Lagrange Interpolation by C! Cubic

Splines on Triangulated Quadrangulations

Giinther Niirnberger?, Larry L. Schumaker?, and Frank Zeilfelder®

Abstract. We describe local Lagrange interpolation methods based on C!
cubic splines on triangulations obtained from arbitrary strictly convex quadran-
gulations by adding one or two diagonals. Our construction makes use of a fast
algorithm for coloring quadrangulations, and the overall algorithm has linear
complexity while providing optimal order approximation of smooth functions.

§1. Introduction

In this paper we are interested in constructing local Lagrange interpolation methods
which are based on the space

SHA) = {s € CY Q) : s|r € P3, all T € A}

of C' cubic splines defined on a triangulation A of a planar domain 2. While there
are several C'! cubic spline interpolation methods which make use of Hermite data, it
is only recently that local schemes based only on Lagrange data have been developed,
see [24] and the references therein. There are two approachs to developing such
schemes. The first involves modifying a given triangulation by applying a Clough-
Tocher split to some of the triangles, see [25-27]. The second approach works with
certain triangulations which have been obtained from quadrangulations by inserting
one diagonal in some of the quadrilaterals and both diagonals in others, see [21,22].
This paper is a continuation of [21,22], where we considered the following problem:
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Problem 1.1. Let V := {;}7, be a set of points in the plane, and let { be a
quadrangulation with vertices at the points of V. Find a triangulation A\ of {) and
a set of additional points {¢;}, ., such that for every choice of the data {z;},,
there is a unique C' cubic spline s € S3(A\) satisfying

S(&) = Zi, 1= 1,...,N. (1.1)
We call P := {&}N | and S}(A) a Lagrange interpolation pair.

In [21] we solved this problem for a special class of so-called checkerboard
quadrangulations, see Remark 7.1, while in [22] we extended the results to a larger
class of so-called separable quadrangulations, see Remark 7.2. Here we deal with
completely arbitrary strictly convex quadrangulations. In particular, we give ex-
plicit algorithms for creating the Lagrange interpolation pair P and S3(A) in such
a way that for any given data, the interpolating spline depends locally on the data
and can be constructed in O(n) operations. The associated triangulation A is con-
structed by first coloring <», and then using the coloring to add either one or two
diagonals to each quadrilateral. In addition, the coloring is used to organize the
interpolation points such that the method becomes local. We also show that the
method produces optimal order approximation of smooth functions.

Throughout the paper we shall make extensive use of the well-known Bernstein-
Bézier representation of splines, see [1,2,12-16,21,22] and references therein. We
recall that in this representation of a cubic spline, for each triangle T' = (v, vy, v3)
in A, the corresponding polynomial piece p = s|7 is written in the form

p= > cBijk (1.2)
i+j+k=3

where B;jj are the Bernstein basis polynomials of degree 3 associated with T'. As
usual, we identify the coefficients {Cg;k}i+j+k:3 with the set of domain points D7 :=
{§£k := (tv1+jv2+kv3)/3}itjt+k=s. Then aspline in S(A) is uniquely determined
by a set of coefficients where there is one coeflicient associated with each point in
the set
D:= | J Dr. (1.3)
Ten

The paper is organized as follows. In Section 2 we describe an algorithm for
coloring a quadrangulation to separate its quadrilaterals into classes. The result is
used in Section 3 to define an associated triangulation A\ and corresponding set P of
interpolation points. This section also contains the main result of the paper, which
shows that the constructed P and S3(A) form a Lagrange interpolating pair. In
Section 4 we compute the dimension of the spline space S3(A), and show that the
associated cardinal basis splines form a stable local basis for S3(A). In Section 5
we define a corresponding interpolation operator, and show that it provides optimal
order approximation of smooth functions. In Section 6 we discuss a simplification
of the method which is based on a different coloring of quadrangulations. Finally,
several remarks are collected in Section 7.



Fig. 1. A typical coloring produced by Algorithm 2.1.

§2. Coloring a Quadrangulation

A finite collection ¢ of quadrilaterals is said to be a quadrangulation of a connected
set Q € IR? provided the union of the quadrilaterals in <) is equal to €, and provided
the intersection of any two quadrilaterals in { is either empty, a single point, or a
common edge. We call { a strictly convex quadrangulation if the largest angle in any
quadrilateral @ € ¢ is less than 7. For references on constructing quadrangulations,
see Remark 7.3.

Throughout the remainder of this paper we assume that < is a strictly convex
quadrangulation of a connected set €. We say that two quadrilaterals in {> are
neighbors provided they have a common edge. Given a quadrangulation {, we
write V¢ and E for the number of vertices and edges, respectively.

We now present an algorithm for coloring quadrangulations which will be of im-
portance later as a means for organizing the quadrilaterals of { so that a Lagrange
interpolation pair can be constructed.

Algorithm 2.1. Start with any black and white coloring of ). Repeat until every
quadrilateral of { has at most two neighbors of the same color:

1) Choose a QQ with at least three neighbors of the same color.
2) Switch the color of Q.

Discussion: It is easy to see that the number of edges shared by two quadrilaterals
with the same color decreases at each step. It follows that the algorithm terminates
after at most F¢ steps. O

Figure 1 shows an example of a quadrangulation that has been colored by this
algorithm. As we shall see, it is convenient to deal with groups of quadrilaterals
of the same color. Following [22], we say that a collection C := {Q1,...,Q.,} of
quadrilaterals in <) is a connected component (of length m) provided that @; and
Q41 are neighbors for each ¢ = 1,...,m — 1. We call a connected component C a
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Fig. 2. Six different kinds of black chains.

chain if |j — 4| > 1 implies Q; and @; are not neighbors (except that we allow Qp,
and 1 to be neighbors, in which case we have a closed chain). It is clear that for
any quadrangulation, Algorithm 2.1 produces a coloring which involves only chains
in each of the two colors. Figure 2 shows the six different kinds of black chains that
can arise.

