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Abstract A number of useful bivariate spline methods are global in nature,
i.e., all of the coefficients of an approximating spline must be computed at one
time. Typically this involves solving a system of linear equations. Examples
include several well-known methods for fitting scattered data, such as the
minimal energy, least-squares, and penalized least-squares methods. Finite-
element methods for solving boundary-value problems are also of this type.
It is shown here that these types of globally-defined splines can be efficiently
computed, provided we work with spline spaces with stable local minimal
determining sets.

Keywords Bivariate splines - Data fitting - Finite-element method -
Scattered data

1 Introduction

Bivariate splines defined over triangulations are important tools in several
application areas including scattered data fitting and the numerical solution
of boundary-value problems by the finite element method. Methods for com-
puting spline approximations fall into two classes:

1. Local methods, where the coefficients of the spline are computed one at a
time or in small groups,

2. Global methods, where all of the coefficients of the spline have to be
computed simultaneously, usually as the solution of a single linear system
of equations.
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In this paper we focus on global methods, and in particular those that arise
from minimizing a quadratic form, possibly with some constraints. The purpose
of this paper is to show how such minimization problems can be efficiently
solved for spline spaces that possess stable local minimal determining sets
(MDS) (see Section 2). In particular, we show how our approach applies
to three commonly used scattered data fitting methods: the minimal energy
method, the discrete least-squares (DLSQ) method, and the penalized least-
squares (PLSQ) method. In addition, we discuss how it works for solving
boundary-value problems involving partial differential equations.

The standard approach to solving global variational problems involving
piecewise polynomials on triangulations is to use Lagrange multipliers to
enforce interpolation and smoothness conditions, see Remark 1. This results
in a linear system of equations for the coefficients of the spline. This approach
can be used even when the dimension of the approximating spline space is not
known. In this case the linear system may be singular, and we can only find an
approximate solution. This leads to spline fits which only satisfy the desired
smoothness conditions approximately. In addition, the Lagrange multiplier
approach generally leads to very large systems of equations, which is its main
disadvantage. In comparison, the method proposed here

¢ involves much smaller systems of equations,
e is generally much faster,
e produces spline fits lying in the prescribed spline spaces.

Our method can be used with spline spaces of any degree and smoothness,
as long as they have stable local MDS. There are many examples of such spaces
in [14]. We discuss the method for bivariate splines, but the approach applies
to spherical splines and trivariate splines as well, see Remarks 2 and 3.

The paper is organized as follows. In Section 2 we recall some of the
basic theory of bivariate splines, including the concepts of MDS and stable
local bases. We also recall how to compute with bivariate splines using the
Bernstein—Bézier representation. In Section 3 we discuss the computation
of splines solving general quadratic minimization problems. Three explicit
examples of such problems are described in Sections 4-6, namely, minimal
energy, DLSQ, and PLSQ spline fitting. The Galerkin method for solving
elliptic boundary-value problems is treated in Section 7. Section 8 is devoted
to numerical experiments to illustrate the performance of our method. In
Section 9 we describe a useful algorithm for computing all of the Bernstein
basis polynomials (or their directional derivatives) at a given point in an
efficient manner. Finally, we collect several remarks in Section 10.

2 Preliminaries

In working with bivariate splines, we follow the notation used in the book [14].
For convenience, we review some key concepts here. Given d > r > 0, and a
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triangulation A of a domain © C IR?, the associated space of bivariate splines
of smoothness r and degree d is defined to be

"(A):=1{s € C'(Q) :s|7 € Py, all T € A).

Here P, is the (d;ﬂ)-dimensional space of bivariate polynomials of degree at

most d. Given r < p < d, we also work with the superspline space
Si7(L) = {s € SH(A) 15 € CP(v), allv e V},

where V is the set of vertices of A, and where s € C”(v) means that all polyno-
mial pieces of s on triangles sharing the vertex v have common derivatives up
to order p at v.

2.1 Bernstein—-Bézier methods

We make use of the Bernstein—-Bézier representation of splines. Given d and
A, let Dy a := UreaDy 1 be the corresponding set of domain points, where for
each T := (v, vo, v3),

vy +jU2+kU3
L
i+ jtk=

Then every spline s € S(A) is uniquely determined by its set of coefficients
{Cc‘? }SE'DdA’ and

S|T = Z CEBET,

£€Dar

where {Bg } are the Bernstein basis polynomials associated with the triangle 7.

Suppose now that S(A) is a subspace of Sg(A). Then a set M C Dy a
of domain points is called a MDS for S(A) provided it is the smallest set
of such points such that the corresponding coefficients {cs}zeprq can be set
independently, and all other coefficients of s can be consistently determined
from smoothness conditions, i.e., in such a way that all smoothness conditions
are satisfied, see p. 136 of [14]. The dimension of S(A) is then equal to
the cardinality of M. Clearly, M =D, » is a MDS for Sg(A), and thus the
dimension of Sg(A) is ny +(d— Dng + (dgl)nT, where ny,ng,nr are the
number of vertices, edges, and triangles of A.

