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Abstract. This paper surveys the abstract theories concerning local-in-time existence of solutions to dif-
ferential inclusions, u’(t) € F(¢,u(t)), in a Banach space. Three main approaches assume generalized
compactness, isotonicity in an ordered Banach space, or dissipativeness. We consider different notions of
“solution,” and also the importance of assuming or not assuming that F(¢, ) is continuous in z. Other
topics include Carathéodory conditions, uniqueness, semigroups, semicontinuity, subtangential conditions,
limit solutions, continuous dependence of u on F', and bijections between u and F'.

1. Introduction. In this paper we consider differential inclusions of the form
(1.1) u'(t) € F(t,u(t)) (0<t<T).

Here u(t) takes values in a Banach space (X,]|| ||), and F is a mapping from some subset of [0,7] x X into
the set of all subsets of X. We ask what hypotheses on X, F' and a given initial value u(0) guarantee that a
solution of (1.1) exists for some 7' > 0. We permit 7" to be small, and to depend on u(0) — we are concerned
primarily with local existence, as explained further in §2. Intuitively, ¢ represents time, and wu(t) represents
the state of some system which is evolving as time passes, according to a rule or environment described by
F. Thus u is sometimes called an evolution, and (1.1) an evolution equation. The operator F is said to be
the generator of the evolution. An important special case to which we shall devote some additional attention
is the autonomous problem

(1.2) u'(t) € G(u(t)) (0<t<T)

(i.e., where F(t,z) = G(z) is independent of t).

Note that F' may be point-valued, or interval-valued; thus (1.1) includes differential equations and
differential inequalities as special cases. On the other hand, F may be set-valued; thus implicit differential
equations of the form H (¢, u(¢), u’(¢)) = 0 are also included as special cases, even if H (¢, z, ) is not invertible
for some t and z. Also F' may be discontinuous and X may be infinite-dimensional; thus (1.1) may represent
a partial differential equation. Problems of the form (1.1) also include problems from control theory, integral
equations, functional differential equations, population models, and numerous other applications; but we are
concerned here with the abstract theory, not the applications.

We are far from a complete understanding of local existence of solutions to (1.1), or even (1.2). Some of
the known sufficient conditions for existence have partial converses, but we are still quite far from knowing
full necessary and sufficient conditions. A handful of examples are known in which (1.1) has no solution,
but most of these examples are variants of a single example of Dieudonné (discussed in §2). They are not
diverse enough to adequately motivate the known sufficient conditions.

We are even far from a unified understanding of (1.1) or (1.2). The literature includes several essentially
separate schools of thought, which use definitions and hypotheses so different in nature that it is difficult
to make comparisons between them. Three main approaches assume F' satisfies a condition of generalized
compactness, isotonicity, or dissipativeness (introduced in §7-10); the dissipativeness school of thought also
has several separate subschools. Various papers also differ substantially in their definitions of “solution” (see
§3, 7, 13, and 14), as well as in their other assumptions about ' — e.g., whether F' is assumed continuous,
semicontinuous, or not continuous at all (see especially §5 and 12).

Wide gaps exist between the theories. However, this survey will show certain similarities and analogies
between the several theories. These suggest that deeper connections may be uncovered in the future; that is
a goal of this author’s future research. This paper is intended as preparation for that research.



This survey contains no new results; it is merely a review of the literature. However, it is our hope
that this survey may convey to some readers a broad perspective including some new insights. This survey
is ordered pedagogically — i.e., simpler topics first — with the intention that it can be read by newcomers
to the subject. Mathematicians who are already familiar with one or more of the theories of existence may
wish to skip ahead to §11 and 12, which unite many of the simpler ideas of §5-10 into a single framework.

The literature concerning (1.1) is enormous, and so this survey is necessarily incomplete. We omit
much historical background, and concentrate on the most recent results. We make no attempt to deal with
applications. Aside from an occasional indication of some of the simpler ideas involved, we omit all proofs.
For brevity, we give only the simplest and/or most general versions of certain ideas or theorems, omitting
many other versions. We sometimes mention technicalities (boundedness, measurability, etc.) without giving
their details. We omit some important and widely-studied topics — e.g., additional existence results which
use linear operators or Hilbert spaces or the dual space X* — because these topics are too specialized for
the purposes of this survey. Decisions of what to include and what to omit were guided by the goal of a
broad perspective, mentioned above, but were inevitably biased by the present author’s own interests and
ignorances. If we have omitted the reader’s favorite result, or some cherished technical details from that
result, we apologize. The present author would be grateful for communications about such omissions and
about more recent results; some of these might be reported in an addendum to this survey a year or two
hence.

A small portion of this paper was presented at the conference at Howard University in August 1987.
This paper owes much to related surveys of Crandall [26], Hajek [48], Lakshmikantham and Leela [73], and
Volkmann [124]. The author is grateful to A. Bressan, M. Freedman, M. Parrott, T. Seidman, P. Takac, P.
Volkmann, and others for preprints and reprints and for their helpful comments on earlier versions of this

paper.

2. Boundedness, local existence, and nonexistence. We begin by recalling two classical existence
theorems, with G single-valued and continuous:

2.1. THEOREM. Given any u(0) € X, the initial value problem (1.2) has a unique solution for all t > 0, if
G satisfies the Lipschitz condition

(2.2) 1G(z) =G <wllz—yll  (z,y€X)
for some constant w.
Such a function G is said to be Lipschitzian, and w is called the Lipschitz constant of G.

2.3. THEOREM (Peano, 1885). If X is a finite-dimensional Banach space and G : X — X is continuous,
then for each u(0) € X the initial value problem (1.2) has at least one solution for some T > 0.

Both of these results have many different proofs which can be found in many books; see for instance
[32]. We sketch one proof: If F is single-valued, continuous, and defined everywhere on [0,7] x X, then (1.1)
is equivalent to the integral equation

t
(2.4) u(t) = u(0) +/ F(s,u(s))ds (0<t<T).
0
A solution of (2.4) is the same as a fixed point of the operator ® defined by
¢
(2.5) (®u)(t) = u(0) +/ F(s,u(s))ds  (0<t<T)
0

Under the hypotheses of Theorems 2.1 or 2.3, for sufficiently small 7', ® has a fixed point, by Banach’s
fixed point theorem for contraction mappings or by Schauder’s fixed point theorem for compact mappings,
respectively. (See [116] for an introduction to fixed point theory.) Under the hypotheses of Theorem 2.1, or



under those of 2.3 with G bounded, we can repeat this argument on the intervals [0, T], [T, 2T, [27, 377,
etc., and thus obtain a solution for all positive ¢.

We shall use (2.4) and (2.5) again occasionally in this paper, but we shall not survey the theories of
integral equations or fixed points. Those theories give an elegant approach to (1.1), but it is not the only
approach, and it is generally less successful than other approaches which focus more directly on initial value
problems. When F' is permitted to be discontinuous and set-valued, and when the domain of F(¢,-) is
permitted to vary with ¢, then the conditions corresponding to (2.4) and (2.5) become very complicated.

The hypotheses of Peano’s Theorem (2.3) do not guarantee global existence. For instance, the equation
u’(t) = u(t)? with initial value u(0) = 1 has unique solution u(¢) = 1/(1 — t), which blows up as ¢ increases
to 1. This behavior i1s not pathological, but actually typical of nonlinear differential equations, and so
we concern ourselves with local existence of solutions. Global continuability versus finite-time blowup is a
separate question which has received much attention in the literature but will not be studied in depth here.
See [6] and references cited therein, for an introduction to this subject. We remark that for continuability
of solutions, the crucial question is not whether ||u(t)|| blows up as ¢ t T, but whether {u() : 0 <¢ < T} is
a relatively compact set. Dieudonné [33] gives a simple example of noncontinuability without blowup.

Most abstract existence theorems can be stated in either a local or global form. For instance, the
Lipschitz hypothesis (2.2) could be weakened to a local Lipschitz condition: we could replace the constant w
with a continuous function of  and y; then the conclusion would be just local existence. On the other hand,
if we add to Peano’s theorem the assumption that GG is uniformly bounded, then we gain the conclusion that
existence is guaranteed for all positive ¢. (Locally this is no real change in the theorem, since any continuous
G must be bounded at least on some neighborhood of u(0).) Most abstract existence results in the literature
can be modified similarly. In effect, most global existence results can be decomposed into a local existence
result plus a global continuability result, the latter being obtained from a global estimate.

The verification of such global estimates in specific problems is a basic part of applied mathematics. The
methods needed for such verification vary greatly from one differential equation to another; they do not seem
to fit into just a few abstract theories. In fact, the main question addressed in this paper — what conditions
on F' are sufficient for local existence — may seem alien or even trivial to the applied mathematician, who
generally begins with an observed physical phenomenon for which existence is already known.

On the other hand, local existence does fit into just a few abstract theories. A pure mathematician
pursuing abstract existence theory may choose to simply assume as a hypothesis that F is uniformly bounded,
and focus his or her attention on other difficulties not substantially affected by that assumption. Of course,
some researchers choose to investigate the subtleties of weaker, more complicated, and more appropriate
boundedness hypotheses on F. For instance, Himmelberg and Van Vleck [57] say that F' is “locally weakly
integrably bounded” if for each p > 0, there exists a function m, € L'[0, T] such that inf{||y|| : y € F(t,2)} <
m,(t) for all z,t with ||z|| < p. For another example, Dollard and Friedman [34] work with (1.1) where F(¢, ")
is continuous and linear for each ¢; their boundedness assumption is that the upper integral

T
JUFG s = inf (] o ds v € L0TL ()l < 6(o) for all )

be finite. The upper integral coincides with the ordinary (Lebesgue) integral if ||F'(s,-)|| is a measurable
function of s. A similar estimate is applied to nonlinear problems in [108].

With the abstract viewpoint indicated above, we see local and global existence theorems as superficially
different presentations of the same basic ideas. The global formulation is usually simpler in notation than the
local formulation, and so 1t is usually the version used in the literature. In this respect 2.1 is typical, while
2.3 is not. This paper is concerned with existence results (and closely related results, such as uniqueness
and continuous dependence) that are local in essence, even if they are sometimes formulated in global terms
for simplicity of notation; we shall not pursue the verification of the global estimates. For our purposes,
nonexistence of a solution to (1.1) means that no solution exists no matter how small we choose T.

Our questions of local existence can be studied in a very abstract setting, and so they may be simple
in appearance, but they are by no means trivial. For instance, Peano’s existence result 2.3 fails in infinite-
dimensional Banach spaces. Dieudonné [33] gave a simple counterexample in the space c¢g of sequences
converging to 0: Let G({z,}) = {(1/n) + /|zx|} and u(0) = 0. Then G is continuous from ¢y into cg,

but (1.2) has no solution in ¢g, no matter how small we choose T'. Several other authors subsequently gave



examples in other spaces, by modifying Dieudonné’s example, and finally Godunov [45] showed that Peano’s
conclusion fails in every infinite-dimensional Banach space.

Numerous different notions of “solution” can be found in the literature; these will be discussed in §3,
7, 13, and 14. But the particular choice of the definition of “solution” does not matter in the examples
of Dieudonné et al. A “solution” u(¢) for Dieudonné’s initial value problem can be explicitly constructed
componentwise in the space £ of bounded sequences. This function u(t) is uniquely determined, and is
the only possible candidate for a “solution” in any reasonable sense. But this function u(t) takes its values
outside of the chosen Banach space ¢g, and so is disqualified as a solution of (1.2). Similar remarks apply to
the examples of Godunov et al., which are variants of Dieudonné’s example.

3. Carathéodory conditions, Carathéodory solutions, and other differentiable solutions. Nu-
merous different notions of “solution” are used in the literature. In this section we discuss those solutions
u(t) which are differentiable, i.e. which actually satisfy the differential inclusion (1.1) or (1.2) in some fairly
direct sense. Other notions of “solution,” more general and useful but less directly appealing to our intuition,
will be discussed in §7, 13, and 14.

If F or G is continuous, then a “solution” of (1.1) or (1.2) usually means a continuously differentiable
function u(¢) which satisfies the differential equation. Such solutions are sometimes called Newton solutions,
or “strong” or “classical” solutions; however, those last two terms also have other meanings in the literature.
If F or GG is not continuous, then a more general “solution” may be needed. For motivation we first consider
some classical notions of Carathéodory:

We say that a single-valued function F(t,z) satisfies Carathéodory conditions if it is continuous in z
and if sup{||F (¢, z)|| : € S} is majorized by some locally integrable function mg(¢) for each bounded set S
or each relatively compact set S. Both definitions — with .S bounded or with S relatively compact — are
used in the literature, and of course they coincide when X is finite-dimensional. For an arbitrary Banach
space, the two definitions still agree locally, i.e. on a sufficiently small neighborhood of u(0); see Theorem
4.7 in [108]. The condition involving compact sets generalizes joint continuity of F.