§3. Construction of a Lagrange Interpolation Pair
We begin with an algorithm for triangulating <.

Algorithm 3.1. Suppose < is a quadrangulation that has been colored by Algo-
rithm 2.1.

1) For every black component C := {Q1,...,Qu}, insert one diagonal in each of
the odd numbered quadrilaterals of C.

2) Insert both diagonals in all remaining quadrilaterals.

We denote the triangulation produced by this algorithm by A. Figure 3 shows
A for the colored quadrangulation < in Figure 1. The inserted diagonals are shown
with dotted lines. In this example, { consists of 42 quadrilaterals, where Algo-
rithm 3.1 has inserted one diagonal in 15 of the quadrilaterals, and two diagonals
in the remaining 27 quadrilaterals.

We are now ready to describe an algorithm for constructing a corresponding
set P of interpolation points. As in [21,22], we shall choose P as a subset of the
set D of domain points (1.3) associated with the Bernstein-Bézier representation of
cubic splines. As is well known, D contains one point at each vertex v of A, two
points on each edge e := (u, v) located at (2u+ v)/3 and (u+ 2v)/3, and one point
at the center &7 := (u+v+w)/3 of each triangle T' := (u, v, w). For each v € A, we
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Fig. 4. Domain points: center points, rings and disks.

define the ring of radius one around v to be the set R(v) consisting of the closer of
the two domain points in the interior of each edge attached to v. We define the disk
of radius one around v as D(v) := R(v) U {v}. Figure 4 illustrates these definitions.
Points in the centers are marked with grey dots. Points in disks of radius one are
shown in black and white, with those on rings of radius one being marked in black.

For each quadrilateral ) € ¢ with two diagonals, we write vy for the point
where the two diagonals of () intersect. For convenience, we suppose the quadrilat-
erals in each component are numbered starting with one. We refer to a quadrilateral
in a chain as being either even or odd depending on its subscript. We say that ),
and @, form an odd pair of quadrilaterals provided they are neighbors and m is
odd. Clearly, such pairs can occur only in an odd closed chain.
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Algorithm 3.2. Initialize P by including all of the vertices of ). Then

1) For £ = 4,3,2,1, repeat as often as possible: If there exists Q € < with ¢
unmarked vertices v1,...,vp, then for each 1 = 1,...,¢, add the points in
R(v;) that lie on edges of QQ, and mark vy, ..., vy.

2) Suppose C is a black component.

a) For each odd pair Q1, Q., of quadrilaterals in C, add the center point of
one of the subtriangles of Q).

b) For all other odd quadrilaterals in C, add the center point of one of the
subtriangles of ().

3) For each even quadrilateral (Q in a black component, let k be the number
of other black quadrilaterals that share an edge with (). We call such edges
determined edges.

a) Ifk =1, pick some triangle T in () and add the three points in T N.D(vq).

b) Ifk = 2, add the point vg and one additional point £ on R(vg). If the two
determined edges e1, es meet at a vertex u of (), then £ should be chosen
on the edge (vg,w), where w # u is an endpoint of either e; or es.

4) For each even quadrilateral () in a white component, let k be the number of
edges of () shared with black quadrilaterals, and call these determined edges.

a) Ifk =0, choose some triangle T in ) and add the center &1 and the three
points in T N D(vq).

b) Ifk =1, choose some triangle T in ) and add the three points in TND(vg).

c) If k = 2, add the point vy and and one additional point £ on R(vg). If
the two determined edges e1, es meet at a vertex u of Q, choose & on the
edge (vg,w), where w # u is an endpoint of either ey or es.

d) If k = 3, add vgq.
5) For each odd quadrilateral () in a white component (except for the last quadri-
lateral in an odd closed chain), let k be the number of edges of () that are

shared with either black or other white quadrilaterals. Call these determined
edges, and choose additional points for P as in Step 4.

6) If Qy, is the last quadrilateral in an odd closed white chain, let k be defined as
in Step 5, but do not count the edge between @),,, and Q1. Then add additional
points to P as in Step 4.

Figure 5 shows the result of applying Algorithm 3.2 to the quadrangulation in
Figure 1, where the interpolation points are marked with black and white dots.
Before showing that the algorithm produces a Lagrange interpolation pair, we
make some remarks on the steps of the algorithm. Step 1 is the key to the whole
process, as the points chosen there uniquely determine s on all of the edges of ¢ (in
Figure 5 these points are marked with white dots). The order in which the points
are chosen is critical for ensuring that the resulting interpolation method is local
(see below). Steps 2 and 3 deal with chains of black quadrilaterals, and the idea is
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Fig. 6. Standard choices of interpolation points in Steps 2— 6 of Algorithm 3.2.

to choose enough points in each even black quadrilateral to uniquely determine s
there. Steps 4-6 deal with chains of white quadrilaterals. Here we first do the even
white quadrilaterals, then the odd ones. The interpolation points chosen in Steps
2-6 of the algorithm are marked with black dots in Figure 5.

To further illustrate the algorithm, in Figure 6 we show some standard choices
of points for both black and white components. If a white quadrilateral contains
boundary edges, then Algorithm 3.2 picks certain additional points. Figure 7 shows
the various cases which can arise in Step 4 when we add one, two, three, or four
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Fig. 7. Choice of points in Step 4 of Algorithm 3.2.

points, respectively.

