Sg(A) by

Te’mS = 6n,m—n,d—m - E Ci,j—i—d—m,k—l—m—anjk(Uél)? (21)
i+j+k=n
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where B3y, are the Bernstein polynomials of degree n on the triangle T'. In terms
of these linear functionals, the condition that s be C" smooth across the edge e is
equivalent to

T s=0, n<m<d, 0<n<r.

Smoothness conditions can be used to directly compute coefficients of one piece
of a spline from another. They can also be used in situations where some of the
coefficients of two different pieces of s are known. The following well-known lemma
[4] (see also Lemma 3.3 of [7]) shows how this works for computing coefficients on

the ring RT (v9) U RY (vg).

Lemma 2.1. Suppose T := (vy,v9,v3) and T = (vgq,v3,v2) are two triangles
sharing an edge e := (vs,v3), and suppose the points vy, v, v4 are not collinear.
Let s € SY(A\), where A\ := TUT, and suppose that 7.',,s = 0,n ={+1,...,q+q—4
for some ¢,m,q,q with 0 < q,q, —1 < ¢ < q,q, and g+ ¢ — ¢ < m < d. Suppose
that all coefficients c;;i, and ¢;j;, of the polynomials s|7 and s|f corresponding to
domain points in D,,(ve) are known except for

Cv = Cud—m,m—v, V:€+1:---7q7
(2.2)

Cy 1= 6V,m—u,d—m7 V:£+17"'7(j7

Then these coefficients are uniquely determined by the smoothness conditions.

If s is a spline in SY(A) which satisfies additional smoothness conditions beyond
C° continuity, then clearly we cannot independently choose all of its coefficients
{ce}eepy - We recall that a determining set for a spline space § C SJ(A) is a
subset M of the set of domain points Dy A such that if we set c¢ = 0 for all { € M,
then s = 0. The set M is called a minimal determining set (MDS) for S if there is
no smaller determining set. It is known that M is a MDS for § if and only if every
spline s € S is uniquely determined by its set of B-coefficients {c¢}ee .

A MDS M is called local provided that there is an integer n such that for every
§ € Dgp NT and every triangle T' in A, ¢¢ is a linear combination of {c; }yer,
where T¢ is a subset of M with T'¢ C star”(7T'). Here star”(T) := star(star" ' (T'))
for n > 2, where if U is a cluster of triangles, star(U) is the set of all triangles which
have a nonempty intersection with U. Moreover, M is called stable, provided that
there is a constant K depending on the smallest angle in A such that

lce| < K max |c,, for all £ € Dy . (2.3)
7]61"5

A linear functional A defined on 89(A) is called a nodal functional provided that
As is a combination of values and/or derivatives of s at some point 7. A collection
{A}ren is called a nodal determining set for a spline space S C SY(A) if As = 0 for
all A € N implies s = 0. N\ is called a nodal minimal determining set (NMDS) for S
if there is no smaller nodal determining set.
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Fig. 1. The Powell-Sabin-6 and Powell-Sabin-12 splits.

§3. A Family of ¢ Powell-Sabin-12 Macro-elements
We now define the Powell-Sabin split of interest in this paper.

Definition 3.1. Given a triangle T = {vy,v9,v3}, for each 1 < i < 3, let w; be

the midpoint of the edge e; := (v;11,v;12) opposite to v;, where we set vy := vy.
Draw in the line segments (v;,w;), i = 1,2,3. Then it is easy to see that these
three line segments intersect at the barycenter v, := (vi + vo + v3)/3 of T. The

resulting partition T, of T' into six triangles is called the Powell-Sabin-6 split of T,
see Fig. 1 (left). If we now draw in the line segments (w;, w;y1), i = 1,2,3, where
wy 1= wy, then the resulting partition T, ,, of T into twelve triangles is called the

Powell-Sabin-12 split of T', see Fig. 1 (right).

We need some additional notation and terminology connected with Powell-
Sabin-12 splits. For each i = 1,2, 3, we write u; for the intersection of (w; 1, w;12)
with (v;,v..). Note that the w; are midpoints of the edges (w;y1,w;y2), and are
singular vertices of T,,,, i.e., vertices which are formed by two crossing lines. We
refer to the edges of the form (v;, u;) as type-1 edges, to edges of the form (w;,v,.)
as type-2 edges, and to edges of the form (u;,v,.) as type-3 edges.