For each n € Dy s \ M, let ', be the smallest subset of M such that ¢, can
be computed from the coefficients {c; }¢cr, by smoothness conditions. Then M
is called local provided there exists an integer ¢ not depending on A such that

r, c star((T,,), alln € Dga \ M, (1)

where T, is a triangle containing 7. Recall that given aset U C €, then star(U)
is the set of triangles in A intersecting U, while star®(U) := star(star*~! (U)).
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M is said to be stable provided there exists a constant K depending only on ¢
and the smallest angle in the triangulation A such that

ley] < K max e, all n € Dgn \ M. (2)
€ly

2.2 Stable local bases

Suppose M is a stable local MDS for S(A). For each & € M, let ¢: be the spline
in S(A) such that ¢; = 1 while ¢, =0 for all other n € M. Then the splines
{e}eem are clearly linearly independent and form a basis for S(A). This basis
is called the M-basis for S(A), see Sect. 5.8 of [14]. It is stable and local in the
sense that for all £ € M,

D elle < K,
2) suppy: C star’(T%), where T is a triangle containing &,

where ¢ is the integer constant in (1), and the constant K depends only on ¢
and the smallest angle in A. Here and in the sequel, for any set U C R% |- v
denotes the co-norm over points in U. There are many spaces with stable local
bases. For example, the spaces Sg(A) have stable local bases with £ = 1. The
same is true for the superspline spaces SZﬂI(A) for all r > 1. There are also
several families of macro-element spaces defined for all » > 1 with the same

property, see [14].
2.3 Computational methods

We now list several useful techniques for working with splines numerically.

1. Using the well-known smoothness conditions for two polynomial patches
to join together smoothly across an edge of a triangulation (see Theo-

rem 2.28 of [14]), for each 5 € Dy,» \ M, we can find real numbers {a; }Eel“

such that for every spline s € S(A) with coefficients {cg}ge,

¢y = Z ajce. (3)

tel'y

Note that for spaces with locally supported bases, the number of nonzero
ag in (3) will generally be quite small. If we intend to use the spline space
S(A) for several fitting problems, these weights can be precomputed and
stored.

2. To store a particular spline s in the space S(A), we simply store its
coefficient vector ¢ := (cz)zer. Recall that the length of this vector is just
the dimension of S(A).

3. To evaluate s at a point (x, y) in a triangle 7', we use the formulae (3) to
compute the B-coefficients of s corresponding to all domain points in 7.
Then we can use the well-known de Casteljau algorithm to find s(x, y), see
p- 26 of [14].
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4. 1If we need to evaluate s at many points, for example to display the surface
corresponding to s, it may be most efficient to compute and store all of the
B-coefficients {c¢}sep,, Of s using (3). The total number of B-coefficients
is equal to the dimension of Sg(A), which is nco :=ny + (d — Dng +
(dgl)nT, where ny, ng, nt are the numbers of vertices, edges, and triangles

of A.

3 Computing splines solving quadratic minimization problems

Suppose S(A) C Sg(A) is a space of splines with a stable local MDS M. Let
{e})eem be the associated M-basis. In this paper we focus on variational spline
problems where the coefficients of the desired spline are the solution of a
system of equations of the form

YW e =ry  neM, )
EeM

where (-, -) is some appropriate inner-product. We suppose the inner-product
is such that

(Wp) =Y (Ulr,¢lr),  ally, ¢ eS®). (5)

TeA

Note that if S(A) has a local basis, then only a small number of terms in (5)
will be nonzero.

To find a coefficient vector ¢ := {c; }serm satisfying (4), we have to compute
the matrix

M = [{Ve, ¥y le.pem

and the vector r = (r,),eam. This matrix will be sparse whenever S(A) has a
local basis. To describe an efficient algorithm for finding M, we make the
following observation.

Lemma 1 For every § € M and every triangle T € A,
¢E|T = Z aanT, (6)
n€Dar

where a} are the weights in formula (3).

Proof The spline v is the spline with ¢; = 1, and c¢g = 0 for all other g € M.

Fix a domain point 5 in 7. Then by (3), the coefficient ¢, of v is given by
n

Cy = a;. ]

Algorithm 1 Forall T € A,

e Compute the matrix [(B], B;)]
e Forall&, ne M,
(e, ¥n) < (We, V) + 24 pen, , 4a5(BL, Bf).

o,BEDar’
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This algorithm works by looping through the triangles of A. The entries in
M are obtained by an accumulation process. If the value r, on the right-hand
side of (4) involves an inner-product of a given function with ,, it can be
computed by adding an additional accumulation step to the algorithm. We dis-
cuss this algorithm in more detail for the particular variational spline methods
treated below.

4 Minimal energy interpolating splines
In this section we discuss the minimal energy method for computing an
interpolating spline. Suppose we are given values { f;}1/, associated with a set

of ng > 3 abscissae A := {(x;, y;)}¢, in the plane. The problem is to construct
a smooth function s that interpolates this data in the sense that

s(xp,v)=fi, i=1,...,nq4. (7)
To solve this problem, suppose A is a triangulation with vertices at the points

of A, and suppose S(A) is a spline space defined over A with dimension n > n,.
Then the set of all splines in S(A) that interpolate the data is given by

A(f)Z{SGS(A)ZS(xiaYi)Zfi’ l=1, ,l’ld}.