As we shall see, in each of these steps the interpolation points have been chosen
carefully to ensure that the corresponding interpolating spline depends only locally
on the data. We emphasize that, in contrast with the case of Hermite interpolation
(see [2,9,12,14]), except at vertices, there are no simple relations between an inter-
polation condition at a point of D and the Bernstein-Bézier coefficient associated
with that point.

In the proof of our main result on interpolation (Theorem 3.4, below) we make
use of the following elementary lemma.

Lemma 3.3. Suppose A is the triangulation that is obtained by inserting both
diagonals in a quadrilateral Q := (vi,vs,v3,v4), and suppose T; = (vQ, Vi, Vit1),
t=1,...,4, are the four triangles of Ag. Let I'g be the set of 12 domain points
situated on the edges of (), and let

Ml = {§T17§T27§T37€T4}; M2 = {£T17§T27§T37,UQ}7
MB = {§T17§T37 VQ, (2UQ + Ul)/3}7 M4 = {€T17§T27 VQ, (2UQ + Ul)/3}7
My = {le,vQ, (QUQ +v1)/3, (21)Q + v3)/3}.

Then for each ¢ € {1,...,5}, the set
Fe = FE' U Mg

is a minimal determining set for S3(Aq), i.e., any spline s € S3(Ag) is uniquely
determined by the B-coefficients associated with the domain points I'y.

Proof: It is clear that given coefficients associated with I'g, we can uniquely
compute the other coefficients of s associated with domain points in the disks
D(v;), ¢ = 1,2,3,4. This leaves the nine coefficients c1, ..., cg, cg associated with
the domain points ay,...,as,ag shown in Figure 8. Then the C' smoothness
conditions imply that

cs =rc1 + (1 —7)ey, cg = Tcy + (1 —7)es,
cr =rceqg+ (1 —71)es, cg =7c1 + (1 —7)ca, (3.1)
cg =rcg + (1 —r)ce, cg =Tes + (1 —7)er.

where 0 < 7,7 < 1 are such that
v =11 + (1 —1r)vg = Tvg + (1 — 7)vg.
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Vl
Fig. 8. Notation for the domain points in Lemma 3.3.

We now claim that in each of the five cases, the coefficients cy,...,c9 which
are not set are uniquely determined by (3.1). This is well known for the case £ =1,
see [10,12,28]. Indeed, in this case we can use (3.1) directly to compute cs, cg, 7, Cs
and cg. While it appears that c¢g has been determined in two possibly different
ways, in fact both expressions reduce to

cQ =r7(c1 —ca+ 3 —ca) +7(ca — c3) + 7(c2 — c3) + cs.

We now consider the case £ = 2, and use (3.1) to compute cs, cg, ¢z, cg in that
order. Then c4 can be determined in two different ways, but we get the same value
either way. The other cases are similar. O

We are now ready to state and prove our main result on interpolation.

Theorem 3.4. Let A and P := {;}Y, be the triangulation and point set con-
structed by Algorithm 3.2. Then P and 83(/\) form a Lagrange interpolation pair,
and dimS3(A) = N.

Proof: We show that given any data z := {z}Y,, there exists a unique s €
SY(A) satisfying the interpolation conditions (1.1). We suppose s is represented in
Bernstein-Bézier form as described in the introduction. We need to show that each
of the B-coefficients {c¢ }¢cp is uniquely defined by the data, where D is the set of
domain points (1.3). First, we note that for each domain point £ lying at a vertex
of &, the corresponding coefficient is equal to the data value associated with that
point.

We now show how to compute the coefficients of s associated with domain
points on the edges of {. Algorithm 3.2 divides the quadrilaterals of { into four
classes {p, where we say that Q € <, if Q was a quadrilateral with ¢ unmarked
vertices in carrying out Step 1 of the algorithm. Now consider ) € {4. For each
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edge e of ), P includes the two domain points on the interior of e, and thereby
uniquely determines the B-coefficients associated with those two domain points, see
Remark 7.11. By the C' smoothness, this uniquely determines all B-coefficients of
s in the disks D(v) where v is a vertex of a quadrilateral in {4.

We now examine quadrilaterals @ € {3. Suppose @ := (u1, us, uz, uq) is such
a quadrilateral. Then () shares exactly one vertex, say u4, with some quadrilateral
in ¢4. The C'-continuity at us determines all the B-coefficients associated with
domain points in the disk D(u4). The B-coefficients associated with domain points
in the interiors of the edges (uj,us) and (ug,ug) are uniquely determined by the
interpolation conditions on those edges. On the edge e := (uj, u4), we already know
all but one coefficient, and that is determined by the one interpolation condition
associated with the point R(u1)Ne, see Remark 7.11. Similarly, the coefficient asso-
ciated with the point R(uz) N (us,u4) is determined by the interpolation condition
at that point.

We repeat this argument for quadrilaterals in {3, and then finally for quadri-
laterals in {1 to complete the proof that all of the B-coefficients of s corresponding
to domain points on the edges of ) are uniquely determined. It follows that all
of the coefficients corresponding to domain points in the disks D(v) surrounding
vertices of > are also uniquely determined.

It remains to consider B-coefficients associated with domain points lying inside
quadrilaterals. We begin by examining quadrilaterals that are part of black chains.
Suppose () is an odd black quadrilateral which is not part of an odd pair of black
quadrilaterals. Then it has been split into two triangles 77 and 75, and we have an
interpolation condition at a center point, say {7, of one of the two triangles. Since
we already know all B-coefficients associated with domain points on the edges of
both 77 and T3, the interpolation condition at {7, uniquely determines the B-
coefficient associated with that domain point, see Remark 7.12. The B-coefficient
associated with the domain point &7, is then uniquely determined by C* smoothness
across the edge between T and T5. If () is part of an odd pair of black quadrilaterals,
then the arguments are similar.