Given a triangulation A of a domain €2, we write V and £ for the sets of
vertices and edges of A. To define our macro-element spaces, we shall work with
the refinement A, of A which is obtained by applying the Powell-Sabin-12 split
to each triangle of A. We write W for the set of midpoints of edges of A. For
i =1,2,3, we write &; for the set of edges of A, of type i. Let & be a subset
of & obtained by selecting exactly one edge of & for each macro-triangle in AA. As
usual in spline theory, m is defined to be m if m > 0, and is zero otherwise.

We now introduce the spline spaces of interest in this paper. The definition
depends on the value of » mod 4. Given r > 0, we define the C" Powell-Sabin-12
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macro-element space to be

ST(AP512) = {S S S(;(AP512) HERS Op(”) allv eV,
s € CH(w) allw e W, (3.1)
7s=0for all 7 € T, UT5},

where for all £ > 0,

r p n d
40+1) 6641 60+1| 9+2
4420 604+3| 66+3| 9+5
4+3) 604+4] 60+5| W+T
4+4) 664+6| 60+7 9410

U{ T 28 2005+ 1)+,d= P if r is odd,

p+J t=1,j=1

,]— ecéy
1= ,
r+i 120+1-2(L—j+1)4,d—p .
U e,p+j}i:1,j:1 , otherwise,
6681
r+1i 2]—2,€ .
U e,u—l—] i=1,j=21 r=40+1,
6682
r—l—z 2] 1.4 r+1 r—l—l ¢ .
U e N+.7 1= 17.7 1 U U { 6 y,-i—g—i—l} U U e 431 5=1 r= 4£ + 27
6682 6682 6663
Ty = ,
r+i Js .
U{euﬂzlg 1 r =40+ 3,
6682
r—l—z 23-1—1 V4 r—l—l r—l—l /41 _
U euﬂ i=1,j=1Y U eu+£+1 U er—l—j}j 1 r=40+4.
L e€&2 6652 ec&s

Let n,, and n, be the numbers of vertices and edges of A, respectively. For each
v €V, let T}, be some triangle in A, _,, with vertex at v. For each e := (v1,v2)
of A, let v, be the barycenter of a triangle T, in A that contains e, and let
T} := (uy,v1,we) and T? := (ug, we,v2) be the two subtriangles of T, sharing the
edge e, where w, is the midpoint of e. In addition, let T3 := (U, , We, uz) be one of
the triangles in A containing the edge (we, v, ), see Fig. 1 (right).

PS12

Theorem 3.2. For allr > 1,

dim S, (A, ..,) = (p ;F 2) n, + [w U+ D), (3.2)
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Moreover, the set

M:= M, U [ MLumMZum®) (3.3)

veEV ec&

where

is a stable local minimal determining set for S.(A,q,,),

1) M, = D,(v)N T,

1._ T, ‘
2) Me T U{gp—i—p,—d—i-i—l—l,d—p—j,d—u—i+j_1};:1’
=1

,
2. T? '
3) M2 = ({65 dristidmpumitjmtampj V=1
i=1

(=v)j2

e —2j

4) Me:= U {&ifjamimoj izt -
=0

Proof: To show that M is a stable local minimal determining set, we show that
we can set the coefficients {ce}ecam of a spline in S, (A,g,,) to arbitrary values,
and that all other coefficients of s are then uniquely, locally, and stably determined.
First, for each v € V, we set the coefficients corresponding to M,. Then using the
C* smoothness at v, we can uniquely compute the coefficients of s corresponding
to all other domain points in D,(v). This is a stable local process.

At this point it is not obvious that the coefficients which we have determined
so far are compatible with each other since they may be connected by smoothness
conditions. Indeed, for any two vertices © and v which are connected by an edge of
A\, there exist chains of smoothness conditions which involve coefficients in both of
the disks D,(u) and D,(v) along with other yet undetermined coefficients. As we
progress we have to be sure that as we compute these undetermined coefficients,
all of these smoothness conditions are verified.