3.1. THEOREM (Carathéodory, 1927). Assume F :[0,00) x X — X satisfies Carathéodory conditions, as
defined above. Let u(0) € X. If X is finite-dimensional, then (2.4) has a solution u on [0,T] for some T > 0.

This theorem can be found in [24], for instance. Of course, the conclusion fails when X is infinite-dimensional,
but variants of this theorem are valid in arbitrary Banach spaces, as we shall see later.

The “solution” u whose existence is asserted above need not be continuously differentiable, since F'
may be discontinuous. In an arbitrary Banach space, for single-valued F', we say u is a Carathéodory
solution of the initial value problem (1.1) if u is the solution of the corresponding integral equation (2.4).
The integral is understood in the sense of Bochner integrals, i.e., Banach-space-valued Lebesgue integrals.
(For an introduction to such integrals, see [35], [74], [129].) Of course, if F is jointly continuous, then a
Carathéodory solution is the same thing as a Newton solution.

More generally, whether F' is single-valued or not, we say that a Carathéodory solution of the differential
inclusion (1.1) is a function u(¢) which is absolutely continuous on [0,77], which is differentiable almost
everywhere on [0, T], which satisfies the differential equation almost everywhere on [0, T], and which satisfies
the initial condition if one is given. (For single-valued F, this is equivalent to (2.4). In finite-dimensional
spaces, absolute continuity of u implies existence of u’(¢) for almost all ¢, but that implication is not valid in
an arbitrary Banach space.) This notion of “solution” is used widely, and in §4-9 of this paper a “solution”
will mean a Carathéodory solution unless specified otherwise. Carathéodory solutions are also sometimes
referred to in the literature as “strong” or “classical” solutions, but those terms also sometimes refer to
Newton solutions, or have still other meanings in the literature.

Because integrals occur naturally in (2.4), Carathéodory solutions are in some sense more natural than
Newton solutions, and Carathéodory solutions have been studied extensively in the literature. An interesting
result is that of Binding [12], who considers the autonomous differential equation u’(t) = G(u(t)) for a single-
valued function G : R — R in one dimension. Among other results, Binding gives necessary and sufficient
conditions on G for existence of solutions, given an initial value. These conditions are as follows. If it is not
constant, the solution for such a differential equation cannot cross itself, hence it must be monotone; hence G



must be nonnegative (respectively, nonpositive) almost everywhere on an interval to the right (respectively,
left) of the initial value. Also, the set where G is infinite or undefined must have measure zero. Finally, if G
is not zero almost everywhere, then 1/G must be integrable on that interval on one side of the initial value.

Though the notion of Carathéodory solutions is fairly simple and intuitively appealing, it is not adequate
for discontinuous G, or for F (¢, z) discontinuous in z. For example, the differential equation

o=awm={; 0o

with initial condition u(0) = 0, has no Carathéodory solutions. This problem exhibits what Binding [12]
calls jamming. Intuitively, we might feel that u(¢) = 0 should be a solution, and indeed it is in the sense of
Krasovskij or Filippov:

A Krasovskij solution, respectively a Filippov solution of (1.1) is a Carathéodory solution of u’(t) €
KF(t,u(t)), respectively u’(t) € FF(t,u(t)), where

KF(t z) = ﬂ convF (t,z +eB),

e>0
FF(t,z)= (] () @nvF(t, (z+eB)\2).
€>0null z

Here B is the open unit ball, and @onv means convex closure. In both of these definitions, “bad” points which
are in some sense isolated and atypical of the behavior of F' or u are discarded. In the definition of FF', sets
Z C X having Lebesgue measure zero are discarded. This definition 1s only meaningful when the Banach
space X is finite-dimensional, since Lebesgue measure has no natural analogue on infinite-dimensional spaces.
In finite dimensions, FF(t,z) C KF (¢, z), so any Filippov solution is also a Krasovskij solution. Krasovskij
and Filippov solutions, as well as Carathéodory solutions and Hermes solutions (introduced in §11 of this
paper) are surveyed by Hajek [48], at least for the finite-dimensional case.

Still other “solutions” weaken the notion of derivative. The contingent derivative of a function ()
at a point tg is the set of all limits (or, in some papers, all weak limits) of sequences of the form {[u(to +
hn) —u(to)]/hn}S,, where h, — 0. That set is denoted by Du(tg). A solution of the contingent differential
equation Du(t) C F(t,u(t)) is a function u which satisfies that relation for almost all ¢ (or, in some papers,
for all but at most denumerably many t). Some results on contingent differential equations in Banach spaces
are given by Chow and Schuur [23].

If F'(t,-) is linear for each ¢, and F (¢, ) is written F(¢)z, then a weak solution, or x-solution, of (1.1) is
a function u satisfying

<ut),y> = <u(0),y>+/t<u(5),F(s)*y>d8 0<t<T),

for every y in the dual space X* or in some dense subset of X*. (The term “weak solution” also has other
meanings.) For some recent results concerning *-solutions, see Dawson and Gorostiza [31].

A x-solution need not be differentiable in the topology of the norm of X. In §11 we shall consider some
“solutions” u which need not be differentiable in any sense at all. Thus, the solution u(#) of (1.1) need not
actually satisfy (1.1) in any direct sense. Equation (1.1) is only used as an abbreviation for a much longer
and more complicated definition of “solution” which does involve u and F'. Although we shall not discuss
such solutions in any detail until §11, they should be kept in mind in the discussion of evolution operators
at the end of §4.

4. Uniqueness, Kamke functions, and semigroups. The hypotheses of Peano’s Theorem (2.3) do not
guarantee uniqueness. For instance, the equation u'(¢) = 24/|u(t)| with initial value u(0) = 0 has solution
u(t) = (max{0,t — b})? for any number b > 0. Among the three major hypotheses of generalized compact-
ness, isotonicity, or dissipativeness, introduced in §7-10 below, only dissipativeness guarantees uniqueness
of solutions — and even that uniqueness is lost when we consider some generalizations in §15. However,



even without uniqueness, the theory associated with (1.1) is rich and interesting; see for instance inequality
(7.5) and the remarks about continuous and semicontinuous dependence in §7 and 13. Thus, uniqueness is
not essential to the theory of existence of solutions. Still, some of the concepts of uniqueness theory will be
useful in our study of existence, and so we briefly introduce them here. For a more detailed introduction to
uniqueness, see [51].

A function w : [0,7] x [0,400) = [0,400) is a Kamke function (or uniqueness function) if w satisfies
Carathéodory conditions, w(#,0) = 0 for all ¢, and w has the property that the only Carathéodory solution
of p/(t) < wl(t,p(t)) on [0,7T] with p(0) = 0 is the trivial solution p = 0. Examples of Kamke functions are
w(t,r) = kr or w(t,r) = krin(1 + )/t (k = constant) or w(t,r) = r/t, but not w(t,r) = 2r/t. (Some
papers on uniqueness use slightly different definitions; [9] gives a comparison of some of the different classes
of Kamke functions.) One variant (given by [24]) of Kamke’s classical uniqueness result is as follows: if w is
a Kamke function, F satisfies Carathéodory conditions, and

(4.1) I1E(t z) = F(t,y)l] <w(t, ||z —yl)

for all t, z, y, then (1.1) has at most one Carathéodory solution for each initial value #(0). (The main idea of
the proof is that if u; and ug are solutions of (1.1), then we may apply the definition of the Kamke function
with p(t) = u1(t) — us(?).)

Hypothesis (4.1) can be generalized substantially. For instance, let w be a Kamke function, but instead
of (4.1) assume that F satisfies

t —V(t—h,x—hF(t — hF(t
(4.2) h%?ﬂa’ﬁw V( ’rh (t.z).y (t, )

<w(t,V(t 2, y)

where V is locally Lipschitzian in z and y, V is nonnegative, and V(¢,z,y) = 0 if and only if z = .
Then (1.1) has at most one solution u for each initial value u(0). Roughly, the idea of the proof is that
DV (t,ur(t),ua(t)) < w(t, V(¢ ui(t),us(t))) for any solutions uy, us. The relation between (4.1) and (4.2)
will be discussed further at the end of §9. Many other uniqueness results, more general and more complicated,
can be found in the literature. One particularly general and recent result is [104]; see its bibliography for
earlier results.

In initial value problems where uniqueness is known, we can use the notation of semigroups and evolution
operators. An evolution (or evolution operator) on a set € is a two-parameter family of self-mappings of Q:

(4.3) Ut,s) : Q—=Q (—o0o < s <1< 400),
such that
(4.4) U(t,t) = identity and Ut,s)oUl(s,r) =Ul(t,r) (r<s<t).

The evolution is linear if Q is a linear subspace of X and U(, s) is linear for each ¢ and s.
An important special case is that in which U(¢,s) depends on ¢, s only through the value ¢ — s. Then
we can write U(t,s) = S(t — s), where S is a semigroup on €, i.e., a one-parameter family of mappings

(4.5) St):Q—Q (t>0)

with the properties
(4.6) S(0) = identity, St +5) = S(t) o S(s).

If © is a subset of a Banach space, then the semigroup S on Q is of type w if (t,z) — S(t)z is a jointly
continuous function on [0, 400) x © and

(4.7) IS(t)z = Syl < ||z — yll exp(tw)

for all ¢,z,y. If this is true for w = 0, we say S is nonezpansive (or, in some papers, contractive). If G
satisfies (2.2), then the semigroup generated by G (in the sense of (4.8), below) is of type w.



Joint continuity is more natural in semigroups S(¢) than in temporally inhomogeneous evolutions U (t, s).
Indeed, Ball [5] has shown that if S is a semigroup on a metric space €, and S(¢)z is measurable in ¢ and
continuous in z, then (t,z) — S(¢)z is jointly continuous on (0,400) x Q. (Joint continuity at ¢t = 0
does not necessarily follow, even if S is separately continuous at ¢ = 0; see [22].) Measurability does
not imply continuity for temporally inhomogeneous evolutions, even bounded linear ones. For instance,
take U(t, s)x = explig(t) — ig(s)]z, where ¢ : R — R is measurable but not continuous. Thus, temporally
homogeneous and inhomogeneous evolutions differ substantially: a temporally inhomogeneous evolution may
have jumps, but a semigroup (if measurable) may not.

Evolution operators arise in the study of (1.1) as follows: Let F' be some operator — possibly discontin-
uous and set-valued — in a Banach space X. Assume some notion of “solution” has been specified for the
differential inclusion u’(¢) € F(t,u(t)) — e.g., one of the notions discussed in any of §3, 11, 13, 14. Assume
that the notion of “solution” is such that if u is a solution on an interval I, and I, is an interval contained
in I, then the restriction of u to 75 is a solution on I5. For simplicity, assume global existence on some set
Q C X — i.e., assume that for each initial time @ € R and each initial value z € Q, there exists a solution
u(t) = u(t;a, z) for the initial value problem

{u’t)EF(t,u(t)) (@ <t < +00),

with u(t) taking values in Q. Also assume forward uniqueness — i.e., assume that whenever u(¢) and us(#)
are solutions of u’(t) € F(t,u(t)) on some interval [a,b], and ui(a) = uz(a), then uy(t) = us(t) for all
t € [a,b]. Under these conditions, it follows that U(t, s)z = u(t; s, z) defines an evolution operator on Q. We
say that U(t,s) (or u(t)) is the evolution generated by F, and that F is the generator of U.

An important special case is that in which F(¢,z) = G(z) does not depend on ¢. For that case, it follows
that U(t,s) = S(t — s) defines a semigroup S, called the semigroup generated by G, and G is called the
generator of that semigroup. That semigroup is often denoted S(t) = exp(tG) = €!“, because for many G’s
we have the exponential formula

(4.8) exp(tG)z = lim <I — EG) z,
n

n— o0

generalizing a familiar formula from undergraduate calculus. When G is continuous and linear, then (4.8)
and the other familiar formulas exp(tG) = lim, o (I + (t/n)G)™ and exp(tG) = 5.7, t"G™ /n! are valid;
but (4.8) is also valid for many G’s which are discontinuous and/or nonlinear — see Theorems 10.1 and 14.1.

For the benefit of newcomers who are unfamiliar with semigroup notation, here are two very elementary
examples for study: If X = R and G(z) = —(z + 5)3, then exp(tG)z = [2t + (z + 5)~2]~/? — 5. Continuity
of G is not required: If X is a space of functions z(f) from R into R, and G(z) = 2z + 6 + 5dz/df (with
domain equal to some suitable subspace of X), then [exp(tG)z](0) = exp(2t)z(0 + 5t) + 3exp(2t) — 3. These
examples are atypical in that we are able to give explicit formulas for exp(¢G). In many applications, the
most we can give is an approximating formula such as (4.8), and perhaps also some other properties of the
limit.