We now consider even black quadrilaterals. Suppose () is such a quadrilateral
which has been split into four subtriangles T1,...,Ty, and let k € {1,2} be the
number of determined edges of ). For each such edge, C' smoothness uniquely
defines the B-coefficient corresponding to the center of the triangle 7; sharing that
edge. But then the 4 — k£ interpolation conditions associated with points chosen
in Step 3 of the algorithm coupled with C! smoothness across the edges meeting
at vg uniquely determine all remaining B-coefficients. To see this, suppose k = 1.
Then using the data from Step 3a of Algorithm 3.2, we can apply Remark 7.11
to compute the coefficients corresponding to the domain points in the set My of
Lemma 3.3, and then apply the lemma. If £ = 2, we can use the data from Step 3b
of Algorithm 3.2 and Remark 7.11 to get coefficients in one of the sets M3 or My
of the lemma.

Now consider even white quadrilaterals. These quadrilaterals are also split into
four subtriangles. Given such a quadrilateral @, let k € {0,...,4} be the number of
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determined edges. As before, for each such edge C'! smoothness uniquely determines
the B-coefficient corresponding to the center of the triangle sharing that edge. But
then the 4—Fk interpolation conditions corresponding to the points assigned in Step 4
of the algorithm coupled with C'' smoothness conditions serve to uniquely determine
all remaining B-coefficients associated with points in ). For example, with £k = 0
we use the data in Step 4a of Algorithm P and apply Remark 7.11 to compute
the B-coefficients associated with D(vg). Then we proceed as in Remark 7.12 to
compute the B-coefficient associated with the center point &7, of one subtriangle
T: of (Q and we use Lemma 3.3 with £ = 5 to uniquely compute the remaining
coefficients. The other cases are similar.

To complete the proof that P and S3(A) form a Lagrange interpolation pair,
we deal with the odd white quadrilaterals in the same way as the even white quadri-
laterals, but using the points assigned in Step 6 of the algorithm, followed by those
in Step 5.

Finally, the fact that interpolation at the points of P uniquely determines an
s € 83(A) immediately implies that dimS3(A) = #P=N. O

The proof of Theorem 3.4 describes a step—by—step algorithm for computing a
spline s interpolating a given set of data. In particular, after setting the coefficients
corresponding to the domain points at the vertices of <, we determine the remaining
coefficients as follows:

1) by computing the coefficients of the univariate cubic polynomials that represent
s on a subset of the edges of {,

2) by using C' smoothness conditions to determine all remaining coefficients in
the disks D(v),

3) by solving for the coefficient corresponding to a Bernstein-basis function BT,
associated with a triangle T' by enforcing an interpolation condition at the
domain point ¢1;; at the center of T,

4) by computing the coefficients of the univariate cubic polynomials that represent
s on certain edges of A inside the quadrilaterals of ¢,

5) by using C! smoothness conditions across edges of A to determine the remain-
ing coefficients.

In particular, as described in the proof of Theorem 3.4, coefficients are either de-
termined by explicit equations, or by solving 2 x 2 linear systems.

Theorem 3.5. Suppose P and /A are a Lagrange interpolating pair which have
been constructed from a given quadrangulation <) with Algorithm 3.2. Then the
corresponding Lagrange interpolating spline can be constructed in O(n) operations,
where n is the number of vertices of {>. Moreover, there exists a constant K
depending only on

oy = smallest angle in §, Be = largest angle in <, (3.2)

such that
llcll < K]\,
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z and c are the vectors of data values and coefficients of s, respectively, and where
|| - || measures the maximum norm.

Proof: The first assertion follows from the fact that each of the five computations
listed above requires only a few flops. We now claim that each of these computations
is also stable. First, we note (cf. Remark 7.11) that the computations in 1) and 4)
are absolutely stable (i.e., they don’t depend on any property of {»). As observed
in Remark 7.12, the computations in 3) are also absolutely stable. The direct use of
smoothness conditions as in 2) is well known to be stable, but the constant depends
on both a¢ and Be. Finally, the use of C! smoothness conditions as in 5) is also
stable as can be seen by examining the proof of Lemma 3.3. O

We conclude this section by noting that this computational algorithm is also
local in the sense that for each domain point £, the corresponding B-coefficient c¢
depends only on the data values at points in a neighborhood of £&. Another way
to say this is as follows. Suppose we set a particular data value z, to one, and
set all other data values to zero. Then, as we shall show in Theorem 4.3, the
corresponding interpolating spline (sometimes called a cardinal spline) will have
nonzero coefficients only for domain points which are sufficiently close to 7.

§4. Dimension and a Local Basis for S3(A)

If P and S;(A) form a Lagrange interpolation pair, then as proved in Theorem 3.4,
the dimension of S}(A) is equal to the number of points in P. In this section we
give an explicit formula for this number which (although it may be of no particular
practical importance) is useful for comparing sizes of spline spaces.

We recall that Vi, and E¢ denote the number of vertices and edges of <,
respectively. Let n; be the number of quadrilaterals for which Algorithm 3.1 inserts
just one diagonal in constructing A.