For each e := (u,v) € £, we now apply Lemma 4.1 to determine the coefficients
of s corresponding to domain points in the disk D, (w.), where w, is the midpoint
of e. Due to the C'* smoothness at w,, we can regard the coefficients of s in this disk
as coeflicients of a polynomial g of degree p. The lemma insures that we can set
the coefficients of s corresponding to the domain points in M? to arbitrary values,
and that all coefficients corresponding to the remaining domain points in D,,(w)
are uniquely and stably determined. Since the lemma allows arbitrary values for
the coefficients corresponding to domain points in the sets D,(u) N D, (w.) and
D,(v) N D,(we), it follows that all smoothness conditions connecting coefficients
associated with domain points in [D,(u) U D,(v)] N D, (w.) are satisfied, i.e., there
are no incompatibilities due to these smoothness conditions. We still have to watch
for possible incompatibilities due to other smoothness conditions involving domain
points outside of the disks {D,(v)}vey and {D,(w) bwew.
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Our next step is to set the coefficients corresponding to the sets M! and M?
for each edge e of A. If e := (v1,v3) is an interior edge of A with midpoint w,, then
using the C" smoothness conditions across the edge e, we can uniquely determine
the coefficients corresponding to the domain points in the sets

v T! i
Me T U{§p+u—d+i+1,d—p—j,d—u—i+j—1}j=1’
=1

¢
2. T? i
M = U{5p+u—d+z’+1,d—u—i+j—1,d—p—j j=11
i=1

where T := (iy, vy, w.) and T2 := (iig, we, v3) are the triangles in A, which
share edges with T! and T2, respectively. At this point we have made sure that all
smoothness conditions up to order r across e are satisfied.

For each type-1 edge e := (v,u), we now show how to use Lemma 2.1 to
compute coefficients on the rings R, ;(v) for j =1,...,d—p. Fix 1 < j <d —p.
Then it is easy to see that there are exactly n :=2(d—pu) —1—2(£ —j+ 1), unset
coeflicients on R, ;(v). Now combining the C" smoothness conditions across e with
the special conditions in 7; associated with this edge, gives us a set of exactly n
(univariate) smoothness conditions which uniquely determine these coefficients, see
Lemma 2.1. By the geometry, the matrix of this nonsingular n x n linear system is
the same for all edges e € &1, and thus the computation is stable in the sense that
(2.3) holds.

We now show that the coefficients corresponding to the remaining domain
points are also uniquely determined while maintaining all smoothness conditions.
These remaining domain points lie inside triangles of the form T := (w;, wa, w3),
where the w; € W. Let T,q, be the Powell-Sabin-6 split of T', see Fig. 4. We have
already determined all coefficients corresponding to domain points in the disks
D, (w;) for i = 1,2,3. In addition, by the C" smoothness across the edges e; :=
(wi, wiy1) for i = 1,2,3, the coefficients corresponding to domain points on the
rings Rq—;(v,) for j = 0,...,r are also determined. For each ¢ = 1,2,3, the fact
that the midpoint u;_1 of e; is a singular vertex insures that all C" smoothness
conditions across the edge (u;_1,v,) are automatically satisfied, and there are no
incompatibilities. Now we can apply Lemma 4.2 to uniquely and stably determine
all coefficients of s corresponding to the remaining domain points in 7. We have
shown that M is a stable local minimal determining set for S, (A

To complete the proof, we note that the dimension of S,(A,,,,) is equal to
the cardinality of M, which is easily seen to be the number in (3.2). O

PS12)'

For the Powell-Sabin-12 split T},, of a single triangle, Tab. 1 shows the values
of r,p,p,d and dim S, (T,g,,) for 1 < r < 12. Fig. 2 shows the corresponding
minimal determining sets for r = 1, 2, 3, 4, where the points in M are marked with

black dots.



.’ . \‘
NS
e

ﬁ-"-rc Ly

NN

i
I
".

N

7
e
2

A
T
§

Y
o“

¢

4

KLy

LA
PR 4 !
LN
AR
e e

i}
-" 4

e
i
AR

i
It

i

I/

i

{Z

I/

/|

0
5
v

4.

Fig. 2. Minimal determining sets for Sy (Tpg;,) for r =1,2,3,

12
42

72
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d | dim

11

14 | 246
16 | 312

0

7|10

9

6

9

13 | 13 | 20 | 480
15 | 15 | 23 | 618
16 | 17 | 25 | 720
18 | 19 | 28 | 888

711011

8|12 |13 |19 | 426

9
10

11
12

Tab. 1. The dimension of Sy (Tpg;s)-



U1

V2 Vg

V3 Vg Vs
Fig. 3. The triangulation of Lemma 4.1.

4. Two lemmas

In this section we establish two lemmas which are needed for the proof of Theo-
rem 3.2. Our first lemma concerns a special MDS for the space of polynomials P,
in the case where p is odd.