Notations like those above are also sometimes used when existence of solutions to (1.1) or (1.2) is only
known locally, not globally; but then the notation must be modified slightly and it becomes somewhat more
complicated. Even for locally defined solutions, however, the exponential notation remains the simplest
way to express certain ideas, e.g. the Trotter-Lie-Kato product formula (13.3); see for instance [111]. The
exponential notation is used less often in the study of temporally inhomogeneous evolutions (i.e., (4.3)-(4.4)),
but it can be extended to that context too; see for instance [34].

5. Generalizations of continuity. The literature concerning (1.1) varies considerably in its assumptions
about continuity of F. Some papers using dissipativeness conditions (discussed in §10 below) make no
assumption of continuity at all; these results have direct applications to partial differential equations. Most
other existence results for (1.1) assume F(¢, z) is continuous in z, or satisfies some condition generalizing
continuity, as discussed below. Still, the continuous theory might well be of interest even to researchers
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concerned primarily with discontinuous problems, for at least a couple of reasons. First, many of the
difficulties in the discontinuous theory are still present, albeit in simpler form, when we assume continuity.
Second, it may be possible to weaken or remove the continuity hypotheses from some of the continuous
theory, particularly by methods discussed in this section or in §12.

Numerous papers deal with (1.1) or (1.2) using assumptions of semicontinuity. A set-valued function
G is upper semicontinuous (respectively, lower semicontinuous) at a point zg if for each open set V' which
contains (respectively, meets) G(zg), the set {z : V meets G(z)} (respectively, {z : V contains G(z)}) is a
neighborhood of zg.

Some consequences: If the values of G are compact sets, then G is both upper and lower semicontinuous
if and only if G is continuous with respect to the Hausdorff metric on closed bounded sets. If the values
of G are closed subsets of a single compact set, then upper semicontinuity is equivalent to closed graph.
If the values of G are points, then either upper or lower semicontinuity in the sense above is equivalent to
continuity in the usual sense of functions.

Most of the results for semicontinuous set-valued functions assume the values of G are closed nonempty
subsets of R™. An introduction to this theory can be found in the book [4]. The main existence results are as
follows: Let F' be a mapping from [0, 7] x R" into the set of all nonempty closed subsets of R". Also assume
F satisfies some conditions of measurability and boundedness (which vary from one paper to another; see
§2). Then (1.1) has a Carathéodory solution if either

(5.1) for each ¢, F(t,") is lower semicontinuous, or

(5.2) for each ¢, F(t,) is upper semicontinuous and has convex sets for its values.

Condition (5.1) is used in [15], [77]; condition (5.2) is surveyed in [4]. Convexity cannot be omitted from
hypothesis (5.2), as the following simple example from [87] shows: With X = R, let

{1} when z < 0,
G(z)=1< {1l,-1} when z =0, and
{-1} when z > 0.

Then G is upper semicontinuous and has closed values, but (1.2) has no Carathéodory solution for u(0) = 0.
(However, (1.2) has a Krasovskij solution; see §3.)

The resemblance between upper and lower semicontinuity is only superficial. Hypotheses (5.1) and (5.2)
lead to two separate theories, whose solutions have fundamentally different properties. For instance, under
assumption (5.2), the solution set is closed and connected, and depends on the initial value in an upper
semicontinuous fashion; see [4]. Analogous conclusions are not valid under assumption (5.1).

Some attempts have been made to unify these two approaches, but so far the “unifications,” though
more general, have also been more complicated. Lojasiewicz [78] assumed, in addition to measurability and
boundedness conditions, that

for almost every ¢, for each z, either (a) F (¢, ) is convex and F(¢, ")
has closed graph at z, or (b) F(¢,-) is lower semicontinuous on some

neighborhood of z.

Similarly, Himmelberg and Van Vleck [57] assumed, in addition to measurability and boundedness conditions,

that
for each ¢, F(¢,-) has closed graph and, at each z, either (a) F (¢, z) is

convex, or (b) F(t,-) is lower semicontinuous at z.
It is not yet known whether a single sufficient condition can be given which is weaker than both (5.1) and

(5.2) and which is also simpler. A recent step in that direction was taken in [17]:

5.3. THEOREM (Bressan, 1987). Let F : [0,7] x R"™ — {compact nonempty subsets of R"} be bounded
and lower semicontinuous. Then there exists an upper semicontinuous function H with compact conver



nonempty values such that every Carathéodory solution of z'(t) € H(t,z(t)) is also a Carathéodory solution
of #'(t) € F(t,x(t)).

Bressan’s proof involves “directional continuity,” which is also of interest for its own sake. Directional
continuity is a weakened version of continuity, for single-valued functions. It was first used by [19]. One
simple application of it is as follows:

5.4. THEOREM (Pucci, 1971). Let & be a positive constant. Let G : R" — R"™ be a bounded mapping
which is continuous at each x where G(z) = 0. At each x where G(z) # 0, assume the following “directional
continuity” condition:

Tp—x G(z
loe —2l|  |IG(2

Ty o, Tk £,

;II H <5 = Glax) = Gla).

Let u(0) € R" be given. Then (1.2) has a Carathéodory solution for some T > 0.

Finally, we mention one other way of generalizing continuity. Discontinuous operators become continuous
if we restrict them to smaller domains; in some cases this restriction does not entirely destroy their usefulness.
For instance, the differential operator d/dz is uniformly continuous from the metric of L?(R) to the metric
of L?(R), when restricted to a bounded subset of the Sobolev space H?(R.); see [109]. Consequently, some
techniques of ordinary differential equations can be applied to some partial differential equations; see [109],

[110], [111].

6. Subtangential conditions. In some of the literature concerning (1.2), it is assumed that G is defined
on all of X, or at least on some neighborhood of the given initial value «(0). That assumption does simplify
some of the resulting local existence theory, but it precludes many important applications, especially to
partial differential equations. If the domain of G does not include a neighborhood of u(0), then generally we
must assume some condition at the boundary of the domain of G. Such conditions — known variously as
subtangential conditions, inwardness conditions, range conditions, and Nagumo conditions — are satisfied
trivially if G is defined everywhere, and so such conditions are not even mentioned in most papers concerned
with everywhere-defined functions.

We now introduce the main subtangential conditions, although some of them will not be used until §10
and 12. In the conditions below, “Ran” stands for range, “Dom” for domain, “cl” for closure, and “dist” for
distance. Some subtangential conditions, in order of increasing generality, are:

(6.1) Ran(I — hG) = X for all h > 0 sufficiently small;
(6.2) Ran(I — hG) D cl(Dom(G)) for all A > 0 sufficiently small; and
(6.3) lim infy o %dist(r, Ran(I — hG)) = 0 for all z € cl(Dom(G)).

That last condition is the case N = 1 of the following condition:

for each € > 0 and each zg € cl(Dom(G)), there exist a ¢ € (0, ¢],
(6.4) an integer N, and numbers h; > 0 and points y; € G(z;) such that

SN hi =8 and SO |Je — w1 — hiyi]| < €4

If G is single-valued, continuous, and bounded, then (6.3) is equivalent to this classical subtangential
condition:
. dist(z + hG(z), D)

(6.5) hrfﬁénf A =0,




where D 1s the domain of G. This condition is appealing because of its obvious geometrical interpretation:
it says, roughly, that the vector starting at z and pointing in the direction of G(z) points “into” — or at
least not out of — the domain. Condition (6.5), or one equivalent to it, is used in many different papers
which assume G is single-valued and continuous. In some of these papers, D is a closed set. A few papers
assume, more generally, that D is a locally closed set, 1.e., the intersection of an open set and a closed set —
equivalently, that each point z € D has a neighborhood N such that D(| N is closed.

Tt is easy to see that if (1.2) has a continuously differentiable solution u which begins at u(0) = z and
which remains in D, then (6.5) must be satisfied at z. Indeed, we have then

dist(z + hG(2), D) _ |l[z + hG(2)] —u(h)l| _ [[u(0) + hu’(0)] — u(h)]|
h - h B h

which vanishes as h | 0. That is, the tangent to the trajectory points into the domain. Thus, conditions like
(6.5) are necessary for the existence of solutions to (1.2). In the presence of certain other hypotheses, such
as dissipativeness or compactness (discussed in §7, 9), a condition like (6.5) is both necessary and sufficient
for the existence of solutions to (1.1). In finite dimensions, the earliest such result apparently was due to
Nagumo (1942); see [63] for further discussion and references.

Variants of (6.5) also apply to set-valued operators. For instance:

6.6. THEOREM (Bressan, 1983). Let D be a compact subset of a Banach space X, and let B be a bounded
subset of X. Let G : D — {nonempty closed subsets of B} be lower semicontinuous. Also suppose that

dist(z + hy, D
(6.7) forallz € D and all y € G(z), %&15(%%)

Let u(0) € D be given. Then u'(t) € G(u(t)) has a solution for all t > 0.

=0.

Martin [82] shows the importance of (6.5) without any assumptions of compactness or dissipativeness.
Let D be a locally closed subset of a Banach space X, and let G : D — X be single-valued, bounded
and uniformly continuous. Then (6.5) is necessary and sufficient for the existence of a class of approzimate
solutions for (1.2). Approximate solutions will be discussed further in §11.

Temporally inhomogeneous conditions corresponding to (6.5) and (6.3) are, respectively,

dist(z + hF(t, ), Dign)

(6.8) llIﬁénf h =0 for all (¢,z) € Dom(F(t,-));
dist(z I —hF(t+h,-
(6.9) it il R A S for all z € cl(Dom(F(¢,))).

These will be used in §9 and 10, respectively.

Closely related to subtangential conditions is the notion of invariant sets. Invariance has at least two
slightly different meanings. Let S be a subset of X, not necessarily the domain of G. Generally, we say S is
invariant for (1.2) if either

every solution of (1.2) which is in S at some time ¢ must remain in S at all
later times, or

(6.10)

for each initial value u(0) € S there exists at least one solution u of (1.2)
remaining in S for some 7" > 0.

(6.11)

Clearly, if uniqueness of solutions is known, then (6.11) = (6.10); if existence of solutions is known, then
(6.10) = (6.11). In most of the literature on invariance, both uniqueness and existence are known, so the
two notions of “invariance” coincide. See [50] for a theorem concerning (6.11) without uniqueness. See [99]
for results concerning (6.10) with a discussion of different kinds of uniqueness functions.

For solutions which remain in .S, the behavior of G outside S is irrelevant, so G might as well be undefined
outside S. Thus, for most definitions of “solution,” (6.11) is equivalent to the existence of solutions of (1.2)
if we replace G with its restriction to the set Dom(G)[)S. Invariance generally is guaranteed by conditions
similar to the subtangential conditions described earlier in this section. An important problem is to identify
invariant sets by some of their other properties. For further discussion of invariant sets see [21] [50] [63] [95]
[99] [100] [120] and other papers cited therein.
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7. Generalized compactness. As Dieudonné’s example (§2) showed, Peano’s local existence theorem 2.3 11
fails in infinite-dimensional Banach spaces. However, that theorem can be extended to arbitrary Banach

spaces in a natural way, if we restate the the finite-dimensional results a bit differently. Let us add to Peano’s
theorem the hypothesis that G is a compact mapping; i.e., G maps bounded sets to relatively compact sets.

(More generally, we could assume G maps some neighborhood of each point to a relatively compact set.)

Then Peano’s theorem remains unchanged in finite-dimensional spaces, since bounded sets in such spaces

are relatively compact; but Peano’s conclusion becomes valid in infinite-dimensional spaces as well. Peano’s
theorem can be generalized further:

For bounded sets S in a Banach space X, we define Kuratowski’s measure of noncompactness,

a(S) =inf{r : S can be covered by finitely many sets with diameter < r}.
Slightly less often used is the Hausdorff (or ball) measure of noncompactness,
B(S) = inf{r : S can be covered by finitely many sets with radius < r}.

These functions measure how far S is from being compact; they vanish precisely when S is relatively compact.
In fact, B(S) is the distance from cl(S) to the nearest compact set, in the Hausdorff metric (a metric on the
space of closed bounded sets). These two measures are equivalent in the sense that §(S) < «(S) < 23(S).
Other measures of noncompactness, and more general notions of such measures, can be found in the book
[8].