Given a spline s € A(f), we measure its energy using the well-known thin-
plate energy functional

E(s) = / [(D1x8)* 4 2(D.ys)? + (Dyys)*] dxdy. (8)
Q

Definition 1 The minimal energy (ME) interpolating spline is the spline s, in A
such that E(s,) = min{E(s), s € A(f)}.

It follows from standard Hilbert space approximation results that if A(f) is
not empty, then there exists a unique ME-spline which is characterized by the

property
<Se, 1:”)E = 07 all w € A(O)v (9)

where
R /Q [Dysp Dsts + 2Dsyp Dy + Dy Dy 1dicdy.

To compute the minimal energy spline, we now suppose that there exists a
MDS M for §(A) such that the corresponding M-basis {;}_, is stable and
local. For all standard spline spaces, we may choose M to include the set A,
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and in fact, can assume that the first n,; points in M are (x;, y;),i =1, ..., ng.
Now suppose s is written in the form
n
s = Z Cil//l'. (10)
i=1
Letc:=(c1,...,cn)T and € := (Cpyp1, .- -sCn)l.

Theorem 1 The spline s is the ME interpolating spline if and only if ¢ =
(fla M) fnd)T) and

Me=r, (11)
where
Mij = (Yngtis Yng+ ) Es Lj=1,....,n—ny,
nq
ri= Y W Y e =10 —ng.
i=1

Proof By our assumptions on the M-basis, s belongs to A( f) if and only if ¢ =
(fis.-os fu)T. Since ¥, 41, ..., ¥, span A(0), it follows that (9) is equivalent
to

nd
<Zc,«p,~,1p,»> =0, j=ns+1,....n, (12)
i=1 E
which can immediately be rewritten as (11). ]

The uniqueness of the ME spline insures that the matrix M in (11) is
nonsingular. Thus, to compute the coefficient vector of the ME spline, we
simply need to compute M and r, and then solve (11) for c. We now discuss
the assembly of M and r, which we base on the algorithm of Section 3. First,
we observe that in this case the inner-product is an integral, and thus clearly
satisfies (5). To carry out Algorithm 1, all we need to do is compute the
inner-products (B, Bf),. Derivatives of the B} can be expressed in terms
of Bernstein basis polynomials of lower degree, see Lemma 2.11 of [14]. But
inner-products of Bernstein basis polynomials of any degree can be computed
explicitly, see Theorem 2.34 in the book [14]. For tables of the inner-products
for degrees d = 1, 2, 3, see pages 4647 of the book.

5 Discrete least squares splines

In this section we discuss a well-known method for fitting bivariate scattered
data in the case when the number n, of data locations is very large. We assume
that the data are the measurements { f; := f(x;, y;)}.¢, of an unknown function
f defined on Q. To create a spline fit, we work with a spline space S(A) defined
on a triangulation A with a set V of vertices which are not necessarily at the
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points of A. Typically we choose the number of vertices to be (much) smaller
than ng,.

Definition 2 The DLSQ spline fit of f is the spline s; € S(A) that minimizes

na

s = f1% = > _[sCxjo y)) = fil*

=1
It is well known that if S(A) satisfies the property
s(x;, y) =0, i=1,...,nq4 implies s = 0, (13)

then there is a unique DLSQ spline s; fitting the data. This requires that the
number n,4 of data points be at least equal to the dimension n of the spline
space. In practice ny will typically be much larger than n. However, in general
this is not sufficient — we need the data points to be reasonably well distributed
among the triangles of A in order to make (13) hold.

It follows from standard Hilbert space approximation results that there
exists a unique DLSQ-spline s; which is characterized by the property

(50— fiv)a=0, ally €S, (14)
where
nd
(6. ¥)a =Y d(xi y)¥ (X, yi).-
i=I
To compute the least-squares spline s;, we now write it in the form (10),
where {y;}}, is a stable local M-basis for S(A). Let ¢ := (cy, ..., c,) be the
vector of coefficients.
Theorem 2 The spline s; is the DLSQ spline fit of f if and only if
Mc =, (15)
where
Mij = (Y, ¥j) as Lj=1,...,n,

rl':=<f’1s”j)A, j=1,...,n.

Proof Since ¥, ..., ¥, span S(A), it follows that (14) is equivalent to

<Zci¢i—ﬁ¢j> =0, j=1,...,n, (16)
A

i=1

which can immediately be rewritten as (15). O

The assumption (13) insures that the matrix M in (15) is nonsingular. Thus,
to compute the coefficient vector of the least-squares spline, we simply need
to compute M and r, and then solve (15) for c. Note that here the matrix
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M is of size n x n in contrast to the minimal-energy case where it is of size
(n —ng) x (n —ny). For spline spaces S(A) with stable local MDS M, the
computation of M can be done efficiently using Algorithm 1. To apply it, we
need to compute the inner-products (B, Bf) ,. For this, we simply need the
values of the Bernstein basis polynomials at all of the points of A that lie in
T. These values can also be used to compute the vector r in (15). We give an
efficient algorithm in Section 9 for computing the values of all Bernstein-Basis
polynomials at a fixed point.