Lemma 4.1. Let A be the triangulation shown in Fig. 3 with six vertices vy, . . ., Vg,
where we suppose that vy is the midpoint of the edge e := (vs,vs). Let T :=
(v1,v4,v6). Suppose u is odd, and let m := “T_l Let M := Dy, (v3) U Dy, (vs) U
M. C Dp,, where

m
T 25
e = U{§i+j7u—i—23 ]}u 7
=0

Then M is a stable mimimal determining set for P,,.

Proof: It is easy to check that #M = (’“‘ "2"2) = dim P, and thus it suffices to prove
that if we set the coefficients of s € P, corresponding to £ € M, then all other
coefficients are stably determined. To thls end, we consider the B-representation of
5 = s relative to the triangulation A consisting of the two triangles T := (v, v3, v4)
and T h = (v1,v4,v5). We denote the corresponding coefficients of § by ¢, for

neD WA The values of ¢ for £ € D,,(v3) N Dy A stably determine all derivatives

of s up to order m at vs, which in turn stably determine the coefficients ¢, for all

n € Dy(vs) ND LA A similar argument shows that ¢, are stably determined for

all p € D,, (v )ﬂD -

We now clalm that all coefficients of 3 corresponding to domain points in

the set M, := U{mﬂ,u =2, Vi= #727 are stably determined from the coefficients

{ceteem, . To see thls, note that since vg lies on the edge (v1,vs), the barycentric
coordinates of vs relative to T have the form (by,0,bs) with by + ba = 1. Then
using the de Casteljau algorithm to convert the B-coefficients of s relative to 1" into
B-coeflicients of s relative to Ty, we find that for each 1 <i < p—2jand 0 < j <m,

the coefficient of 5 corresponding to nﬁj’ u—i—2j, 18 a stable linear combination of
the coefficients {c¢}eem. -



us u

Fig. 4. The labelling of the Powell-Sabin-6 split for Lemma 4.2.

It is easy to check that DI2(vy) N Du x C M.. Then using the smoothness

across the edge (vy,vy4) of A, we can stably compute the coefficients of § corre-
sponding to the remaining domain points in D,,(v1) N Du ~. We have now deter-

A
mined all coefficients of s except for those corresponding to p — j domain points
on R,_;(vi) N Du x for each j = 0,...,m. Since the coefficients associated with

R,,_j(v1) are subjected to precisely u—j (univariate) smoothness conditions across
the edge (v4,v1), we can use Lemma 2.1 to stably compute them. Finally, to com-
plete the proof, we note that the coefficients c¢ of s can now be stably computed
from those of 5§ by subdivision. O

Our second lemma deals with splines on the Powell-Sabin-6 split 7., of a single
triangle. Since we want to apply this lemma to the triangle 7' := (wy, we, w3) which
is inside the Powell-Sabin-12 split shown in Fig. 1 (right), we label its vertices as in
Fig. 4, where we assume u; is the midpoint of the edge opposite w; for i = 1,2, 3,
and v, := (w; + w2 + ws3)/3 is the barycenter of T. As in Sect. 3, we write & for
the set of edges of T, of the form (w;,v,), and & for the set of edges of T,
of the form (u;,v,.). Given r, u, and d as in (3.1), let 73 be the corresponding
set of special smoothness conditions defined there. Then we consider the following

superspline space

Sr(Toss) i={s€ 8 (Tpyy) : s € CH(w;) all i =1,2,3,

4.1
7s =0 for all 7 € Tp}. (4.1)
For each n =1,2,3, let T}, := (v, Wn, Un12)-
Lemma 4.2. For allr > 1,
2
dier(Tpsﬁ):i’»(“;_ )+3(2d—2u—r—1)(r—|—1). (4.2)
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Moreover, the set

3
M= (Mwn U ./\/lun), (43)
n=1
is a stable minimal determining set, where M., = D, (w,)NT, and
(2
T?L . .
j=1
Mu =9 30 (4.4)
T, )
U{gi,d—u—j,u_iﬂ}f:o, otherwise.
\ j=1

Proof: We show below that M is a determining set, and thus dim S, (T, ) < #M.
It is easily seen that

T80% + 570+ 9, r=40+1,
7802 + 1114 +39, r=40+2,
HM = ) (4.5)
7802 + 1410 + 63, r =4l + 3,
7802 + 1950 + 123, r = 40 + 4,

which is equal to the expression in (4.2). We now derive a lower bound for
dim S, (T}, ). By Theorem 2.2 of [16],

2 .
dim S5(Tpe, ) = (T; )+6<d ;+ )—l—a,

B { (r?2 —1)/4, ifris odd,

where

r? /4, if r is even.