Theorem 4.1. Suppose P and S1(/\) are a Lagrange interpolation pair produced
by Algorithm 3.2. Then

dim S3(A) = 3V + E¢ — 3n,. (4.1)

Proof: Consider S3(4), where ¢ is the triangulation obtained from < by drawing
both diagonals in each quadrilateral. As shown in [12], the dimension of this space
is 3V + E¢. By construction, the only difference between ¢ and our triangulation
A is that in some quadrilaterals we have only one diagonal instead of two. Such
quadrilaterals are either isolated, or occur in neighboring pairs. For an isolated
quadrilateral Q, it is easy to see that the dimensions of the C'! cubic spline space
on these two different triangulations of () are 16 and 13, respectively, and so the
difference in dimension is exactly three. In the case of a neighboring pair, the
difference in dimension is exactly six. O

Example 4.2. Let  be the quadrangulation shown in Figure 1.
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Discussion: For this quadrangulation we have Vi, = 53 and E¢ = 94, and Al-
gorithm 3.1 inserts only one diagonal for n; = 15 quadrilaterals of ), and both
diagonals for the remaining quadrilaterals. Thus, Theorem 4.1 gives

dim S3(A) = 3-53 +94 — 3-15 = 208.

For comparision purposes, we note that dim Si(¢$) = 253 when ¢ is the triangula-
tion obtained from <) by drawing both diagonals in each quadrilateral. The point
set P of the Lagrange interpolation pair P for Si(A) produced by Algorithm 3.2
(based on the coloring of Figure 1) is shown in Figure 5, where the interpolation
points are marked with black and white dots. Counting the black and white dots
gives 159 and 49, respectively, which sums up to N = 208. O

Although not needed for computational purposes, as a theoretical tool it is
convenient to introduce the cardinal basis functions associated with the Lagrange
interpolation pair P and 83 (A). These are the unique splines Bg € S5(A) satisfying

B&(’I]) = 55,77’ all ¢,n e P. (42)

These basis functions form a stable local basis in the sense that there exist constants
K and / depending only on the constants a and f¢ defined in (3.2) such that

1) ||Be|| < K for all € € P,
2) for each & € P, there exists a quadrilateral @ such that supp (Bg) C star¢(Q),

where as usual, star (()) is the union of all quadrilaterals that intersect with @ in
at least one point, and star ™(Q) := star ™~ (star (Q)) for all m > 0. Indeed, we
can take K to be the same constant mentioned in the stability discussion in Sect. 3,
and the following result shows that we can take £ = 9.

Theorem 4.3. Given & € P, let B¢ be the corresponding cardinal spline satisfying
(4.2). Suppose Q¢ is a quadrilateral which contains the point {. Then

1) if ¢ is strictly inside Q¢, then supp (B¢) C star ®(Qg¢).
2) if € lies on the boundary of Q¢, then supp (Bg) C star?(Q¢).

Proof: We analyse the worst cases, i.e., where the support of B¢ is of maximal
size.

Case 1. Suppose ¢ lies strictly inside the quadrilateral Q¢. In this case we have
zero data values associated with all vertices of { and with all of the points added
to P in Step 1 of Algorithm 3.2. This implies (cf. the proof of Theorem 3.4) that
all B-coefficients associated with domain points on the edges of & must be zero, or
equivalently, s must vanish on this net of edges. It also implies that all coefficients
associated with the disks D(v) surrounding vertices of < are also zero.

To see what can happen with the remaining coefficients, suppose C :=
{Q1,...,Qn} is an odd black closed chain with m > 5 and that £ is the center
of one of the two subtriangles 77 and 75 of Q1. Then the interpolation condition
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Fig. 9. Maximal support of Be when ¢ is inside a quadrilateral Q.

Fig. 10. Maximal propagation along the edges of .

Be(€) = 1 implies that c¢ is nonzero, and using the C' smoothness condition, we
see that the coefficient associated with the center of T5 can also be nonzero. Now
since Q,, is also odd, C! smoothness across the common edge with Q; can lead
to nonzero coefficients associated with the centers of its two subtriangles. These
nonzero values can propagate into both @2 and @),,_1, but cannot propagate any
further in C since Q3 and @,,_o are odd, and the data implies all coefficients on
these quadrilateral must be zero.

~ We now trace the propagation into white quadrilaterals. Suppose C =
{Q1,...,Qs} is an odd white closed chain with /m > 5 and that the quadrilaterals
Qm—1 and Q;_1 share a common edge. The C! smoothness across this common
edge can lead to nonzero coefficients associated with domain points inside of Q1.
Then we can get additional propagation into the quadrilaterals Qm_g, Qm, and
Q1. However, the propagation now stops since Q> and Q;;,—3 are both even, and
the data implies all coefficients on these quadrilaterals must be zero. It follows that
the support of Bg in this case can be as much as star ®(Q¢). Since it is not hard
to see that this is the worst case under the assumption that £ is strictly inside the
quadrilateral Q¢, this completes the proof of Case 1.

Case 2. Suppose ¢ lies in the interior of an edge e := (uy, ;) of the quadrilateral
Q¢ (the case that £ is a vertex of { can be treated analogously). To identify the
support of B in this case, we now examine the computation of its coefficients
following the proof of Theorem 3.4 and using the notation there.

Suppose Qo := Q¢ lies in the class {4. Then the first step of finding the
coefficients of B¢ involves computing coefficients corresponding to domain points
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Fig. 11. Maximal support of B¢ when £ is on the edge of a quadrilateral Q.

on the edges of all quadrilaterals in {4. All such coefficients must be zero except for
those associated with points on the edge e of (Qg. This implies that all coefficients
associated with points in the disks D(v) surrounding vertices of {4 must be zero,
except for the two disks D(uq) and D(u;).