6 PLSQ splines

In this section we discuss a method for fitting bivariate scattered data which is
preferable to least-squares when the data { f;}4, are noisy. It is a generalization
of the least-squares fitting method in Section 5. Suppose A := {x;, y;}/4,, and
S(A) are as in the previous section. For each s € S(A), let E(s) be its associated
thin-plate energy defined in (8).

Definition 3 Given A > 0, the PLSQ spline fit of f is the spline s; in S(A) that
minimizes

E(s) == |ls — flla+AE(s).

It is well known that if the spline space S(A) satisfies (13), then there exists
a unique PLSQ-spline s;. Moreover, s, is characterized by

(s = fi8)a+ sy, s)E =0, alls € S(A).
To compute the PLSQ spline s,, we write it in the form (10), where {y;} | is a

stable local M-basis for S(A). Letc := (cy, .. ., ¢,) be the vector of coefficients.
We immediately have the following result.

Theorem 3 The spline s, is the PLSQ fit of f if and only if
Mc=r, 17)
where
Mij = (i, ) a + A1, ¥j) E, Lj=1,....n,

and r is the vector in (15).

The assumption (13) insures that the matrix M in (17) is nonsingular. We can
efficiently compute both M and r by the methods of the previous two sections.
Note that when A = 0, we get the least-squares spline fit.
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7 Solution of boundary-value problems

In this section we describe how Algorithm 1 can be used to compute Galerkin
approximations to solutions of elliptic boundary-value problems.

7.1 Second order problems with homogeneous boundary conditions

We first describe the method for the simple model problem

—V.-(«kVu)=f, on Q,
u=0, on JQ, (18)

where f and « are given functions on €. Suppose that A is a triangulation of
2, and let S(A) be a bivariate spline space defined on A with a stable MDS M.
Let

Uy:=1{s€SA):s(x,y)=0, all (x,y) € 0Q}.

We look for an approximation s, of u in Uy. Suppose 1, ..., ¥, is a stable local
basis for Uy, and suppose s, is written in the form (10). Then by the Galerkin
method, see [8], the coefficients of s, should be chosen to be the solution of the
system of equations

Mc =, (19)

where
Mij = Vi, ¥j) g = /;Zk(x, NVYi(x, y) - Viri(x, y)dxdy,

fori,j=1,...,n,and

ri = (f, i), == /Q Fx, Wi(x, y)dxdy, i=1...,n

Since Vy; - Vi = Dy Dy + Dy Dy, the computation of M involves
computing inner-products of first derivatives of the Bernstein basis polynomi-
als. If « = 1, these inner-products can be computed explicitly. For general «
and for the computation of the vector r, we will need to use a quadrature rule.
We use Gaussian quadrature, see Remark 7.

We emphasize that for this problem, to use Algorithm 1 we need a stable
local minimal determining set for the subspace of splines U(0). In particular,
all spline coefficients associated with domain points on the boundary of  must
be set to 0. Thus, for example, if the approximating spline space is 851’2(A), then
for each boundary vertex v whose exterior angle is less than 7, only one of the
domain points in the disk D, (v) of radius 2 around v can be included in M.
Recall, that for the full space, we chose six points in each D;(v), see Fig. 1.
When the exterior angle at v is equal to 7, we must choose three points in
D> (v) to include in M.
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Fig. 1 MDS for 81*(A) and 85 (1)

7.2 Second order problems with inhomogeneous boundary conditions

Only minor modifications are required to solve the inhomogeneous boundary-
value problem

— V.- (Vu)=f, on Q,
u=g, on 3%, (20)

where f and « are given function on €2, and g is a given function on 9. As
before, we choose a spline space S(A) defined on a triangulation A of Q with a
stable local M-basis {y;}iL,. As is well known, see e.g. [8], in this case we look
for an approximation to u of the form s = s; + s, where s, is a spline such
that s, &~ g on 0€2, and sy, is the Galerkin approximation of the solution of the
boundary-value problem with homogeneous boundary conditions and right-
hand side f — s,. Writing s;, in the form (10), we can compute its coefficients
from the equations

Mc =,
where M is as in (19) and

;jz(ﬁwﬁz_(sb’lpﬁ@a j:l,...,l’l.

It is straightforward to construct s,. We first choose its Bernstein—-Bézier
coefficients associated with domain points on the boundary edges of A so that
sp does a good job of approximating g on 9€2. For example, we may interpolate
g at an appropriate number of points on each edge of A. Then we set as
many remaining coefficients to zero as possible while observing all smoothness
conditions.