Enforcing the C'* continuity at the vertices wi, ws, w3 of T requires 3(“_7;'1) con-
ditions. Since

302 — 3¢, r— A0 41,
4, — 302 4+30+1, r=40+2,
7 ) 32 430, r—40+3,

302 4+904+4, r=40+4,

the dimension of S, (T,g,) in each of the four cases is bounded below by the same
quantities appearing in (4.5), which implies that dim S, (7,4,) is given by the for-
mula in (4.2).

To complete the proof, we need to show that M is a determining set and that
it is stable. Suppose we set {c¢}ecm. We now show how to use the smoothness
conditions to stably compute all other coefficients. For each i = 1,2, 3, we use the
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C*" smoothness at w; to stably compute the coefficients corresponding to all other
domain points in D,,(w;). Next, consider the sets of domain points

L; = Rd—j(vT)ﬂ<UT7wi+17wi+2>7 jIO,...,d,

fori=1,2,3. Foreach 0 < j <r, L; contains exactly » domain points for which
the corresponding coefficients have not yet been determined. The C” smoothness
across the edge (u;,v,) gives r univariate smoothness conditions involving these
coefficients, and they can thus be determined from Lemma 2.1. At this point the
proof divides into four cases.

Case 1. r =4¢+1. Foreach j =1,...,fand ¢ = 1, 2, 3, there are r +2j — 2 domain
points on R, ;(w;) whose corresponding coeflicients have not yet been determined.
These coefficients are subject to 427 — 2 smoothness conditions which correspond
to the C" smoothness conditions combined with the 25 — 2 functionals in 75. We
can again get these coefficients from Lemma 2.1. Now for each r +1 < j <r +/
and 7 = 1,2, 3, the set L; contains r domain points whose corresponding coefficients
have not yet been computed. But then using the C" smoothness across the edge
(uj,v,.), Lemma 2.1 gives the values of these coefficients. To complete the proof in
this case, we use Lemma 2.1 to perform the following cycle of computations: for
each j=1,....d—pu—=¢:

a) compute the r unset coeflicients on the ring R4 ¢4;(w;) for i =1,2,3,

b) compute the r — 25 unset coefficients on Li+£+j fori=1,2,3.

This cycle of computations gives all the remaining coefficients.

Case 2. r =40+ 2. Foreach j =1,...,f and i = 1,2, 3 there are r +2j — 1 domain
points on R, ;(w;) whose corresponding coeflicients have not yet been determined.
These coefficients are subject to r + 25 — 1 smoothness conditions obtained by
combining the C" smoothness with the 25 — 1 functionals in 75 corresponding to
the set €. We can thus compute these coefficients from Lemma 2.1. Now for each
r+1<j<r+/fandi=1,2,3, the set L; contains 7 + 1 domain points whose
corresponding coefficients have not yet been computed. But then using the C”
smoothness across the edge e := (u;,v,.) together with the smoothness condition
corresponding to T;ﬂj:_}_ ; in 73 with e € &3, Lemma 2.1 gives these coefficients. Now
for each i = 1,2, 3, we examine the ring R4 ¢41 (w1 ), where we assume the edge e :=
(w1,v,.) is the edge chosen for &,. There are r+1 domain points on this ring whose
corresponding coefficients are not yet determined. Using the smoothess condition
described by the functional T;"’Zig 41 in T3, we can use Lemma 2.1 to compute
all of these coefficients. The lemma then gives the coefficients corresponding to
domain points on the layers Lfﬂ+€+1 for « = 2,3. We can now do the two rings
Ryye+1(w2) and Ry 4oy 1(ws), followed by the layer L', ,. ;. To complete the proof
in this case, we use Lemma 2.1 to perform the following cycle of computations: for
each j=2,....d—pu—4¢:

a) compute the 7 — 25 + 3 unset coefficients on the layer LZ+£+J' forv=1,2,3,
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b) compute the » — 1 unset coefficients on the ring R, 4¢4;(w;) for i = 1,2, 3.