Now let w be a Kamke function (see §4). Assume that F : [0,7] x X — X is bounded and satisfies
Carathéodory conditions, and that

(7.1) a(F(1,5)) < w(t, o(S))

for all bounded sets S. Under various mild additional assumptions (discussed below), it follows that (1.1)
has a Carathéodory solution. The proofs make use of the Kamke function w in different ways. A typical
argument (from [82]) is roughly as follows: A sequence of approximate solutions {u,, } is carefully constructed,
with 4, (0) = u(0). Then (7.1) is used to show that the function p(t) = a({ui(t), ua(t), us(t),...}) satisfies
p'(t) < w(t,p(t)). Since p(0) = 0, it follows that p(¢t) = 0 for all #. Thus the sequence {uy} is relatively
compact, and some subsequence converges to a limit, which is then shown to satisfy (1.1).

Some of the earlier results in this direction were by Ambrosetti, Goebel and Rzymowski; we omit the
details. Among more recent and more general theorems, some of the most interesting results are as follows:
Szufla [119] showed that a solution exists if F'(¢, ) is uniformly continuous as a function of (¢, z) and (7.1)
holds. Pianigiani [91] showed that a solution exists if F' satisfies Carathéodory conditions and (7.1) is replaced
by this slightly stronger assumption:

léiﬁ)loz(F([t — 4,1+ 3] x 9)) <w(t,a(S)).

Li [76] observed that (7.1) can be weakened slightly, to

a(S) — o[l = hF(2,)](5))

(7.2) -

<w(t al9)) (h > 0),

if F' is uniformly continuous and bounded. Martin [82] used a similar condition for the autonomous problem
(1.2): Assume D = Dom(G) is closed and bounded, and G is bounded and uniformly continuous and satisfies

Ma—awéh@wﬂ<wﬂﬁ (h > 0)

(7.3) - <

with w constant; then (1.2) has a solution. Martin also obtained some other interesting consequences of

(7.3): Define

(7.4) W(t)z = {u(t) : u satisfies (1.2) with initial value z}.



Then W is a semigroup (in the sense of (4.5), (4.6)) on Q = {subsets of D}, and
(7.5) a (U W(t)z) <a(S)exp(tw)  (t>0),

generalizing (4.7). Also Martin showed that W (¢)z depends on z in an upper semicontinuous fashion.
Ménch and von Harten [83] showed that (7.1) suffices for existence if F'(t,2) is jointly continuous as a
function of (¢,z) and w is 1/2 times a Kamke function. In general, it is not known whether the factor of 1/2
can be omitted. This depends on certain questions of measurability which are pursued further by Heinz [52]
but are still not fully resolved.
As we noted in §4, the literature varies slightly on the precise definition of a “Kamke function.” For
uniformly continuous F'’s, Banas [7] discusses the requirements on the Kamke function w . He observes that

w(t,r) = sup{a(F(t,95)) : a(S) =r}

is the smallest function which satisfies (7.1). He shows that this function satisfies certain regularity conditions;
hence, assuming fewer regularity hypotheses about w does not permit wider choices of F. See [7] for the
technical details.

We have attempted to indicate the main ideas in this theory, but the literature abounds with general-
izations, mostly more complicated. We give two indications of the literature’s diversity: Tolstogonov [121]
uses measure of noncompactness with set-valued functions F', using some of the concepts discussed in §5.
Rzepecki [103] introduces Banach-space-valued measures of noncompactness, and then uses them to solve
some systems of ordinary differential equations in Banach spaces.

8. Isotonicity. Let K be a cone (closed, convex, and invariant under multiplication by positive scalars) in
a Banach space X. Then K is the positive cone for a partial ordering on X defined by: z < y if and only if
y—z € K. Wesay K is regular (in the sense of Kransnosel’skﬁ) if every monotone, order-bounded sequence
is convergent in norm to an element of X. A mapping G : X — X is isotone if 2 < y = G(z) < G(y).
(Such mappings are also called order-preserving, or monotone; but the latter term also has another meaning
indicated in §9 below.)

Let Y be an ordered Banach space. (Below, we shall take Y to be a space of functions from [0, 7]
into X.) Tt is easy to show that if ® : ¥ — Y is continuous (or, more generally, continuous from above
or from below) and isotone, and @ leaves invariant some order-interval J = {y : a < y < b}, then ® has
at least one fixed point in that order-interval. Indeed, we have ®(a), ®(b) € J, and ®(a) < ®(b); hence
a < ®(a) < ®(b) < b. Continuing in this fashion, we obtain sequences

a< ®(a) < D*a) <...<B"(a) <D (b) <....< BI(b) < B(b) < b.
Since the cone is regular, both the sequences {®"(a)} and {®"(b)} must converge to limits. Continuity (or
one-sided continuity) of ® implies that both of those limits (or one of those limits) are fixed points of ®.

This argument and some variants can be found in [69]. Also, some variants of this argument have
been used in solving a number of partial differential equations, especially elliptic ones, using the maximal
principle; see for instance [1] or [106].

In the paragraphs below, however, we shall only consider the abstract initial value problem (1.1). A
solution of (1.1) is the same thing as a fixed point for ®, if ® is the integral operator given by (2.5). For
® to be isotone, it suffices that F(¢, ) be isotone for each ¢. The remaining problem is to guarantee that &
leaves invariant some order-interval.

If F'is bounded, then ® maps into a bounded set. If the positive cone K has nonempty interior, then
every bounded set is contained in an order-interval. Thus we have sketched a proof of:

8.1. THEOREM (Stecenko, 1961). Let X be a Banach space partially ordered by a regular cone with
nonempty interior. Suppose F :[0,T] x X — X 1is single-valued, continuous, and bounded, and

(8.2) F(t,z) < F(t,y) whenever z<uy.
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Then (1.1) has at least one solution.

Stecenko’s hypotheses on K are really very strong. They are not satisfied by the usual positive cones in
any of the most familiar Banach spaces of real-valued functions. Indeed, in L*°(a, b) and in C[a, b], the usual
positive cone does have nonempty interior, but it is not regular. The same is true for B(S), the space of
bounded functions on a set .S, if that set S is infinite. In ¢g and in LP(a,b) (1 < p < o0), the usual positive
cone is regular but has empty interior.

Moreover, it is not possible to include those Banach spaces by proving a better theorem. Volkmann
[123], [124] gives examples showing that Stecenko’s conclusion fails when K is the usual positive cone in
¢g or in C[—1,1] — i.e., Volkmann gives examples of bounded, continuous, isotone F' for which (1.1) has
no solution. Volkmann’s examples are variants of Dieudonné’s example, mentioned in §2. Like Dieudonné,
Volkmann determines solutions componentwise and then shows that they do not lie in an appropriate space;
hence the particular choice of a notion of “solution” (discussed in §3, 11, 13, 14) is not at issue here.

What about using some cone K other than the usual cone of nonnegative-valued functions? Trivial,
degenerate choices will not satisfy Stecenko’s hypotheses: a cone which is too small has no interior, and a
cone which is too big is not regular. But Volkmann [124] notes that Stecenko’s conditions are satisfied in
any Banach space X, using a cone K constructed as follows: Let ¢ be any nonzero element of X, and let
p be any constant in (0, [|q||). Let S be the closed ball centered at ¢ with radius p, and let K = [J,5,AS.
Then it can be shown that Stecenko’s hypotheses are satisfied. -

Volkmann [123] also notes that Stecenko’s regularity hypothesis can be omitted at least in one important
case: Let S be an arbitrary set, and let X be the space B(S) of bounded, real-valued functions from S,
equipped with the supremum norm. Let K be the usual positive cone, i.e., those functions which are
nonnegative everywhere on S. Then K is regular precisely when S is finite; but (1.1) has a solution even if
S is infinite.

Volkmann [123] also observes that condition (8.2) can be weakened to the assumption that

(8.3) F(t,y)— F(t,z) > —w(y — z) whenever <y
for some real constant w, since then we can apply the preceding theorem to the function
H(t,z) = e“'F(t, e “'z) + wx

and obtain existence of the function v(t) = e“*u(t).

Because their hypotheses are so strong, Stecenko’s theorem and related results have few known ap-
plications. We have included these results simply because isotonicity is so very different from generalized
compactness or dissipativeness (§7 and 9). Two other related results, in finite dimensions, are also simple
enough to deserve mention:

Biles [11] has shown that if F' :[0,7] x R — R is bounded and measurable, and F(t, z) is both right-
continuous and upper semicontinuous in z for each fixed ¢, then (1.1) has a solution. Biles’ two assumptions
of one-sided continuity may be restated as follows:

limsup F(t,y) < F(t,z) = lim F(t,y).

y—T— y—z+

When X = R, Biles’ result extends Stecenko’s. We wonder if Biles’ result or one like it might be extended
to spaces of higher dimension.

Wend [127] considers R™ with its usual positive cone. He shows that if F' : [0,00) xR" — R" takes values
in the positive cone, and F (¢, z) is a nondecreasing function of both ¢ and z, then (1.1) has a Carathéodory
solution for some 7' > 0. No continuity or semicontinuity of F is assumed explicitly, but Wend makes use of
the fact that any isotone function from R. into R" is continuous almost everywhere.

9. Dissipativeness. Some introductions to dissipativeness are [26] and [73]. For completeness we give a
brief introduction here, with different emphases than those two sources.
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Let G be any map from the Banach space X into the set of all subsets (not necessarily nonempty) of
X. We say G is single-valued, or point-valued, if G(z) contains at most one point for each z. The effective
domain, the range, and the resolvent of G are defined by

Dom(G) = {z € X : G(z) is nonempty},

Ran(G)= | J G(x)= |J G@),

zeX z€Dom(G)
@) =T -AGe={y:z€y—AG(y)} (A>0).
The operator G is dissipative if

for each A > 0, the resolvent Jy is single-valued on Dom(Jy) = Ran(7 — AG)
and is Lipschitzian with Lipschitz constant < 1.

Equivalently, we say —G is accretive — or, in Hilbert spaces, —G' is monotone, but that word also has
another meaning (see §8). Much of the related literature is written in terms of accretive operators, rather
than dissipative operators, because the resulting notation is more consistent with the traditional notation of
hyperbolic partial differential equations — one of the most important applications of accretive/dissipative
operators. But we shall use the dissipative notation, since it is more consistent with the other theories
surveyed in this paper.

Locally Lipschitz mappings satisfy a local dissipativeness condition; hence so do continuously differen-
tiable mappings. Thus, in most studies of ordinary differential equations, both compactness and dissipa-
tiveness are available for existence proofs. Many nonlinear partial differential operators are dissipative, or
satisfy a similar condition, in suitably normed Banach spaces; see [25], [37], [38], [109]. For motivation,
consider that differential operators tend to be discontinuous under most natural topologies, but in many
cases their inverses — or their resolvents, which are inverses of perturbations of those differential operators
— are integral operators, which tend to be continuous under most natural topologies. For this reason, many
of the inequalities and other conditions in the dissipative theory are formulated in terms of the resolvent Jj,
rather than directly in terms of the generator G.

Dissipativeness can be restated in terms of the directional derivative of the norm:

_ llp+hall = Ilpll _ . llp+ hqll = llpll
(9.1) [p,ql- = sup A = lim A :

The last equality follows from the fact that ||p+ hg|| is a convex function of h, and hence (||p+ hq||—||p||)/h is
a nondecreasing function of h. Slight variants of (9.1) are used in various papers; here we follow the notation
of [73]. A consequence of (9.1) is

(9.2) |[p.al- | < llal|-

For motivation note that if X is a Hilbert space with inner product (, ), then [p,¢]- = Re(p, q)/||p||-
For any w € R, we say G is w-dissipative if G — w]l 1s dissipative. That condition holds if and only if

(9.3) [21 — 22,51 — y2]- <wljz1 — 23]

for all 1,29 € Dom(G) with 21 # 22, and all 1 € G(z1), y» € G(z2). A few papers call this “quasi-
dissipative,” but that term usually has another meaning: We say G is w-quasi-dissipative if

(9.4) 21— 22, 1] + [22 — 21, y2] - < wl|z — 22|
for all 21,22 € Dom(G) with z1 # 2, and all y1 € G(z1), y2 € G(z2). This is generally weaker than

w-dissipativeness (but not if X is a Hilbert space). A stronger condition than w-dissipativeness, used in a
few papers, is strict w-dissipativeness; this condition is obtained by using ¢ | 0 instead of ¢ 1 0 in (9.1).
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Dissipativeness is sometimes referred to as a “one-sided Lipschitz condition,” because if (2.2) holds then
(by (9.2)) both G and —G are w-dissipative. However, the converse is not valid. For instance, if A is a
linear, self-adjoint operator in a complex Hilbert space, then both i4A and —iA are dissipative, but A need
not be Lipschitz or even continuous. Dissipativeness does generalize another property of Lipschitz operators
mentioned in §4: If G is w-dissipative for some constant w, then each solution of (1.2) is uniquely determined
by its initial value, and the semigroup so determined is of type w — i.e., satisfies (4.7). More generally, if
F(t,-) is w(t)-dissipative for each ¢, and u and v are solutions of (1.1), then

(9-5) [[u(t) = v(®)|| < [[u(0) — v(0)|| exp[fs w(s) ds].