7.3 Fourth order problems

As an example of a fourth order problem, consider the biharmonic equation

Nu = f, on €, (21)
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subject to the boundary conditions

u=g, on 092,

B_u =h, on 9%2, (22)
on
where dn stands for the normal derivative to the boundary. As before, we
construct an approximation s, := s, + 5, to u by first constructing a spline
sp that approximately satisfies the boundary conditions. We then compute
sp as the Galerkin spline for the corresponding problem with homogeneous
boundary conditions. Starting with a spline space S(A), we define the subspace

Up :={s € S(A) : s satisfies the boundary conditions (22) with g = h = 0.}

Assuming ¥y, ..., ¥, is a stable local basis for Uy, and writing sj, in the form
(10), the Galerkin method provides the following linear system of equations
for the coefficients of sy:

Mc=r,

where
M;; :=/§2A1ﬁiA1//jdxdy, Lj=1,...,n,
and
rjz(ﬁwj)z—/QAsgijdxdy, j=1,...,n.

Note that although we are allowed to use C° splines in the Galerkin method
for solving second order boundary-value problems, for fourth order problems
the well-known conformality conditions require that we use a space of splines
that is C! at least.

8 Examples

In this section we give several numerical examples. Given a triangulation A,
we write V and £ for the sets of vertices and edges of A. We also write ny, ng,
and ny for the numbers of vertices, edges, and triangles of A. We work with
the following spline spaces:

1) SY%(A). The dimension of this space is ny + (d — Dng + (d;')nr. A stable
local MDS is given by the full set Dy, of domain points. This space
approximates smooth functions up to order O(|A|4*!), see Remark 5.

2) Ssl’z(A). This space has dimension 6ny + ng, and as shown in Theorem 6.1
of [14], a stable local MDS M is given by the set of domain points

M= UM“ U UMC’

veV ee&
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where for each vertex v of A, M, is the set of six domain points in
D,(v) U T, for some triangle attached to v. For each edge e of A, M,
consists of the domain point & 1T{2 for some triangle 7, containing the edge
e and with first vertex opposite e. Figure 1 (left) shows the points in M
for a typical triangulation, where points in the sets M, are marked with
black dots, while those in the sets M, are marked with triangles. Since
S;’Z(A) has a stable local basis, it approximates smooth functions up to
order O(]A|%), see Remark 5.

3) 892’4(A). This space has dimension 151y + 3ng + ny, and as shown in
Theorem 7.1 of [14], a stable local MDS M is given by the set of domain
points

M= M, u M. u [J M7

veV ee& Ten

where for each vertex v, M, is the set of fifteen domain points in D4(v) U
T, for some triangle attached to v. For each edge e of A, M, consists of
the three domain points 51264’ ézﬂg, §2T3“4 for some triangle 7, containing the
edge e and with first vertex opposite e. For each triangle 7', My consists of
the domain point £};. Figure 1 (right) shows M for a typical triangulation.
Here squares are used to mark points in the set M. Since 83’4(A) has a
stable local basis, it approximates smooth functions up to order O(|A['?),
see Remark 5.

8.1 Minimal energy fit

Example I We construct a C! surface based on measurements of the height of
a nose cone at 803 points in the domain shown in Fig. 2. The figure shows the
Delaunay triangulation A, associated with the data points.

!

X

Z

V4|
|
W
y
g

5 AN g e s
AN NSRS REREREE]
LRSS e
TASLIRISKISRN
X WIS RISRERER]
> A
AN SIS
N RS PSR
TSRS RV
Y vV K7 AVAYAN,
ST 4&,@\5 Y
N NS
7 X 4
SEREL
K}

Fig. 2 The minimal energy fit of Example 1
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Discussion: For this application we choose the minimal energy interpolating
spline in the space SSI’Z(A,,OW). This triangulation has ng = 2357 edges and
np = 1555 triangles. Thus, the dimension of the space is 7175, and finding the
minimal energy fit requires solving a system of 6372 equations. The associated
matrix is sparse with only 243,402 of the 40,602,384 entries being nonzero. The
computation took 34 seconds on a desktop, but see Remark 8. The resulting
spline fit is shown in Fig. 2 (right).

To further illustrate the behavior of minimal energy spline fits, we give a
second example involving a known function where we can compute errors. We
use the well-known Franke function

F(x, y) = 0.75exp(—0.25(9x — 2)> — 0.25(9y — 2)%)
+0.75 exp(—(9x 4+ 1)2/49 — 9y + 1)2/10)
+0.5exp(—0.25(9x — 7)> — 0.25(9y — 3)?)
—0.2exp(—(9x — 4> — 9y — 7)%) (23)

defined on the unit square. The surface corresponding to F is shown in Fig. 3.

Example 2 We construct minimal energy spline fits of F from the spaces
S;’Z(Ak) based on type-I triangulations A; with k = 9,25, 81, and 289 vertices.