This cycle of computations shows that all the remaining coefficients are determined.
The cases r = 4¢ + 3 and r = 4¢ + 4 can be handled in a similar way, and the
proof is complete. O

§5. Approximation Power

Let A be a triangulation of a polygonal domain 2, and let S,-(A ,.,,) be the macro-
element space defined in (4.1). Let |A| be the mesh size of A, i.e., the diameter of
the largest triangle in A. In this section we use the fact that S, (A ,,,) has a stable
local minimal determining set M to show that the space has full approximation
power. More precisely, we give bounds on how well functions f in Sobolev spaces
W, 1(Q) can be approximated in terms of | A and the smoothness of f as measured
by the usual Sobolev semi-norm |f|,,+1 4.0. Let

._ { (ZTEA g
q,Q2 - —

maxreA ||9

)1/q

ar) T 1<g< oo,

g

|oo,T7 q = O0.

Unless otherwise stated, all constants appearing in this section depend only
on the smallest angle € in the triangulation A ., ,, or equivalently on the smallest
angle in A, see Remark 7.8. It is easy to see that |A,.,,| < |A]/2.

Theorem 5.1. For all f € W(;”“(Q) with 1 < q¢ < oo and m < d, there exists a
spline sy € §;(A,g,,) such that

IDEDE(S = ), o < C 1A | i1 (5.1)
for all 0 < o + 8 < m. Here the constant C' depends only on the smallest angle in
A, and if ¢ < oo also on the Lipschitz constant associated with the boundary of ).

Proof: We give the proof only for 1 < ¢ < oo. The case ¢ = oo is similar and sim-
pler. We begin by constructing a quasi-interpolant () mapping L;(2) into the spline
space S;(A,g.,). Fix f € L1(2). Then for each triangle T' € A ,,,,, we choose
the largest disk contained in 7', and let Fr be the corresponding averaged Taylor
polynomial of degree d approximating f, see e.g. [10]. Then for each £ € M N T,
let c¢ := v¢(Frf), where 7¢ is the linear functional which picks off the B-coefficient
associated with domain point £&. We now define Qf be the spline in S,(A,q,,)
whose other coefficients are determined from {c¢}ecaq by using smoothness condi-
tions as in the proof of Theorem 3.2. @ is a linear projector mapping L (£2) onto
ST(APSI2>'
Using the L, stability of the B-form and properties of Fr, see [10], we have

K KKy
lcel = ve(Frf)l < S WFrfllgr < —7- 1 fllgr, €€ MNT,
Ap Ag
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where Ap is the area of T. By the locality and stability of M, it follows that if 7
is a domain point lying in 7', then
K\ K>K5
eyl < WHqu,QT,

where A,,;, is the area of the smallest triangle in Qp := Star3(T). It is shown in
[10] that the area of the largest triangle in Q7 is bounded by a constant (depending
only on €) times the area of the smallest triangle. Using the fact that the Bernstein
basis polynomials form a partition of unity, we get || Qf|lq.7 < Kallfllq,00-

Now suppose f € W;’LH(Q) withm <d. Fix0<a+f<mand T € A
Then using the Markov inequality [18], it follows that for any p € Py,

1Dg D) (f = Qf lor < 1DFDY(f = p)llo,r + 1D5 DJQ(f — p)
K

< |DSDY(f = p)lgr + pa—f’ﬁllQ(f—p)llq,T
T

K4K5
0.7+ —a55 I = Plla.or,
P

PS12°

q,T

(5.2)

< [|1DEDy(f —p)

where pr is the diameter of the largest disk contained in 7'. It is shown in [10]
that |Qp| < Kgpr. Now (cf. Lemma 4.6 of [10]), there exists a polynomial p € Py,
depending on f with

1D Dy (f =PIl g, < K7™ 77| flnt1g.00, (5.3)

for all 0 < i+ 5 < m, where K7 is a constant depending on 6 and the Lipschitz
constant of the boundary of €. Inserting this in (5.2) leads to

IDgDY(f = QNN < Ks |A" 7 [ flntrg0.,  all0<a+g<m.

(5.4)
Summing over all triangles T' € A, ,, and using the fact that the number of
triangles in Q7 is bounded by a constant depending only on 6, we get (5.1). O

§6. A nodal determining set for S,(A

PSIZ)

In this section we describe a nodal minimal determining set for S,.(A,,,,) and a
corresponding Hermite interpolation projector. For each triangle T in A, let vy
be its barycenter. For each edge e := (u,v) of A, let w, be its midpoint, and let

1 put(d—p)we pot(d—pwe
7 .

w, = /= and w? = Let D. be the directional derivative

associated with a unit vector perpendicular to e. For each 7 > 0, let

(i — 7+ 1u+ jwl

772,1,;’ = i1 )
i (i —j+ Do+ juw]

Ne,2,j = it 1 )
. =i+ Dwl +jw?

n€737j T Z+ 1 )
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for j = 1,...,i. Finally, for any point ¢ € R?, let &; be the point evaluation
functional at t.