For continuous F' or G, these inequalities actually characterize dissipativeness.
The existence theory takes its simplest form when F' is continuous:

9.6. THEOREM. Let D be a locally closed subset of a Banach space X. Let F': R x D — X be single-valued
and jointly continuous. For each t, suppose F(t,-) satisfies (6.5) and is w(t)-dissipative, where w(-) is a
continuous function. Then for each u(0) € D, (1.1) has a solution at least for some T > 0. If D is closed,
then (1.1) has a solution u(t) for allt > 0.

The local existence result is essentially due to Martin [81], although he assumed strict w-dissipativeness.
That additional assumption was dropped in later papers which extended Martin’s result in other ways as
well. Most notably: [108] weakens the assumption of joint continuity to an assumption that F satisfies
Carathéodory conditions. In that paper, the domain of F is still “cylindrical,” i.e., of the form R x D.
Several other papers assume joint continuity, but permit F' to have a noncylindrical domain. It is assumed,
roughly, that the set D, = Dom(F(¢,-)) is upper semicontinuous from the left, as a function of ¢. Also,
the subtangential condition (6.5) is replaced with (6.8). Kenmochi and Takahashi [67] observe that, in the
presence of the other hypotheses, this subtangential condition is not only sufficient but also necessary for
the existence of solutions. Iwamiya [59] weakens the dissipativeness hypothesis, assuming instead only that

(9.7) [ =y, F(t,2) = F(t,y)]- <w(t,[lz - yl))

for some Kamke function w.
Note that (9.7) is a special case of (4.2), with V (¢, z,y) = ||z — y||. Also (9.7) = (4.1), in view of (9.2).

10. Dissipativeness without continuity. We now turn to the existence results in which F(¢,") is
dissipative but not necessarily single-valued or continuous. In most of these results, the solution obtained is
not a Carathéodory solution (defined in §3), but a still weaker “limit solution.” It may be rather ill-behaved,
but that is not necessarily a disadvantage to this theory, for it means that the theory can even be applied
to differential equations whose solutions are known to be ill-behaved — for instance, hyperbolic partial
differential equations with shocks. Limit solutions will be discussed in §11.

10.1. THEOREM (Crandall and Liggett, 1970). Suppose G is an w-dissipative operator in a Banach space
X, satisfying (6.2). Then G generates a strongly continuous semigroup S(t) = exp(tG), defined as in (4.8),
on cl(Dom(G)); and that semigroup is of type w (i.e., satisfies (4.7)).

The Crandall-Liggett theorem has been extended in a few ways:

Kobayashi [68] replaces hypothesis (6.2) with the weaker subtangential condition (6.3). This requires
that we replace the simple product of resolvents in (4.8) with a more complicated product of approximate
resolvents, such as that in (11.4) below. More recently, Kobayashi (unpublished result; mentioned in [26])
has shown that (6.3) can be weakened further to (6.4). In fact, for G dissipative, (6.4) is necessary and
sufficient for existence of a solution to (1.2).

The operator G need not be w-dissipative; it suffices for G to be w-quasi-dissipative, as in (9.4). This
weaker hypothesis was used by Kobayashi [68]. The extension from dissipative to quasi-dissipative is pri-
marily of theoretical, not applied, interest. Kobayashi gives an example of an w-quasi-dissipative operator
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which is not w-dissipative, but the example is quite artificial. Apparently no examples are yet known which
have real application.

A different direction of generalization is taken by Picard [92]. Let ¢ be a convex mapping from a
topological vector space X into R. The vector space X is ¢-complete if ¢(xm — x,) — 0 implies that
{zn} converges to a limit in X. An operator U in X is ¢-nonezpansive if ¢(Uz — Uy) < ¢(z — y) for all
z,y € Dom(U). An operator G is ¢-dissipative if the resolvent Jy = (I — AG) ! is ¢-nonexpansive for all
A > 0. (Actually, Picard calls such U “¢-contractive,” and says that —G is “¢g-accretive.”) Picard finds that
if X is a normed vector space, ¢ : X — R is convex and Lipschitzian, X is ¢-complete, G is ¢-dissipative,
and G satisfies (6.2), then the limit S(¢) defined in (4.8) exists on cl(Dom(G)), and S(t) is ¢-nonexpansive
for each t.

The Crandall-Liggett Theorem 10.1 and most of its extensions assert global existence, i.e., existence for
all £ > 0. This follows from the fact that, for simplicity, we have taken w to be constant, and also from the
global nature of our “range condition” (6.2) or (6.3). Weakening these conditions to local ones yields local
existence results. However, for simplicity of notation, most of the abstract theory of dissipative operators
has been developed with global estimates. In fact, much of the literature only considers the case of w = 0.
These restrictions are without substantial loss of generality, since most of the statements and proofs can be
extended to more general choices of w without great difficulty. Of course, for some applications, w must be
nonzero or even nonconstant; see for instance [109]. In most of the remainder of this survey, we shall only
discuss dissipativeness for the case of w = 0.

We shall have more to say about the autonomous problem (1.2) in later sections, but now let us turn
to the nonautonomous problem (1.1). The theory for this problem, with F(¢,z) dissipative in z, is not
unified; there are at least three substantially separate approaches to it. One approach, mentioned earlier, is
descended from Martin’s result, Theorem 9.6. A second approach is discussed below; a third approach will
be discussed in §14.

The Crandall-Liggett Theorem 10.1 has been generalized to temporally inhomogeneous problems (1.1)
— i.e., with F(¢,) dissipative and discontinuous — in a number of different ways, none of them wholly
satisfactory. All such generalizations involve regularity assumptions about the dependence of F(¢, ) on ¢
which, though fairly weak, seem somewhat unnatural and hard to motivate. Research in this area continues.
A good introduction to this area is given by the survey paper [86] and the book [89].

The earliest result in this direction is that of Crandall and Pazy [28]. They make regularity assumptions
of the form

(10.2) 75 ()2 — Jx(s)z|l < Alg(t) — g(s)|B(s, z),

where Jy(t) = (I—AF(t,-)) !. They give two versions. In one version (condition (C.1) in [28]), they assume
g is continuous and B(s, z) = L(||z||) for some increasing function I independent of s. In the other version
(condition (C.2)), they assume g is continuous and of bounded variation, and B(s, z) depends on ||z|| and
on the behavior of Jy(s) near z as A | 0; the details are complicated and are omitted here. Evans [36] keeps
the form of (10.2) but replaces continuity of g with integrability. The hypotheses of Crandall and Pazy and
of Evans imply that cl(Dom(F(t,-))) is independent of ¢, but that restriction is weakened in later papers
mentioned below.

Some subsequent papers have departed in form from (10.2). Hypotheses used are of roughly the following
form:

(10.3) [ Ix(t1) ey = Ja(t2)@e|| < |lwy — @2 + f(t1, t2) L(|[z1]])
or, alternatively,
(10.4) [21 — 22,91 — ya]— < f(t1,t2)L(||z1]]) whenever y; € F(t;,2;) (i=1,2),

in both cases for t; < t5. Here f is assumed integrable on [0,7] x [0,7], and f is also assumed to satisfy
some other conditions. Condition (10.2) is included by taking f(¢,s) = g(t) — g(s). Iwamiya, Oharu, and
Takahashi [62] have recently proven existence assuming f is integrable on [0,77 x [0,T], f(¢,t) = 0, and f is
continuous on the diagonal. Pavel [88] uses a quasi-dissipativeness condition, replacing the left side of (10.4)
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with [21 — 22, y1]- + [22 — 21, y2]—. The papers [61], [93], [94] assume regularity conditions similar to (10.3),
but applied to the “tangential” semigroups exp(hF (¢, -)) rather than to the resolvents Jy(t) = (I—=AF(t,-)) L.

In some papers, the factor L(||#1]|) is omitted. That omission might seem to be a severe restriction, in
that it requires the regularity of F(¢,z) in ¢ to be uniform for all  in Dom(F (¢, -)). But the factor L(||z1]|)

is unnecessary, as explained in [60]: If Crandall and Pazy’s condition (10.2) is satisfied, then — once one
has selected the initial value u(0) — one can restrict F' to a smaller set, still large enough to contain the
solution and all needed approximate solutions, but small enough so that — with a suitable choice of f —

the quantity [z1 — 22, y1 — y2]—/f(t1,t2) (or other relevant quantity) remains bounded.

Even with Crandall and Pazy’s condition (10.2), the regularity in ¢ (as ¢ — s, with s fixed) is uniform for
z in sets where B(s, z) is bounded, and those may be rather large sets. In contrast, if F' is jointly continuous
(or more generally, satisfies Carathéodory conditions), then F' behaves regularly in ¢ uniformly on compact
sets of z — but compact sets are not “large,” in infinite-dimensional spaces. It appears that Theorem 9.6 is
not a special case of the theories discussed in the last few paragraphs. Indeed, a simple example is given in
the introduction of [108], in which F': R x X — X satisfies the hypotheses of Theorem 9.6 (and moreover
F(t,-)is a bounded linear operator for each ¢), but F' does not satisfy ||F'(t, z)—F (s, z)|| < |g(t)—g(s)|B(s, z)
for any choice of B and integrable g. An easy modification of the computations in [108] shows that this
same F also does not satisfy (10.2). One wonders whether this F' can be made to fit (10.2) by a suitable
restriction of domain.

Conditions (10.2)-(10.4) are sufficient to make various existence proofs work, but motivation for those
hypotheses is not entirely clear. In light of the example just noted, those hypotheses seem somewhat
unnatural. It is not yet clear what hypotheses would be more natural. A first guess would be to impose
Carathéodory conditions on the resolvents Jy(t) = [I — AF(t,-)] !, rather than on F itself. However, an
example given by Freedman [41] shows that that does not work. In Freedman’s example, F'(¢, ) is a bounded
linear operator for each ¢, and the resolvent Jy(¢)z is a jointly continuous function of A, ¢, and z. Yet
(10.2) is not satisfied and (1.1) has no solution. Freedman’s example is also noteworthy in that he proves
nonexistence using a technique substantially different from that of Dieudoné [33] (sketched in §2). Most of
the examples of nonexistence to be found in the literature are slight variants of Dieudonné’s example.

11. Limit solutions. There are a number of initial value problems, arising in control theory or in fluid
mechanics, for which a “solution” is known to exist by physical considerations, but for which that “solution”
is not differentiable [25], [37], [38]. An abstract theory to support these applications is desirable, even if
it requires somewhat complicated notions of “solution.” As we remarked at the end of §3, such a solution
need not satisfy (1.1) in any direct sense; the relation (1.1) is kept merely as an abbreviation for the more
complicated notion of “solution” to be used.

We say u(t) is a limit solution of (1.1) if there exist a sequence of numbers £, | 0 and a sequence
of functions v,(t) — u(t), such that v, is an e,-approximate solution of (1.1). A function »(¢) is an e-
approzimate solution of (1.1) if v comes within ¢ of satisfying (1.1) in some suitable sense. The precise
definition of “c-approximate solution” varies from one paper to another; some typical versions are indicated
below. We shall not attempt to give all the variants in technical detail. (In fact, many of the papers surveyed
do not use the terminology given here, but their results can easily be reformulated in this terminology.)
Usually the definitions require that u(#) be continuous and that the convergence v, () — u(¢) be uniform
over all ¢t € [0,7T], but these requirements are weakened in some papers discussed below. The existence
theorems usually do not assert that every sequence of e-approximate solutions converges to u as € | 0, but
only that some such convergent sequence exists. In some results with compactness, the limit solution u is
not unique, and different approximating sequences {v,} may converge to different limit solutions u.

Even when a Carathéodory solution exists, one common method of constructing that solution is by
taking the limit of a sequence of approximate solutions. Generally, if F' is continuous in its second argument,
then every limit solution is a Carathéodory solution. If F' is not continuous in its second argument, then a
limit solution u(t) need not be a Carathéodory solution, and in fact u(#) need not be differentiable for any ¢.
A simple example of a nowhere differentiable solution is given in [27]. Moreover, u(t) need not take values
in Dom(F(t,-)) — but under most definitions of “limit solution,” u(t) does take values in cl(Dom(F(¢,)).

The simplest type of approximate solution is an “outer perturbation”: v is an e-approximate solution
of (1.1) in this sense if v is absolutely continuous, differentiable almost everywhere, and satisfies
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[o"(t) = F(t, o)l < for 0<t<T.

This condition generalizes to multivalued F as well: use the distance from v’(t) to F(¢,v(t)) instead of the
norm of the difference. Equivalently, v is an e-approximate solution of (1.1) if v is a Carathéodory solution

of
(11.1) v'(t) € F(t,v(t)) + B

where B is the closed unit ball.