Discussion: Type-I triangulations are obtained by first forming a rectangular
grid, and then drawing in the northeast diagonals. We show the results of our
computations in the table in Fig. 4, where the columns labelled nt and nsys give
the number of triangles in A and the size of the linear system being solved,
respectively. The columns labelled ey, and e, give the maximum error and the
RMS errors measured over a grid of 640,000 points. The last column contains
the computational times in seconds. To illustrate the quality of the fits, we
give contour plots for each of the four cases. Clearly, the fit on Ay is not very
good, and completely misses the peaks and valley in the function. On the other
hand, the contour plot for A,gy is almost identical to the contour plot of f
itself. In comparing Figs. 3 and 4, note that the 3D view of F in Fig. 3 is from
behind the surface so that the peaks do not obscure the valley. The results here
are very comparable to those obtained for the space of C? quintic splines on

Fig. 3 The Franke function
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%

2

é

k || nt || nsys o e time
9 8 61 ||1.5(=1)||1.9(=1)] .02
S;’Z(Ak) 25 || 32 || 181 [|8.8(=2)(|3.0(=2) | .09

81 | 128 613 ||5.0(=2)||6.2(=3)| 5
2891512 2245(/3.9(=3) |[4.0(=4) || 3.7

Fig. 4 Minimal energy fits of F from SSI‘Z(Ak), see Example 2

Powell-Sabin splits, see Table 3 of [11], which were computed by the Lagrange
multiplier method of [4].

8.2 Least-squares fitting

In this section we give examples of least-squares fitting with splines. Let F be
the Franke function (23) defined on the unit square.
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Eéi
%%%

k|| nd ||nsys o e time
91 289 || 70 [|4.5(=2){9.5(=3)| .1

Sg’z(Ak) 251 289 || 206 || 1.6(=2)||1.9(=3)|| .12
2511089 206 || 1.1(=2)|/1.6(=3)|| .43
811089 | 694 |5.3(—4)|5.1(=5)| .44
81(/4225|| 694 ||5.0(—4) | 4.8(=5)| 1.8

nd || nsys s e time
289 || 191 || 1.8(=2)|/1.9(=3) || 2.5
10891 191 || 1.1(=2) || 1.4(=3)| 11
1089 575 [|5.2(—4) ||[4.4(=5) | 12
42251 575 ||3.5(—4) ||4.1(=5) | 51
4225111967 1.3(=6) || 1.1(=7) || 57

Syt (A

o NN
= G O o

Fig. 5 Least-squares fits of F from S;‘Z(Ak) and 83‘4(Ak), see Example 3

Example 3 We construct least-squares fits of F using the spaces S;*z(An)

and 592‘4(Ak) defined on type-I triangulations based on measurements on
rectangular grids of nd := 289, 1089 and 4225 points.

Discussion: The table in Fig. 5 shows the results of our computations, where
the columns labelled e, and e; give the maximum error and RMS errors on a
grid of 640,000 points. The column labelled nsys gives the size of the linear
system being solved. The last column contains the computational times in
seconds. We show contour plots of the fits based on 289 data points, where
the plot on the left is the fit from S;’Z(Ag) while the one on the right is the fit
from 892’4(A9).
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Fig. 6 PLSQ fits of F with 2 = .01, .005, .001, 0

8.3 Penalized least-squares

Let F be the Franke function (23) defined on the unit square. We approximate
F based on measurements on a grid of 1089 points. However, here we add
random errors ¢; to the measurements f;, where the ¢; are uniformly distributed
in [—.1, .1]. This is a rather significant amount of noise since the values of F lie
in the interval [—.2, 1.1].

Example 4 We compute the PLSQ spline fits s; € 851’2(A25) for A=.01,
.005, .001 and 0.

Discussion: The maximum errors for these choices of A were .127, .111, .08,
and .10. The corresponding surfaces are shown in Fig. 6. Clearly, the value of
A makes a big difference. If it is too small, the fit follows the noise, and is not
very smooth. If it is too large, some of the shape is lost.
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S5 (L)

SV(Ap)

k nt || dim oo e time
81 |[ 128 || 590 [[2.1(=2)[[2.2(=3)[/ 02
289 || 512 || 2334 || 1.4(=3)||8.1(=5)|| .9
1089 ||2048 || 9278 [2.5(=5) || 1.0(=6)|| 4.3
42251(/81921/36990 ||3.8(=7) || 1.5(=8) || 24
k nt dim € e time
81 128 169 [|1.8(=1)/6.5(=2)|.006
289 || 512 || 225 ||9.6(=2)|2.6(=3)| .02
1089 || 2048 || 961 {/9.6(—2)|2.6(=3)| .13
4225 || 8192 || 3969 ||7.0(=3)|[1.8(=3)|| .90
1664132768 16129 1.9(=3) ||3.6(—4) || 7.2

Fig. 7 Spline approximations of the BVP of Example 5

8.4 Solution of boundary-value problems

Example 5 Compute a solution to the boundary-value problem (20) with

flx,y) = 4cos(x2 + y2) — 4(x2 + y2) sin(x2 + yz)

+10c0s(25(x% + y%)) — 250sin(25(x> + %)),

glx,y) = sin(x® + y2) + .1sin(25(x> + y2)),

and « = 1 on the unit square €.