Theorem 6.1. The set

Ne=JMul) WV uNZUNE) (6.1)

veY ec&

is a nodal determining set for S,(A,,,), where
1) Ny = {‘%D?Dg}OSa-FﬁSp?

l
2) N = (e DEFRTIYL,
=1

¢
Cdeliivi
3) M= Uley, D e
i=1

m m—+1
3 ._ ) Y ) —i+171
9 NF = Utey, DYoo U (U (e, DI,
i=1 i=1

with m = (u—1)/2.

Proof: It is easy to check that the cardinality of A is equal to the dimension of
Sp(A,g,,) as given in (3.2). Thus, it suffices to show that N is a nodal determining
set, i.e., setting {As}rcnr determines all coefficients of s. For every vertex v of A,
we can compute all coefficients corresponding to domain points in the disk D,(v)
directly from the data {As}ren,-

Given an edge e of A, let w, be its midpoint. We now compute all coeffi-
cients of s corresponding to domain points in D,(w.). By the C* smoothness at
we, these coefficients can be regarded as the coefficients of a polynomial g of de-
gree p. Suppose we represent this polynomial in B-form relative to the triangle
T := (ve,wy, w?), where v := (v, + (d — p)we)/d and v, is the center of some
triangle T, containing the edge e. As in Lemma 4.1, we can immediately compute

the coefficients of g in the disks D,,(w!) N D ~ and D,,(w?) N D ~. For each
e w,T € w, T’

1 =1,...,u, we now compute the coefficients of g corresponding to the remaining
domain points on R, —;(ve) N Du 7 from the derivative information given in 4). We

)

can now get the coefficients of s corresponding to domain points in D, (w.) N T,

by applying subdivision to T. If e is an interior edge, the coefficients of s corre-
sponding to the remaining domain points in D, (w,.) can be computed from the C*
smoothness at w,.

Next for each edge e, we use the values {As} ear to compute all coefficients of

s corresponding to domain points in M. First, we consider i = 1 in the definition
T,

ptu—d+2,d—p—1,d—p—1°
by DgJ{” _d+2s(n§7171), since all other coefficients involved in this derivative have

already been computed. Then assuming we have dealt with the points in M} up

of M}, i.e., the domain point & This coefficient is determined
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. —dt1+4i
to i — 1, we can use the values {DS’J{“ HEg(

. TE1 i .. . . .
corresponding to {§p+u—d+i+1,d—p—j,d—u—z‘+j—1}jzl- This involves solving an i X @

linear system. A similar argument leads to the coefficients of s corresponding to
domain points in M?2.

At this point we have determined all coefficients corresponding to domain
points in the minimal determining set M of Theorem 3.2, and it follows from
that theorem that all other coefficients are also determined. O

nt1)}i—1 to find the coefficients

Theorem 6.1 shows that for any function f € C*(£2), there is a unique spline
s € §p(A,g,,) solving the Hermite interpolation problem As = Af for all A € V.
The mapping which takes functions f € C*(Q2) to this Hermite interpolating spline
defines a linear projector Z mapping C*(2) onto S, (A ,,,,). We now give an error
bound for how well Zf approximates smooth functions f in the maximum norm.
We write |A| for the mesh size of the initial trianglulation A before applying the
Powell-Sabin-12 splits.

Given a triangle T' € A and a domain point £ € T of S, (A ,4,,), it is easy to
see that if the coefficient c¢ of Zf is computed from derivatives as in the proof of
Theorem 6.1, then

m
el < K1) ITI|f

v=0

v, T (62)

where K, is a constant depending only on the smallest angle in /. Since the
computation of all other coefficients from smoothness conditions (cf. the proofs of
Theorems 3.2 and 6.1) is a stable process, it follows that (6.2) holds for all domain
points ¢ lying in T'. Since the Bernstein basis polynomials form a partition of unity,
(6.2) implies
w
IZfllr < Ka Y ITI"If

v=0

v, T- (63)

Theorem 6.2. There exists a constant K depending only on the smallest angle in
I\ such that for every f € C™T1(Q) with u—1 < m <d,

IDg Dy (f = Zf)lle < KIA™ 77| flmsra, (6.4)

forall 0 < a+ 3 <m.