A more general approach involves “inner perturbations;”

we replace (11.1) with
(11.2) v'(t) € F(t + [—¢,¢],v(t) + £B) (0<t<T).

It 1s easy to see that any limit of outer perturbations is a limit of inner perturbations. The converse holds if
F is single-valued and continuous, but not in general. In the terminology of Héjek [48] (modified slightly),
u is a Hermes-x solution of (1.1) if u is a uniform limit of e-approximate solutions in the sense of (11.2).
In many of the constructions found in the literature, the interval [0, 7] is (for fixed £) partitioned into
subintervals:
O=tg<ti <ta < ... <ty =T,

where h; = t; —tj_1 < € for all j. Then the approximate solution v(¢;) is defined at each partition
point ¢;, typically by some recursion on j, using some subtangential condition such as (6.8) or (6.9). The
approximate solution v(¢) is then defined either as a step-function which is constant on each open subinterval
(tj—1,t;), or as a piecewise-linear function which is affine on each closed subinterval [t;_1,%;]. These two
methods for defining v(t) differ only superficially, since both methods must yield the same uniform limit
u(t) if that limiting function is continuous. The method of step-functions — in particular, the backward
difference method, discussed further below — has been especially popular among papers with discontinuous
F(t,-) (§10), perhaps because this brings the definition of “solution” closer to the method of proof. On the
other hand, the piecewise-linear approach has an advantage in that it makes the definition of “approximate
solution” simpler and more intuitive: Each approximate solution is itself the exact (Carathéodory) solution
of an approximating differential equation, such as (11.2).

Generally, v(t;) is chosen recursively from v(t;_1) so that [v(¢;) —v(¢;j-1]/h; is exactly or approximately
equal to an element of one of the following sets:

F(tj_1,v(tj—1)), used in forward difference schemes, also known as Euler
polygonal approrimations;

F(tj,v(t;)), used in backward difference schemes;
(t;—t; — 1)t f;?_l F(s,v(tj—1)) ds, used in Euler-Lebesgue approzimation;

or some other function involving F (o, v(7)) for one or more values of ¢ and 7 in the interval [t;_q,;].

The backward difference method uses a product of resolvents, as in the Crandall-Liggett Theorem 10.1,
or an approximate product of resolvents, as in the example below. In the papers discussed in §10, the
definition of “solution” is very complicated, and must be bewildering to newcomers to this subject. A
typical definition is as follows: v is an e-approximate solution to (1.1) (with initial value u(0) given) if there
exists a partition

(11.3) O=to<t; <.. <ty_g<ty=T

and points zy € Dom(F(tg,-)) and px € X, such that

llzo — u(0)]| <
tp —tk_1 <€ (k:l,?,...,N);
(11.4) v(0) = zo, and v(t) =z for t € (tg-1,t%] (k=1,2,...,N);

(:Elj\r_ xk—l)/(tk — tk—l) — Pk € F(tk,.l‘k) (]fi =1,2,.. .,N); and
2ok=1(te —te-1)llpe]l <e.
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It may be helpful to observe that
T € {I — (tk — tk—l)[pk + F(tk, ~)]}71(CE1€_1) (]i' =1,2,.. .,N),

and thus in a sense z; & Jy(fg)xg—1 with A =t5 —t5_1.

A “solution” in these papers is a continuous function u(t) which is a uniform limit of such approximations
v(t), as € | 0. The existence of such approximate solutions follows easily from a subtangential condition
such as (6.9). The hard part of this theory is proving their convergence to a limit (which proof we shall not
attempt to sketch here).

Any such limit solution is also a Hermes-* solution, as we shall now show. For each e-approximate
solution v and error terms pg asin (11.4), let w be the piecewise-linear function which is affine on each interval
[tk—1,tx] and agrees with v at the endpoints of that interval; then w'(t) € pr+ F (¢, z) on that interval. Let
p(t) be the step-function which satisfies p(¢) = p on the interval (tx_1,%x), and let z(t) = w(t) — fot p(s) ds.
Then fot llp(s)]|ds < e, hence ||z(t) — w(t)]| < e for all ¢, and z'(t) € F(tk,zx) C F([t —&,t + €], z5). As
¢ | 0, the v’s converge uniformly to u; hence so do the w’s; hence so do the z’s; hence ||v — 2||sup 0. Since
u is continuous, sup{||z(t) — zx|| : t € [xg—1, 2]} | 0 also. Thus z'(¢) € F([t —6,t + 4], z(t) + 6 B) for some §
which goes to 0 when ¢ | 0.

Thus, any backward difference scheme limit solution is also a Hermes-* solution; perhaps this observation
will be helpful to beginners trying to come to grips with (11.4). Tt is not known (at least, to this author)
whether the converse holds — i.e., whether every Hermes-* solution is also a backward difference scheme
limit solution. Such a converse would follow if dissipativeness of F(¢,-) is enough to guarantee uniqueness
of Hermes-# solutions of (1.1).

With most definitions of “limit solution” — including all of those discussed above — the limit u(¢)
is required to be a continuous function of ¢. In §13 and 14 we shall discuss some other approaches to
(1.1) which permit discontinuities in u for various theoretical reasons. Moreau [84] permits discontinuities
for more practical reasons: For some differential equations with applications to elastoplastic mechanical
systems, the physically “natural” solution u(#) may have jump discontinuities. Moreau [85] observes that
if u(t) is discontinuous, then it is not natural to require approximate solutions v, (¢) to converge uniformly
in ¢. Indeed, if u(¢) has a jump at ¢y of size r or larger, and if ||u — vp||sup < 7, then v, must also have a
jump (possibly of a different size) at the exact same location #g. Tt is more natural to require v, to have a
jump near tg. This effect is achieved by requiring the sequence {v,} to converge to u in graph, rather than
uniformly.

All the notions of “solution” discussed so far depend only on the topological vector space structure of
the Banach space X. If we replace the norm on X with an equivalent norm, then a solution of (1.1) remains
a solution. Intuitively, we expect the same to be true for our methods of proving existence of solutions.
But our methods of proof are very norm-dependent. To apply existence theorems such as those discussed
in §7-10, we must choose precisely the right norm on X; an equivalent norm will not necessarily work. For
instance, if an operator G is dissipative with respect to one norm, the same operator GG is not necessarily
dissipative (or w-dissipative, or even w-quasi-dissipative) with respect to any other, equivalent norm.

Some interesting approaches have been used to get around this difficulty. For instance, in studying
nonautonomous problems (1.1), [64] and [126] use a whole family of norms || ||;, parametrized by the time
variable ¢; each instantaneous operator F'(t,-) is shown to satisfy dissipativeness and other conditions with
respect to || ||¢. Ideally, we would prefer to find some topological vector space condition, not dependent
on particular norms, which generalizes dissipativeness and which is satisfied by F(t,-) for all . The notion
of “dissipative,” though very useful for applications, is not completely satisfactory from a purely theoretical
point of view.

In the linear theory of dissipative operators, this is not a problem. The norm on the Banach space X
can always be replaced by an equivalent norm, so that a semigroup S satisfying ||S(t)|| < Me“" for some
constant M becomes a semigroup of type w. Thus, M gets replaced by 1 (see [46]). An analogous trick
does not work for nonlinear semigroups. The best we can do is replace the norm with an equivalent metric,
making the Banach space X into a Banach manifold. That approach has been investigated by Marsden [30],
but it requires more smoothness than is customary in the theory of nonlinear semigroups. The smoothness
requirements have recently been weakened somewhat by Pimbley [97].
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12. Identification of the limit. Usually, a proof of existence of a solution to (1.1) can be divided into
three main steps — approximability, convergence, and identification — discussed in greater detail below.
This outline is indicated in [73], for instance. (A variant of this outline is needed for proofs which use
fixed point theorems; see the discussion after (13.4).) Of course, even in papers where these three steps are
followed, they may not be mentioned explicitly; most papers in existence theory combine the steps. But we
may understand these three steps more clearly if we study them separately; they involve different techniques
and different hypotheses. The first two steps can be described briefly, since they involve ideas which we have
already discussed at some length:

(1) Existence of approximate solutions. We must show that e-approximate solutions v exist, for arbitrar-
ily small values of . Generally the approximate solutions must be constructed with some care, so that the
next two steps will be possible. Existence of approximate solutions follows from a subtangential condition
such as those discussed in §6.

(2) Convergence to a limit. We must show that some sequence of approximate solutions v, (with ¢, | 0)
converges to some limit u. This usually follows from a hypothesis of generalized compactness, isotonicity,
or dissipativeness — discussed in §7-10. Thus, those three substantially different hypotheses play analogous
roles. Hence there is some hope of unifying their three separate theories, as discussed in §15.

The third step will require a lengthier discussion:

(3) Identification of the limit. Roughly, the goal of this step is to show that the limit u(¢) obtained in
Step 2 is really a “solution” in some sense, i.e., to establish some connection between u(t) and the differential
inclusion (1.1). Step 3 is optional: Some connection is implicit in the definition of e-approximate solution
used in Step 1, and so a further connection is not absolutely necessary. However, that implicit connection
is rather indirect, and not fully satisfactory. If one’s notion of “solution” is too general, then everything
becomes a solution, and existence theory becomes meaningless. Tt is desirable to show that the solution ()
obtained in Step 2 is uniquely determined by (1.1), or at least that the set of solutions is narrowly restricted
by some properties connecting it more closely to the differential equation (1.1).

The simplest case is that in which F(¢,z) is single-valued, bounded, and continuous in its second
argument. Then, generally, the limit solution is also a Carathéodory solution. A typical proof runs thus:
We observe that the approximate solutions satisfy an approximate version of the integral equation (2.4).
Applying Lebesgue’s Dominated Convergence Theorem, we find that the limit u(t) satisfies (2.4). Variants
of this argument sometimes work when F' is set-valued and semicontinuous, as discussed in §5.

Thus, one of the chief uses of a hypothesis of continuity of F' (in conjunction with hypotheses of
compactness or isotonicity) is for identification of the limit. If we are satisfied with the identification property
already implicit in our definition of e-approximate solutions, then continuity of /' becomes less important. For
instance, Héjek [48] observes that if F: [0,7]x R™ — R" is bounded, then there exists a convergent sequence
of Euler-polygonal approximations for (1.1). We need not assume F' is continuous — or even measurable!
These results extend easily to multivalued F' in infinite dimensional spaces, if we assume Ran(F') is compact.
We speculate that, analogously, the continuity hypotheses in some other known existence theorems might be
weakened or removed if we weaken the method of identification of the limit (as suggested in the paragraphs
below). The present author hopes to research this idea further in the near future.

Even if the solution u(¢) is not differentiable, other methods of identifying the limit may be available.
Such methods have been developed especially for F(¢,-) dissipative and discontinuous.

The concept of “envelope solutions” was introduced by Pierre [93], [94] and developed further by
Iwamiya, Oharu, and Takahashi [61]. A function u is an envelope solution of (1.1) if

1 [T-h
lhiﬁ)lE/O [|lu(t + h) —exp(hF(t,-))u(t)| dt = 0.
Roughly, the idea is that at each instant ¢ the trajectory u(t) is “tangent” to the semigroup exp(hF(t,-)),
and thus behaves like that semigroup, at least momentarily. The solution u(#) need not be differentiable,
but the tangential semigroups need not be differentiable either.

Another approach is that of integral inequalities. An evolution operator U(t, s) is the integral solution
of (1.1) if it satisfies

(12.1) U, r)er — zof| < ||21 — 22| — / {[U(s,r)xl — z9, —w|_ + f(s,r)} ds
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for all [r,¢] C [0,77], all 1 € Dom(F(r,-)), all ¢ € [0,7], and all w € F(q,z). Here f is the function which
appears in (10.3) or (10.4). Under appropriate hypotheses on F, (12.1) determines U (¢, r) uniquely. This
inequality is given in [86], for instance. It generalizes an inequality which was developed by Bénilan for the
quasiautonomous problem, i.e., the problem in which F' can be written in the form F (¢, z) = G(z) + g(t).

Another approach to identification involves continuous dependence (discussed further in the next sec-
tion). For simplicity, suppose that for each (u(0), F') in some problem space P, the construction described
above as Steps 1 and 2 yields a unique solution u which is a point in some solution space §. Define a
mapping T' : P — 8§ by u = T'(u(0), F'). Suppose that some topologies on P and § can be described simply
and naturally, and that they make the mapping I' continuous. Moreover, suppose that u is a Carathéodory
solution (or other easily-motivated solution) of (1.1), for all («(0), F') in some dense set Py C P. Then it is
reasonable to call u = ['(u(0), F) a “solution” of (1.1) in a generalized sense, even for (u(0), F') outside that
dense set. If ' is uniformly continuous, then we can replace P with its completion, thus motivating solutions
for a possibly larger class of initial value problems. Even if the solution u is not uniquely determined by u(0)
and F, the preceding argument is applicable if we can show that the set of solutions depends continuously
on the data, as indicated in the next section.