Discussion: In this case, the solution of the boundary-value problem (20) is

@ Springer
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Table 1 Spline approxima- .
tions of the BVP of k nt dim Coo

Example 6 8i? 9 8 18 3.4(-5) 1.1(=5) 01
25 32 106 37(-8)  89(-9) .07
81 128 498  61(—10)  13(—10) .46

e time

We computed spline approximations of u by the Galerkin method using spline
spaces defined on type-I triangulations A, with k = 81,289, 1089 and 4225
vertices. The results are shown in the tables in Fig. 7, where k and nt are the
number of vertices and triangles, and dim is the dimension of the associated
space. We give results not only for Ssl’z(Ak), but also for SY(Ay) for comparison
purposes. As above, e, and e, are the maximum and RMS errors on a grid of
25,600 points, and the last column shows the computational time in seconds.
The figure on the left shows the traditional C° linear fit with k = 1089, while the
one on the right shows the fit with SSI’Z(A/() with & = 289. In addition to having
much smaller errors, it is much smoother. The results here can be compared
with those in Table 13 of [4] which were computed with C' quintic splines, but
with f and g multiplied by 10.
Finally, we give an example involving a fourth-order differential equation.

Example 6 Compute a solution to the fourth-order boundary-value problem
(21-22) with

f(x,y) :=4exp(x +y), glx,y) =h(x,y) :=exp(x + ),

on the unit square .

Discussion: The solution of this boundary-value problem is u(x,y) :=
exp(x + ¥). We computed spline approximations of u by the Galerkin method
using the space Sé’z(Ak) defined on type-I triangulations with n = 9, 25, and 81
vertices. The errors are shown in Table 1 along with the computational times.
For a comparison with an approximation computed using 851 (Azs) using the
Lagrange multiplier method, see Example 26 in [4].

9 Computing Bernstein basis polynomials and their derivatives

In this section we describe algorithms for efficiently evaluating Bernstein basis
polynomials of degree d and their derivatives. Fix a triangle T := (vy, v, v3)
with vertices v; = (x;, y;) fori = 1, 2, 3. The associated Bernstein basis polyno-
mials are defined by

d! - C
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Fig. 8 One step of b3 by

Algorithm 2 ' V
bQ
by !
b1
i t = 2b1 bQ 2()1 bg
bo bs

b2 b2
2 Oboby

where by, b,, b; are the barycentric coordinates of (x, y) relative to the triangle
T. Specifically,

111 1 11
bi(x, y) = Tor X X2 X3, det := | x; x2 x3|, (25)
“ly vy Yi Y2 ya

with similar definitions for b, and bs;. This shows that b, b,, by are linear
functions of x and y.

The following algorithm simultaneously computes the values of all of the
Bernstein basis polynomials {Bidjk}H— j+k=a at a fixed point (x, y). Suppose the
barycentric coordinates of (x, y) relative to T are by, by, bs.

Algorithm 2 Computation of all Bernstein basis polynomials at a point (x, y).

Set B(0,0) =1
Fork=1tod
Fori=ktoO
For j=ito0

B@, j)=biBG, j)+b,Bi—1,j)+bsBi—1,j—1)
A simple inductive proof shows that the following lemma holds.

Lemma 2 Algorithm 2 produces the values

Bjoo(x. )
Bg—l,l,o(x’ ) By o, (x,y)

BY 0. y) BS, (. y) - B (x,y).

We illustrate one step of this algorithm (k = 2) in Fig. 8. It shows how the
six Bernstein basis polynomials of degree 2 are computed from the three of
degree 1. The idea is to use the inverted triangle with by, by, b; at its vertices
as a mask which is applied at six different positions to the triangular array of
1st degree Bernstein basis polynomials on the left to get the triangular array of
Bernstein basis polynomials of degree 2 on the right. Applying the mask again
would lead to an array containing the 10 values of the cubic Bernstein basis
polynomials, etc.
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For the applications in Section 7, we also need an algorithm for evaluating
derivatives of the Bernstein basis polynomials at a given point (x, y). We now
show that Algorithm 2 can be easily adapted to produce the values of arbitrary
directional derivatives of the Bernstein basis polynomials. Recall (see e.g. [14])
that if u = u, — uy is a vector in IR?, then its directional coordinates (a;, az, az)
relative to T are just the differences of the barycentric coordinates of u; and
uy relative to 7. This implies a; + a; + a3 = 0. The following lemma shows
how Algorithm 2 can be used to compute the values of the set of functions
{D BZ.k(x, W}itj+k=a at a fixed point (x, y) whose barycentric coordinates
relative to T are by, by, bs.

Lemma 3 Fix 0 < m < d. Suppose that in carrying out Algorithm 2, in the first
m times through the k-loop we use ay, a,, a3 in place of by, by, bs. Then the
algorithm produces (’1;—’!")! times the matrix

Dy B 0%, y)

DTBZ—LLO(X’ y) DZ[BZ—LO,I(X’ y)
DB o) DB, \(x,9) - DBl (x, 3.
Proof It is well known that
DBy =dla B+ @B +as B,

see e.g. Lemma 2.11 of [14], The result then follows from a minor variant of
the inductive proof of Lemma 2. O

This result can be generalized to compute arbitrary mixed directional deriv-
atives. In particular, suppose we are given m directional vectors uy, ..., U,
whose direction coordinates relative to T are a®") := (ai”), ag’), ag‘))), for v =
I,...,m. Then we can compute (d —m)! /d! times the matrix of values
[Dy, ...D,, ijk(x, y)] by running Algorithm 2, but using @ in place of
(b1, by, b3) in the v-th pass through the k-loop forv =1, ..., m.