We now consider quadrilaterals in {>3. Suppose Q1 lies in the class <{>3. Then,
(21 has exactly one vertex v in common with a quadrilateral from <4, since otherwise
(@1 would not be an element of {3. If v & {uq, %}, then all coefficients associated
with points in the disks D(v) are zero, and therefore all coefficients corresponding
to domain points on the edges of Q1 are zero. Otherwise, if either v = u; or v = 44,
we get zero values for the coefficients associated with domain points on two edges
of 1, and possibly nonzero values on the two remaining edges (uy,v) and (ug,v)
of @;. This implies that all coefficients associated with points in the disk D(w)
surrounding the vertex w of 1 with w & {v, ug, 12} must be zero, and some of the
coefficients associated with the points in the disks D(us) and D(ug) are possibly
nonzero. Since there does not exist a quadrilateral Ql € {3 different from @,
with vertex ug or 4y (otherwise Ql would not be an element of {3) all the possible
nonzero coefficients of B, associated with domain points in the quadrilaterals of
&3 U Oy lie in star 1(Qo)-

A similar argument shows that all the possible nonzero coefficients of B¢ asso-
ciated with domain points in the quadrilaterals of o U {3 U &4 lie in s~tar2(Q0).
Note that a possible common vertex of two different quadrilaterals Qs, Q2 € {5 is
already a vertex of a quadrilateral from {3 U {4. Finally, looking at quadrilaterals
in {1, we see that all the possible nonzero coefficients of B associated with domain
points in the quadrilaterals of {1 U $g U {3 U Oy lie in star 3(Qp). In addition, for
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every quadrilateral Q3 from <; in star 3(Qg) some coefficients associated with the
points in the disks D(u4) can possibly be nonzero, where u4 is the vertex of Q3
which was marked in Step 1 when £ = 1.

Now there can be no further propagation along the edges of . It is easy to see
that starting with Q)¢ in {4 leads to the worst possible case (concerning propagation
along the edges of ).

We now examine the process of computing the coefficients of B¢ associated
with domain points which lie strictly inside of quadrilaterals. Suppose that Q4 lies
in star4(Q£), and B¢ has nonzero coeflicients associated with domain points in the
disk D(u4) for some vertex uy of Q4 (i-e., ug was marked in Step 1 when £ = 1).
Moreover, assume that Q4 is the first quadrilateral in an odd black closed chain.
Then using the C! smoothness condition, we see that the B-coefficient of B associ-
ated with the center of one of the two subtriangles of Q4 can be nonzero. Therefore,
the nonzero coefficients in the disks D(u4) possibly initiate further chains of prop-
agation through at most two additional black quadrilaterals, and three additional
white ones (see Case 1). Combining these observations, we see that the maximal
support Bg is star®(Q¢) as asserted. O

Figures 9-11 illustrate the proof of Lemma 4.3 for the two cases. Here the point
¢ is marked with a black dot, while the remaining interpolation points involved in
the propagation process are marked with white dots. Figure 10 shows the maximal
propagation along the edges of {) for a point & which has been chosen in Step 1 of
Algorithm 3.2. Combining this with the maximal propagation for a point £ which
lies strictly inside of a quadrilateral Q¢ (Figure 9) gives the maximal propagation
for Case 2 (Figure 11).

Although in the worst cases there may be cardinal basis functions with rather
large supports, such cases are actually quite rare, and most of the time the basis
splines have much smaller supports. Indeed, the supports frequently consist of a
small chain of quadrilaterals. This can be seen from the following observations:

1) Given a coloring produced by Algorithm 2.1, in general there are only a few
closed (odd) chains of one color, see also Remark 7.6.

2) Maximal propagation along the edges can only happen when there exists a
chain of edges e; = (v;,v;41), i = 0,...,2, of { such that in step 1 of Algo-
rithm 3.2, the vertex vy_p was unmarked for ¢ = 4,3,2,1. By the nature of
step 1 (choosing quadrilaterals with £ unmarked vertices as long as possible),
such chains of edges with maximal length are often avoided automatically.

3) When propagation of the coefficients of Be occurs along edges and through the
quadrilaterals in one direction of the quadrangulation, it often happens that
the propagation in all other directions is much shorter (or does not occur).
Therefore, in most cases there exists a quadrilateral () # (¢ such that the
support of B is actually in star £ (Q) C star #2(Q¢) with £; << £5.

Figure 12 shows the supports for the cardinal basis functions B¢, where { are the
points numbered from 1 to 7 in Figure 5 for the quadrangulation <) (and coloring)
in Figure 1.
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Fig. 12. Supports of B¢ for the points £ numbered 1 to 7 in Figure 5.

§5. Bounding the Error of Interpolation

In view of (4.2), it is clear that for every f € C(2), the spline s € Si(A) that
interpolates f at the points of P is given by the formula

s=1If:=) [(€)Be. (5-1)

EeEP

We can regard Z as a linear operator mapping functions in C(2) into splines in
SY(A). Tt should be emphasized that we have introduced the cardinal basis splines
and this formula purely as a theoretical tool. We do not make use of this repre-
sentation for computing or storing an interpolating spline — for that purpose, the
Bernstein-Bézier representation is much better suited. But it is useful for proving
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Fig. 13. A (2,2)” coloring for the quadrangulation from Figure 1.

the following theorem concerning the approximation of functions in the Sobolev
space WmHL(Q). Let |+ |;m+1,00 be the standard Sobolev seminorm, and let |A| be
the maximum of the diameters of the triangles in A.

Theorem 5.1. There exists a constant C depending only on the constants a¢, and
B¢ defined in (3.2) such that if f is in the Sobolev space W2 () with 0 < m < 3,
1DZDY(f = Z)lloos < C JAMFZP | fli1 00,0, (5.2)

forall0 < a+ B < m.