13. Continuous dependence. Assume (for the moment) that for each F' in some suitable class of
operators, and each 4(0) in some suitable subset of X, the initial value problem (1.1) has a solution u. Does
u depend continuously on the initial value u(0) and the generator F'? This question is important for many
reasons: (i) As we noted at the end of the previous section, continuous dependence results can be viewed as
a method of identification of the limit. (ii) Continuity of a map such as (u(0), F') — u is one of the principal
ingredients in applications of the Schauder Fixed Point Theorem — see for instance the discussion after
(13.4), below. (iii) The data u(0) and F may be based on a physical experiment, and so the specification of
u(0) and F' may involve inexact measurements; we would like to know that small errors in the data cause
only small errors in u. (iv) If F' is discontinuous or otherwise badly behaved — or if u(0), which itself may
lie in some function space, is badly behaved — we may wish to replace F' or u(0) with a “nearby” choice
which is better behaved, to facilitate computations or proofs; we would like to know that this will not change
u greatly either. (v) The convergence of approximate solutions to a limit can be viewed as a special case of
continuous dependence results, since — as we noted in (11.2) — approximate solutions to an initial value
problem are themselves excact solutions to approximating problems. (vi) Continuous dependence results can
be applied in existence proofs in other ways, too. For instance, in [108], a continuous dependence result is
used to show that a certain “nice” class of initial value problems has solutions taking values in a separable
subset of X. That implies that a certain “bad” set of values of ¢ has Lebesgue measure 0. That fact, in
turn, 1s used to prove convergence of some of those “nice” solutions, and hence to prove existence of limit
solutions to some not-so-nice initial value problems.

Let us survey first the continuous dependence of u on u(0). We have already seen that if F(¢,-) satisfies
a dissipativeness condition for each ¢, then wu(t) depends on u(0) in a Lipschitz fashion (9.5). Without
dissipativeness, other hypotheses may be needed to guarantee uniqueness, as noted in §4. In finite dimensions,
for F' bounded but possibly discontinuous, it is known that uniqueness of solutions implies continuous
dependence on initial values; see [49]. In infinite dimensions, however, this result fails, even for continuous
F; see [42].

Continuous dependence is meaningful even without uniqueness of solutions. If F' is a bounded, upper
semicontinuous map from [0,7] x R"™ into the nonempty compact convex subsets of R", then the set of
solutions of (1.1) is a compact set which depends in an upper semicontinuous fashion on the initial data; see
[4]. Similar results apply to at least some initial value problems in infinite-dimensional spaces; for instance,
see the remark after (7.5).

Next we shall survey the dependence of u on F. We shall not give complete details here, but shall
try to indicate some of the most interesting ideas. The theory of dependence on F' is unavoidably more
complicated than that of the dependence on u(0), for u(0) is just a point in X, while F' is a function of
two arguments, possibly discontinuous and set-valued. Moreover, as we vary the choice of F, even the set
Dom(F) C [0, T] x X may vary.

For simplicity of notation, let F = F(t,z,0), where f takes values in some parameter space. For
each fixed 6, assume F(-,-,6) is a generator, i.e., its initial value problem is “solvable” in some sense. For
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motivation, at first we shall assume that F(-, -, ) is single-valued and defined everywhere on [0,7] x X, and
that the solution to the initial value problem is unique. For part of the discussion below, we shall need to
vary the initial time, so let us rewrite the initial value problem (1.1) as

{u't)eF(t,u(t),a) (a <t<b)

Let the unique solution be denoted u(t) = u(¢; a, z,6) to display its dependence on the various arguments.
The continuous dependence problem now 1s to show that if F' depends continuously on # in some appropriate
sense, then so does u.

It is not hard to choose a topology for u. In most of the literature, u is a continuous function of ¢, and
so we consider u(-;a,z,6) as an element of the Banach space C([a,b]; X) with the usual supremum norm.
We want 6 — u(-;a,z,0) to be continuous from the parameter space into C([a, b]; X) for each choice of a
and z.

The choice of a topology for F is not so simple. Numerous different topologies have been used in the
literature (and the choice will become more complicated when we permit F' to be set-valued). The simplest
choice is pointwise continuity — i.e., F(t,z,6) is a continuous function of f, separately for each ¢. This
assumption can be made separately for each z, or uniformly on certain sets of #’s — e.g., for bounded z, or
for z lying in a compact set, etc. This kind of hypothesis is found in some textbooks [51]. Tt is sufficient to
guarantee continuous dependence of u on 6§, in the presence of various additional technical assumptions about
F(-,-,0). In fact, variants of this pointwise continuity assumption are sufficient even if F is discontinuous in ¢
and z, set-valued and not everywhere defined. For instance, Crandall and Pazy [28] assume that F(¢, z, 6) is
dissipative in z for each t and 6, and that the resolvent Jy(t,6)z = (I — AF(t,-,6)) 'z depends continuously
on 6 for each fixed A, ¢, and z. Under these assumptions, plus some mild technical hypotheses, it follows
that u depends continuously on 6.

For another topology on F', consider the mapping t — F(t, z, ) as an element in L'([a, b]; X) for each
fixed = and §. We shall say F depends L'-continuously on @ if the mapping § ~ F(-,z,0) is continuous
from the parameter space {#} into L!([a,b]; X), for each fixed z (or uniformly on certain sets of z’s). This
hypothesis does not differ greatly from pointwise continuity: any L'-convergent sequence of functions on
[a, b] has a pointwise-convergent subsequence, while any bounded, pointwise convergent sequence of functions
on [a, b] converges also in L'.

One example of L'-continuity has been studied extensively: An operator G is m-dissipative if it is
dissipative and satisfies (6.1). Let G be an m-dissipative operator in a Banach space X. Then for each
z € cl(Dom(@G)) and each g € L([0,T]; X), the quasiautonomous problem

(13.1) {U’(t) € G(u(t)) +g(1) 0<t<T),

has a unique solution u(t) = u(¢; z, g). Using (12.1), it can be shown that

t
llu(t; 21, 91) — ult; 22, g2)|| < [|21 — 2| +/ llg1(s) — g2(s)]| ds,
0

and hence u(t; z, -) is continuous on L!([0,T]; X). (We remark that this quasiautonomous problem in X can
be reduced to an autonomous problem in X x L([0, +00); X); see [29].)
For a weaker hypothesis than pointwise- or L!-continuity, we shall say F' depends integral-continuously

on 6 if
t

(13.2) O(t,2,0) = / F(s,z,0)ds
0

is a continuous function of #. For many classes of F’s (discussed below), it can be shown that u depends
continuously on # for all choices of ¢, a, and z if and only if F depends integral-continuously on 6 for all
choices of ¢ and z. (It is necessary to permit the initial time a to vary, since the behavior of F(s,z,0)
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for s < a is unrelated to the behavior of u(¢;a,z,6).) Of course, the “if” part of this statement is the
practical part for most applications, since we generally can verify conditions on F' more directly and more
easily than conditions on u. The “only if” part 1s of interest because it tells us our theory is headed in the
right direction: in some sense, the practical part can’t be improved. Integral-continuity yields a topology
on the F’s weak enough so that many sets are compact; this compactness has some applications mentioned
below. The fact that the topology can’t be improved — i.e., weakened further — follows from the theorem
in point-set topology that no Hausdorff topology on a set can be strictly weaker than a compact Hausdorff
topology.

Obviously, L'-continuity implies integral-continuity. Integral-continuity is in fact a weaker hypothesis,
especially in cases where F oscillates rapidly as ¢ varies. For instance, suppose H (s, z) is periodic in s with
period 1 (e.g., let H(s,z) = sin(s/27)). Let

H(t/0,z) when ¢ # 0,
Pt 0= {c;(m) = J H(s,2)ds when 0 =0.

Then F(t,z,0) generally is discontinuous at # = 0 in both the pointwise- and L!'-senses, but ®(¢,z,6)
is continuous there. In cases where integral-continuity is sufficient for continuous dependence of u, this
tells us that the solution of u'(t) € H(¢t/f,u(t)), with u(0) given, converges as § — 0 to the solution of
u'(t) € G(u(?)).

An interesting special case is that in which H(s,z) = B(z) for 0 < s < 1/2 and H(s,z) = A(z) for
1/2 < s < 1, where A and B are two m-dissipative operators. Then the convergence result just described
reduces to the Trotter-Lie-Kato product formula:

(13.3) A8y = lim [exp (iA) exp (zB)] x.
n—00 n n

This formula is valid for many, but not all, choices of A and B. See [65] [66] [70] [75] [96] for some recent
discussions of this formula. A particularly simple example in which the formula fails is given by [112]: Let
X be the complex Banach space of bounded sequences of complex numbers, with the supremum norm; let
A({zx}) = {tkzr + 1} and B({zx}) = {tkzy — 1}. Then (13.3) can be shown to fail at z = 0.

The assumption of integral-continuity apparently was first used by Gihman [44], to prove continuous
dependence for a very simple class of ordinary differential equations in finite dimensions. The converse (“only
if”) part apparently was first noted by Artstein [3]. Gihman’s continuous dependence principle has been
extended to many other classes of initial value problems; the rather strong assumptions about F' suggested
above can be weakened considerably in numerous different directions. We note a few of those directions
below, but we omit the many technical details, which vary from one paper to another. Although the several
existence theories for (1.1) are far from unified, each has a version of Gihman’s principle which is true for
at least some F’s. These different versions are proved separately by different methods, but their similarity
suggests that there may be a single theory underlying them all. The present author hopes to research this
idea further in the near future.

The paper [108] proves a version of Gihman’s continuous dependence result in infinite dimensions,
assuming F'(¢, z, §) continuous and dissipative in z. The paper [110] extends Gihman’s result to a case where
F(t,-,0) is actually discontinuous, but is uniformly continuous and dissipative when restricted to suitable
subsets of the Banach space X. These hypotheses are weak enough to apply to some partial differential
equations with smooth coefficients.

A variant of Gihman’s principle applies to the quasiautonomous problem (13.1), at least for some choices
of G. Following the terminology of [112], we say an m-dissipative operator G has Gihman’s property if the
solution u(t; z,g) of (13.1) depends continuously on the indefinite integral of g, as g varies over a weakly
compact set of integrable functions. Many, but not all, m-dissipative operators have this property; see
[112]. This continuous dependence property has consequences for existence theory, as follows: Let G be an
m-dissipative operator (not necessarily satisfying any compactness condition), and let H : X — X be a
continuous mapping with relatively compact range (not necessarily satisfying any dissipativeness condition).
Let z € cl(Dom(G)). Does the “dissipative plus compact” problem
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(13.4)

necessarily have any solutions? It does if we impose some additional mild hypotheses on G or H or X, but
in general the answer is not yet known. The best results in this direction use the following observation: A
solution of (13.4) is the same thing as a fixed point of the map v — u(-; 2z, H o v), where u(t; z, g) is the
solution of (13.1). Such a fixed point exists by Schauder’s Fixed Point Theorem (or a variant thereof) if G
has Gihman’s property (or some variant thereof). Here we make use of the many compact sets made available
by the topology of integral-convergence, mentioned earlier. The “dissipative plus compact” problem will be
discussed further in §15.

For applications of Gihman’s principle, the solution u of (1.1) need not be uniquely determined by F'.
Nonuniqueness can be dealt with in at least a couple of ways. In [30] [117], the functions F' and ® are
set-valued. Continuity is defined for ® and for the set of solutions {u} by using the Hausdorff metric to
measure the distance between two sets. Again, a variant of Gihman’s integral convergence is shown sufficient
for continuous dependence.

Another approach to nonuniqueness is taken by [11] [107]. In those papers, the Banach space X con-
sidered is the real line. The generator F' considered — discontinuous in both papers — does not uniquely
determine the solution u, but among the solutions is a mazimal (i.e., largest) solution. One-sided continuous
dependence results (i.e., involving lim sup’s and inequalities, instead of limits and equations), analogous to
Gihman’s result, are proved for the maximal solution.

Variants of Gihman’s hypothesis also suffices for continuous dependence for some stochastic differential
equations; see [43] [122].