Since we are interested in computing the derivatives in the directions of
the Cartesian axes, we now give formulae for the direction coordinates of the
special directional derivatives D, and D,.

Lemma 4 Suppose T := (vy, vy, v3) where v; := (x;, y;) fori =1,2,3. Then the
direction coordinates of D, are

ai = (y2 — y3)/det, a = (y3—yi)/det, a3= (yi— y2)/det, (26)
while those of D, are
ay = (x3 —xp)/det, @, = (x; —x3)/det, a = (xa — x;)/det, (27)

where det is the determinant in (25).

@ Springer



258 Numer Algor (2008) 48:237-260

These quantities are just the derivatives of the barycentric coordinate
functions by, by, b3 with respect to x and y.

10 Remarks

Remark I My first work on programs to compute minimal energy splines was
done with Ewald Quak in the mid 1980’s during his stay at Texas A&M.
Our programs used C! cubic and quartic splines, although even to this day
the dimension of &} (A) has not been determined for arbitrary triangulations
A. The Bernstein—Bézier representation was used, and smoothness conditions
were simply incorporated with Lagrange multipliers. The codes were not made
public, but the details of how to compute energies were published in [15].
This approach was later used in [7] in connection with the construction of
minimal energy surfaces with C' cubic parametric splines, where in some
cases certain C? smoothness conditions were also incorporated via Lagrange
multipliers. The Lagrange multiplier approach was further developed in [4],
where the Bernstein—Bézier representation is based on the space of piecewise
polynomials rather than on Sg(A) as in our earlier papers. A useful iterative
method for solving the resulting systems of equations was also developed in
[4], see also the survey [12].

Remark 2 There is an extensive theory of splines defined on spherical tri-
angulations which is remarkably similar to the theory of bivariate splines,
see [1-3] and Chapters 13-14 of [14]. Such splines are piecewise spherical
harmonics. The techniques described here also work for solving variational
problems involving spherical spline spaces with stable local MDS. A number
of such spaces are described in [14]. For some computational experiments with
minimal energy spherical splines based on Lagrange multiplier methods, see
[2] and [5].

Remark 3 There has been considerable recent work on trivariate splines
defined on tetrahedral partitions, see Chapters 15-18 of [14]. The methods
described here can also be carried over to solve variational problems associ-
ated with trivariate splines with stable local MDS. A number of such spaces
are described in [14].

Remark 4 The global methods described here are not the only way to fit
scattered data using splines. There are a host of local methods that work with
various macro-element spaces. For numerical experiments with some of these
methods in the spherical case, see [2].

Remark 5 1t is well known, see [13] or Chap. 10 of [14], that if a spline space
S(A) has a stable local basis, then it approximates sufficiently smooth functions
to order O(|A|%t!), where |A| is the mesh size of A, i.e., the diameter of
the largest triangle in A. However, the minimal energy interpolation method
does not attain this optimal approximation order for d > 2 since it only
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reproduces linear functions. Indeed, the results of [11] show that the order
of approximation using minimal energy splines is only O(|A[*). This can be
seen in the table in Fig. 4, which is based on a nested sequence of type-I
triangulations whose mesh sizes decrease by a factor of .5 at each step. For
error bounds for DLSQ and PLSQ splines, see [9] and [10], respectively.

Remark 6 Our method can also be applied to compute minimal energy fits
using the spaces Sg(A). However, it doesn’t really make sense to minimize
energy for splines in C? spline spaces, since minimizing energy leads to splines
which are as close to piecewise linear as possible. Even though SS(A) is a much
larger space than S;’Z(A), the minimal energy fit from Sg(A) is much worse that
the one from 8§'2(A).

Remark 7 A Gaussian quadrature rule for approximating integrals of func-
tions over a triangle T is defined by a set of positive numbers {wy, r«, sk, i}y,
where 7y + sx + tx = 1 for all k. Then for any function g defined on T, its
integral is approximated by

fT glx, yydxdy ~ Y " wig (xi . yi). (28)
k=1

where
T T
X =TiX1 + SkXo + X3, Vi =Ty + Sey2 + keys.

For each m, there is a d,, such that the corresponding Gaussian quadrature
rule integrates all polynomials up to degree d,, exactly. Formulae for various
values of m can be found in the literature. In our experiments we use rules
from [6] with m = 25 and m = 79 which integrate bivariate polynomials up to
degree 10 and 20 exactly.

Remark 8§ The numerical experiments presented here were performed on a
Macintosh G5 computer using Fortran. The programs were not optimized
for performance, and the times reported are only meant to give a general
impression of the speed of computation and to provide a basis for comparing
different methods with various parameters.

Remark 9 The programs used for the experiments presented here work with
spline spaces up to smoothness C2. However, it is straightforward to write
similar programs for spline spaces with higher smoothness. For example, we
could work with any of the macro-element spaces discussed in [14] which are
defined for arbitrary smoothness r.

Remark 10 While it may appear that the practical use of global spline fitting
methods is limited by the need to solve linear systems of equations which
can become very large, in Lai and Schumaker (submitted for publication) we
recently described a method for decomposing large variational spline problems
into smaller more manageable pieces.
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