Proof: We apply Theorem 5.1 of [13]. Clearly, Zp = p for all cubic polynomials.
The hypothesis (5.3) of that theorem is trivial since |f(£)| < || f]|T,, where T¢ is the
triangle that contains £. O

The analog of this error bound also holds for the p-norm, 1 < p < oco. For
p = 00, this result can also be established using the Bramble-Hilbert lemma, or by
using the weak-interpolation methods described in [8,27].

§6. (2,2)” Coloring of Quadrangulations

In this section we briefly discuss a class of quadrangulations for which the process
of constructing a Lagrange interpolating pair can be somewhat simplified.

Definition 6.1. A black and white coloring of a quadrangulation <} is called a
(2,2)~ coloring of { if every quadrilateral of {) has at most two neighbors of the
same color, and if each chain of quadrilaterals of one color has at most length three.
Quadrangulations possessing a (2,2)~ coloring are called (2,2)~ colorable.

Obviously, the coloring of the quadrangulation <) in Figure 1 is not a (2,2)~
coloring of ¢ since there are black and white chains of length four. However, as
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Fig. 14. A quadrangulation, where chains of length three cannot be avoided.

Fig. 15. Interpolation points in the new cases for the simplified algorithm.

shown in Figure 13, a (2,2)~ coloring can easily found for this particular quadran-
gulation. We observe that many (natural classes of) quadrangulations possess a
(2,2)~ coloring.

It is known that there is an algorithm similar to Algorithm 2.1 which can color
any given triangulation A with two colors so that no chain of triangles of one color
is of length more that two, see [17,27]. However, the situation is more complex for
quadrangulations. In this case, chains of length three cannot be avoided in general
as can be seen from the example in Figure 14. For further information on (2,2)~
coloring of quadrangulations, see Remark 7.9.

If a quadrangulation ¢ admits a (2,2)~ coloring, then Algorithm 3.2 can be
somewhat simplified in that we insert just one diagonal in every black quadrilateral
except in the case of closed black chains where we insert both diagonals in one of
the quadrilaterals. We then apply Algorithm 3.2 to choose the interpolation points,
but with the following simplification of Step 2. For every black component C which
is not a closed chain, choose a quadrilateral () in C, and add the center point of
one of the subtriangles of ). If the length of C is three, then this quadrilateral )
should be the second quadrilateral in the chain.

Figure 15 shows the cases for which the triangulation A and the choice of
interpolation points is different from that in Section 3. The simplifications which
apply for a (2,2)” coloring are due to the fact that in general it is not necessary to
distinguish between even and odd quadrilaterals in dealing with components of one
color. Roughly speaking, the locality of the interpolation points inside the chains
of one color comes automatically with the coloring.

In general, in this setting we also get a smaller number of interpolation points
than with Algorithm 3.2. For instance, consider the quadrangulation ¢ in Fig-
ure 13. Then with the coloring shown there, the modified algorithm inserts only
one diagonal in 22 quadrilaterals of ¢, and thus the dimension of the corresponding
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spline space is 187, as compared to 208 as described in Example 4.2.

Using basically the same arguments as in Sections 3 and 4, it is easy to see
that the simplified algorithm is stable and produces a Lagrange interpolation pair
P and S3(A) such that the supports of the corresponding basis splines {Bg¢}ecp
are at most star3(Qy) if ¢ is strictly inside Q¢, and at most star 7(Q¢) if £ lies on
the boundary of Q¢. It follows that Theorem 5.1 also holds in this setting.

§7. Remarks

Remark 7.1. A quadrangulation ¢ is said to be a checkerboard quadrangulation
provided that its quadrilaterals can be colored black and white in such a way that
any two quadrilaterals sharing an edge have the opposite color. An appropriate
algorithm (which is significantly simpler than Algorithm 3.2 here) for constructing
a Lagrange interpolation pair in this case was provided in [21].

Remark 7.2. A quadrangulation < is said to be separable provided there exists a
set ¢ of quadrilaterals in > such that for every interior vertex v of {, there is a
unique quadrilateral ) € {o with vertex at v. This case was studied in [22], and the
algorithm presented there for constructing a Lagrange interpolation pair in this case
is also simpler than Algorithm 3.2. It is easy to see that not all quadrangulations
are separable. Figure 1 shows one such example. For an even simpler example, see
Figure 3 of [22].

Remark 7.3. The problem of quadrangulating a given set of points is considerably
more difficult than the analogous problem of triangulating them, and has only re-
cently been studied in the computational geometry literature [3]. If the number of
boundary points is even, there are algorithms which produce some quadrangulation,
but it is not guaranteed to be convex. An alternative way to create quadrangu-
lations (which in fact are guaranteed to be convex) is to start with an arbitrary
triangulation, and refine it appropriately (by adding new vertices and edges), see

[15],

Remark 7.4. We have not assumed that the domain €2 obtained by taking the
union of the quadrilaterals in < is simply connected, i.e., {2 may contain holes with
polygonal boundaries.

Remark 7.5. It should be clear that starting with a given set of points V as in
Problem 1.1, in general there is more than one way to create an associated Lagrange
interpolation pair. Indeed, there are various freedoms in most of the steps outlined
above. For example, clearly the coloring depends on the initial coloring and on
which quadrilaterals are selected in each step of Algorithm 2.1. Similarly, there is
often more than one way to choose the points in the various steps of Algorithm 3.2.
Making other choices would lead to different Lagrange interpolation pairs, although
all of them would have more or less the same properties.
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Fig. 16. A quadrangulation which is not 3 colorable but (2,2)™ colorable.