Proof: Fix f € C™T1(Q) and a triangle T' € A. Then Lemma 4.6 in [10] implies
that there exists a polynomial p € P,, such that

IDLD}(f = D)l < K2|TI™ 7| flina,r, (6.5)

forall0 <i+7 < m. Now fix 0 < a4+ < m. Then since Z reproduces polynomials,
we have

IDg Dy (f =)z < IDg Dy (f = p)llr + |1 D DYZ(f —p)llr,
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and to complete the proof it suffices to estimate the second term. Let T7,...,T12
be the subtriangles in the Powell-Sabin-12 split of 7. Then using the Markov
inequality, cf. [10,18], it follows that

a K K1 K3~
IDSDYZ(f = p)llr; < 55 1Z(f = p)llzy < PQTQZ 7”1 f —plvr,  (6.6)
Tj Tj v=0

for all j = 1,...,12, where P, is the diameter of the largest disk contained in
T;. By the geometry of the Powell-Sabin-12 split, |T'| < Kyp,,, and taking the
maximum over all T € A, we immediately get (6.4). O

§7. Remarks

Remark 7.1. We were first motivated to construct a family of smooth macro-
elements on the Powell-Sabin-12 split after hearing a lecture by Rong-Qing Jia in
which he used a mixture of C'!' Powell-Sabin-6 and Powell-Sabin-12 elements in
order to construct continuously differentiable wavelets on triangulations, see [8].

Remark 7.2. It was shown in [5,12] that it is not possible to construct C” macro-
elements on the Powell-Sabin-6 split using splines of lower degree than those consid-
ered here. Here we have constructed our macro-elements on Powell-Sabin-12 splits
with the same degrees for the purposes of compatibility, cf. Remark 7.1. However,
due to the special geometry of the Powell-Sabin-6 split of the triangle (w;, ws, ws)
inside the Powell-Sabin-12 split (see Definition 3.1 and Fig. 4), we have found that
it is possible to construct macro-elements in the Powell-Sabin-12 case with lower
degrees. We plan to report on this elsewhere.

Remark 7.3. The Powell-Sabin-12 split was introduced in [14], where it was used
to define a C'' macro-element based on quadratic splines. This corresponds to our
element for » = 1. In this case the macro-element space has dimension 12, and the
nodal degrees of freedom consist of the values and gradients at the three vertices
of T" along with one cross-boundary derivative at the midpoint of each edge, see
Fig. 2.

Remark 7.4. The C" macro-elements constructed in [5,12] provide global C”"
smoothness for a triangulation A which has been refined with Powell-Sabin-6 splits
only if for each interior edge e of A, the split point w,. on the edge e lies on the line
joining the interior points v, and v, of the two triangles 7" and 7" which share e,
and thus in general, w, will not be at the midpoint of e. This geometric constraint
is not required for our Powell-Sabin-12 macro-elements.

Remark 7.5. In developing the macro-element spaces of this paper, we have
made extensive use of the java code of Alfeld for examining determining sets for
superspline spaces. The code is described in [1], and can be used or downloaded
from http://www.math.utah.edu/~alfeld. The code not only checks whether a
given set of domain points is a MDS, but also produces the equations needed to
compute all unset coefficients from those that have been set.
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Remark 7.6. The construction described here is not unique in the sense that
there are other choices of the extra smoothness conditions which also lead to macro-
elements based on the degrees of freedom used here.

Remark 7.7. Frequently in practice one has to interpolate given values at scattered
data points where no derivative information is provided. In this case, macro-element
methods can still be applied, but the needed derivatives (or the equivalent set of
B-coefficients) have to be estimated from the data.

Remark 7.8. Simple trigonometry shows that if T}, is the Powell-Sabin split of
a triangle T', then sin(fpg) > sin(#)/3, where Opg is the smallest angle in T,,, and
6 is the smallest angle in 7.

Remark 7.9. In [3] it was noted that the classical C'! Clough-Tocher and Powell-
Sabin macro-elements have natural analogs in terms of spherical splines. Since
the algebra of spherical splines is essentially the same as for bivariate splines [2],
it is clear that the entire family of macro-elements constructed here can also be
immediately carried over to the sphere.
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