Remark 7.6. In principle, Algorithm 2.1 can be started with any initial coloring
(for example color all quadrilaterals of > white). In practice, it is more efficient to
choose a (maximal) subset {* of quadrilaterals from ¢ such that the intersection
of any two quadrilaterals from {* is empty or a single point, and color the quadri-
laterals of $* and ¢ \ ¢* black and white, respectively. In general, this choice
results in short black chains, and Algorithm 2.1 terminates after a few steps. In
experiments, we observed that the number of closed black chains is small, even in
the case when < consist of thousands of quadrilaterals. Moreover, the treatment
of some white boundary quadrilaterals can be simplified by switching their color
(after Algorithm 2.1 has stopped).

Remark 7.7. We note that Algorithm 2.1 and the modifications suggested in
Remark 7.6 are variants of the coloring method in [17] for bounded degree graphs.
In graph coloring theory, a graph is said to be (m,d) colorable if its vertices can be
colored with m colors such that each vertex has at most d neighbors of the same
color. If d = 0, this describes an ordinary coloring of a graph. For instance, the
Four Color Theorem (cf. [11]) says that every planar graph is (4,0) colorable. For
d > 1, the coloring is called improper or defective [5]. In this context, Algorithm 2.1
provides a (2, 2) coloring of the dual graph of ¢, which is a planar graph of maximal
degree four.

Remark 7.8. The coloring in Section 2 leads to triangulations in which about one
quarter of the quadrilaterals are split into two triangles, while the rest are split
into four triangles. In our experiments with (2,2)™ colorable quadrangulations, we
found that about one-half of the quadrilaterals are split into two triangles, while
the rest are split into four triangles.

Remark 7.9. In Section 6 we have shown that if a quadrangulation can be colored
such that each chain of quadrilaterals of one color has at most length three, then
the process of constructing a Lagrange interpolating pair can be simplified. Our
experience is that many quadrangulations possess a (2,2)~ coloring. On the other
hand, no automatic algorithm of linear complexity is known which yields a (2,2)~
coloring for quadrangulations. A natural idea would be to color a given quadran-
gulation with three colors, and then afterwards switch the quadrilaterals with the
third color to either black or white. However, not every quadrangulation can be
colored with three colors [18], which can be seen from the example in Figure 16
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(left) where the letters symbolize the four colors used. On the other hand, Figure 16
(right) shows that this quadrangulation does possess a (2,2)~ coloring. We note
that there are only a few papers on (m,d)~ coloring, see [4,30].

Remark 7.10. Using C?! cubic splines, it is considerably more difficult to construct
a local interpolation method based on Lagrange data than it is for Hermite data.
Indeed, given Hermite data at the vertices of a quadrangulation ¢ (along with
normal derivatives at the midpoints of the edges of {»), then we can apply the well-
known macro-element methods based on the triangulation ¢ obtained by adding
both diagonals to each quadrilateral, see [10,12,28]. But of course, to use these
methods one has to find accurate estimates for the derivatives at all points where
they are not given. We also note that the method described in this paper can
be easily modified to produce a method which would make use of Hermite data
(function values and gradients) at each vertex of <.

Remark 7.11. A univariate cubic polynomial p on an interval [a, b] which satisfies
p(a) = zp and p(b) = z3 can be written in the Bernstein-Bézier form

p() = z5lz0(b — 2)° + 3ex(z — )b — )” + Bea(w — a)2(b — ) + za(e — 0)°),

where h = b — a. Then the coefficients ¢; and ¢y of the unique p that interpolates
given values at the points ¢t := a + h/3 and t3 := a + 2h/3, can be determined by
solving a 2 x 2 linear system whose matrix is

2(2 1

g\1 2/’
independent of the interval [a, b]. Moreover, if we are given c¢;, then we can make p
interpolate a prescribed value z9 at t2 by simply setting

272’2 — 20 — 661 - 823
= ) 7.1
C2 12 (7.1)

Remark 7.12. Suppose s is a cubic polynomial, and that for a given triangle T" we
know all of its B-coeflicients except for the one associated with the domain point
¢T,1. Then since BT}, (¢%,) = 2/9, we can immediately calculate cl;;. Clearly, this
is a stable computation independent of the shape of T'.

Remark 7.13. While not directly applicable to interpolation of scattered data,
Lagrange interpolating pairs can still be a useful tool for fitting scattered data as
a second stage in a two-stage method (cf. [29] for a discussion of general two-stage
methods). Here the first stage would involve interpolation of scattered data by
a linear spline s; over a triangulation A; of the data points. Then the second
stage would involve interpolation of s; by a C! cubic spline s on a much coarser
triangulation A, based on samples of s; at the points P. In the case when data
comes from a C* function, the approximation error of sy is O(h2), where h; is
the maximal diameter of the triangles in A;, and the approximation error of s is
max{O(h?), O(h*)}, where h is the maximal diameter of the triangles in A. If Ay
is much finer than A, then the error of s would be O(h*), thereby providing an
efficient compression of the data (cf. [22,26,27]).
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Remark 7.14. We have shown that the spline spaces Si(A) constructed here
have full approximation power. This should be contrasted with the situation for
the triangulation obtained from a given quadrangulation by inserting one diagonal
in each quadrilateral, where it is known [1] that the associated spaces of C! cubic
splines do not have full approximation power.

Remark 7.15. It is easy to see that the angles of a quadrangulation can be well-
behaved in the sense that the largest angle is bounded by a constant x < m, but
the smallest angle 8, in the associated triangulation can still be arbitrarily small.
However, conversely, clearly 20 < k < 1 — 20A.

Remark 7.16. The interpolation method described in this paper is easy to im-
plement, and due to its low complexity, can be used on very large data sets. For
some numerical experiments (based on separable quadrangulations) involving both
synthetic and real world data, see [21,22].
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