Continuous dependence results such as those described above can be taken as a basis for extending the
notion of “differential equation.” The following discussion is based on Kurzweil [71]. (We now drop the 6
from our notation.) If we substitute (13.2), then the integral equation (2.4) can be restated as

(13.5) u(t) —u(0) = /0 d (s, u(s)) limz[q)(tk,u(rk)) — ®(tg-1, U(Tk))]

where 7, € (tx—1,1%) and the limit is taken over partitions (11.3) partially ordered by refinement. Many of
the main equations, inequalities, and theorems about existence and continuous dependence — including a
version of Gihman’s principle — can then be restated in terms of ® and Kurzweil’s integral (13.5), without
ever mentioning the original function F', and much of the theory then takes a simpler form. Now define u to
be a solution of the generalized differential equation

u'(t) = Dy®(t, u(t))

if u satisfies (13.5). Then the theory of existence and continuous dependence of such solutions can be
developed entirely in terms of ®. We have mentioned F' only for motivation; we do not need to assume that
® arises as in (13.2). Some assumptions must be made about @, of course, but the natural hypotheses on
® are in many cases simpler and weaker than those implicit in (13.2). In particular, neither ®(¢, z) nor u()
need be a continuous function of t. Schwabik [114] applies these ideas to differential equations with impulses.

Kurzweil’s integral is a variant of the Stieltjes integral. Schwabik [115] compares Kurzweil’s integral
with those of Perron and Young. For equations using the usual Stieltjes integral, Binding [13] [14] develops
a theory including some results on existence (generalizing Caratheddory’s Theorem 3.1), uniqueness, contin-
uous dependence, and other results. (However, Binding does not give an analogue of Gihman’s convergence
principle.)

Finally, we note that integral-continuity plays an important role in the study of nonautonomous differ-
ential equations as dynamical systems (invariance principles, stability, etc.): Let © be a subset of a Banach
space X, and let F be some family of mappings from R x Q into X. Assume that each F' € F generates
an evolution on €, in the sense of (4.3)-(4.4); denote that evolution by U (¢, s; F). Also assume that F, € F
whenever h > 0 and F € F, where Fy(t,z) = F(t+h, z). Then it follows that U(¢,s; Fp) = U(t+h,s+h; F).
Hence
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on(s) (3"

defines a semigroup (in the sense of (4.5)-(4.6)) on Q x F. For some choices of F, the topology given
by integral-convergence is compact. Now stability results, invariance results, etc. can be applied to the
semigroup &; they yield corresponding results for the evolution U. The semigroup § is called the skew
product semidynamical system. It was first studied by Miller and Sell, and later by Wakeman, Artstein, and
others; an introduction to this subject is given by [105].

14. Bijections. In the continuous dependences I' : F' +— u described in the preceding two sections, we
know the domain P (i.e., the set of F’s) and the codomain § (i.e., a space containing the set of u’s), but
generally we do not have a characterisation of the range T'(P). Under stronger h ypotheses than those of
the previous section, we are sometimes able to give bijections F' <+ u, where both domain anad range are
known. All such results are motivated by the following classical result:

14.1. THEOREM (Hille and Yosida, 1948). Formula (4.8) gives a one-to-one correspondence between linear,
strongly continuous semigroups S(t) = exp(tG) of type w (i.e., satisfying (4.7)) on a Banach space X, and
linear, densely defined operators G on X such that G — wl s m-dissipative. Moreover, G can be recovered
from S by the formula

G(z) = lim S(t)z —=
t40 t

with Dom(G) consisting of those x for which the limit exists.

The theory of linear semigroups is extensive; see [46] for a thorough introduction. Part of the Hille-
Yosida Theorem extends to nonlinear operators in an arbitrary Banach space, in Theorem 10.1. However,
the bijection between S(t) and G does not extend to the setting of that theorem. Crandall and Liggett [27]
give an example with X = R? normed by ||(21,22)|| = max{|21], |x2|}, in which many different generators
G yield the same semigroup S.

All the results stated in 14.1 do extend to nonlinear semigroups in a sufficiently nice Banach space —
e.g., a Hilbert space, or more generally a uniformly smooth Banach space, or still more generally a reflexive
Banach space with uniformly Gateaux differentiable norm. The nonlinear semigroup is defined on a closed
convex nonexpansive retract C' of the Banach space, and the limit defined in (4.8) exists for all  in a dense
subset of C'; see Reich [101] [102] for further details.

We turn now to the temporally inhomogenous theory. A number of bijections have been established
between classes of evolution operators U and their generators F'. In most of these results, F(¢,-) and U (¢, s)
take their values in the space B(X) of bounded linear operators on the Banach space X. However, U (¢, s)x
need not be a continuous function of ¢. In the temporally inhomogeneous case, discontinuity in ¢ is quite
natural, as we noted in §4 and 13.

Many of the bijection results use the following notation, or a close variant: Let W be a mapping, not
necessarily multiplicative, from {(¢,s) : —oo < s <t < oo} into B(X). We define the “sum integral” and
“product integral,” respectively, as

b
STW = m[W (tn, tno1) + ..+ W(ta, 1) + W(t1, to)]

b
[IW =tm[W(tn tn_r) o0 W(ts, 1) o W(t1, to)]

when these limits exist; the limits are taken over of partitions of [a, b]:
(14.2) a=ty <t <ty <...<t, =0,

with those partitions partially ordered by refinement. (In some papers, the symbol [ is used in place of X.)
Note that if V(t,s) = EZ W exists for all [s,?] C [a, b], then it is additive — i.e., V(¢,s) + V(s,7) = V(¢,7).
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Similarly, if U(t,s) = Hi W exists for all [s,t] C [a,b], then it is multiplicative (i.e., an evolution, in the
sense of (4.3), (4.4)). We say W has bounded variation on an interval [a, b] if

SUp{[|W (tn, tn-1)ll + .+ [[W (t2, t2) || + [[W (t1, 20) || } < o0,

where the supremum is taken over all refinements (14.2) of some partition of [a,b]. (Clearly, if W is an
additive function given by W(t,s) = w(t) — w(s), then W has bounded variation in the sense above if and
only if w has bounded variation in the usual sense of real analysis.) Helton [53] has proven that if W has
bounded variation on [a, b], then ZZ W exists if and only if [\ (I + W) exists for all [s,#] C [a, b].

To relate these results to differential equations, take (13.5) as a starting point, but with ®(s,-) linear.
Then we write ®(s, u(s)) = ®(s)u(s), and the condition we wish to satisfy is the Stieltjes integral equation

(14.3) u(t) —u(r) = / d® - u

for all 7, ¢ in the time-interval being considered. The solution is given by u(¢) = U(¢, 7)u(r), where U(¢,r)
is a multiplicative function (i.e., an evolution). Thus (14.3) can be restated in terms of U:

U(t,r):[—i—/t d® - U(-,r).

Define an additive function V(¢,7) = ®(¢) — ®(r); then the function ® or V can be retrieved from the
evolution U by

V(t,r) =) — ®(r) = / U(s,b)dU(b,s).

Here s is the variable of integration, and b is an arbitrary constant; the value of the Stieltjes integral can be
shown independent of the choice of b. This formula is equivalent to

t

(14.4) Vit,ry=>Y_[U-1.

-
Conversely, we can obtain U from V' by the formula

t

(14.5) U(t,r)=[JU+VvI

r

In fact, formulas (14.4) and (14.5) give a bijection between additive V’s with bounded variation and mul-
tiplicative U’s with U — I having bounded variation. For an introduction to this subject and proof of this
bijection see MacNerney [79].

A number of subsequent papers have extended MacNerney’s bijection; we mention a few of the simplest
and most interesting extensions. Operators are continuous and linear except where otherwise noted.

Herod [54] permitted the operators to be nonlinear. However, the other conditions involved in Herod’s
bijection are complicated.

Freedman [40] added an assumption of continuity, but weakened MacNerney’s hypothesis of bounded
variation to a hypothesis of bounded p-variation. The p-variation of a function W over an interval [a, ] (in
the sense of Wiener [128]) is the supremum of the quantities

W (st DI+ o+ Wt )]+ W (11, 20) 7] 7

over all partitions (14.2) of the interval. For further references concerning the p-variation, see [40].

Herod and McKelvey [55] permitted their operators V (¢, s)z to be discontinuous in z, in a somewhat
weak sense. They did this by using a scale of Banach spaces Xo C X; C X3 C --- C Xn. Each generator
V(b,a) is assumed to be continuous from X, to Xp,41, but possibly discontinuous from X, to X,. Their
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somewhat complicated bijection has the virtue of including the classical Hille-Yosida Theorem 14.1 as a
special case. Freedman [39] extended this result further, so as to include evolutions U (¢, s)z which may be
discontinuous in ¢.

The results of Hinton [58] take us a bit further from the simple initial value problem (1.1), but weaken
MacNerney’s hypotheses slightly and also strengthen the symmetry: the limit procedures in (14.4) and (14.5)
are special cases of a single mapping. Let F be the class of all functions F : [a,b] X [a,b] = B(X) with
these properties: (i) F'(¢,t) = I for all ¢; (ii) for each fixed r, F(-,7) has left- and right-hand limits at every
point of (a,b), and one-sided limits at a and at b; and (iii) for each fixed ¢, F(¢,-) has bounded variation.
(Note that F' is not assumed multiplicative or additive.) Hinton shows that for each F' € F there is a unique
M € F satisfying the Stieltjes-Volterra integral equation

M(t,r):[—}—(L)/t dF(t,s) - M(s,r)

for all [r,t] C [a,b]. (Here (L) [ denotes a left Cauchy integral, with s being the variable of integration; see
[58].) Thus M = C(F) defines a mapping from F into F. Hinton shows that this mapping C is in fact a
bijection from F onto F, and moreover CC(F) = F for each F € F. When U and V are an evolution and
generator satisfying the hypotheses of MacNerney [79] and related by (14.4) and (14.5), then Hinton shows
that U,V € F and that

U=C(I-V) and V=I-C{U).

15. Unification. The ultimate problem in existence theory is to find necessary and sufficient conditions on
u(0) and F for the existence of a solution to (1.1). This problem is too hard for the near future, but it does
suggest various subproblems which are worth pursuing. Foremost of these is the unification of the known
sufficient conditions for existence of solutions.

As we have indicated in §12, the conditions of generalized compactness, isotonicity, and dissipativeness
play analogous roles; each is a hypothesis used in proving convergence of approximate solutions. These three
conditions are quite different, and have led to three largely separate theories. Still, those three theories have
some analogous structures, as we have tried to indicate by the use of the same letter w in inequalities (7.1),
(8.3), (9.7). Does a single, weaker condition underlie the three hypotheses for convergence — or at least two
of them?

Little has been done to find hypotheses weaker than that of isotonicity (§8). One approach worth noting
is that of Calvert [18], who defines K-dissipativeness, analogous to dissipativeness, in terms of a cone K.
Existence of solutions is proved under the assumption that the cone is normal, i.e., that the ordering satisfies
0 <z <y= |z|| <|lyl]. However, Picard [92] shows that if G is K-dissipative and K is normal, then
|| || can be replaced by an equivalent norm which makes GG dissipative. Of less interest for the goals of this
survey, but still worth mentioning, are some results with stronger hypotheses, involving both isotonicity and
dissipativeness [2] [10], or involving both isotonicity and compactness [72].

More has been done in unifying compactness and dissipativeness. Martin [82] and Li [76] observed that
(7.3) is satisfied if G is w-dissipative or if G satisfies a generalized compactness condition of type (7.1). A
drawback to the approach of Martin and Li is that they require their operators to be uniformly continuous,
thus excluding the many applications of the dissipative theory to partial differential equations. It would be
interesting to weaken or remove that uniform continuity assumption.

The sum of two uniformly continuous operators satisfying (7.3) is another such operator (add the w’s
— see [82]), and so the existence results with hypothesis (7.3) include, as a special case, some results on the
existence of solutions to differential inclusions of the form (13.4), where G is m-dissipative and H satisfies
some sort of generalized compactness condition such as (7.1). However, stronger results for (13.4) have been
proved by other methods not involving (7.3).

Without further assumptions, does (13.4) necessarily have a solution? In general, the answer is not yet
known. Various partial answers can be divided into two main classes:

(a) Assume G is continuous, and defined on all of X. Without further assumptions, it is not known
whether (13.4) necessarily has a solution. But (13.4) is known to have a solution if G or H is uniformly
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continuous, or if G + H is uniformly continuous, or if the Banach space X is uniformly smooth [113]. See
the survey [124] for further references.

(b) Assume H has relatively compact range. Again, existence is known if any one of several additional
assumptions holds, but not otherwise. For details see the surveys [47] [112], and other papers cited therein;
for more recent results not mentioned in those surveys see also [56] [125]. A chief method here is that of
fixed point theory, as discussed after (13.4).

Even if we can unify the three known hypotheses for convergence, we are still a long way from a full
understanding of the autonomous problem (1.2). To see this, note that any nonautonomous problem (1.1)
in a Banach space X can be transformed to an autonomous problem v’(t) € G(v(¢)) in R x X, via the

transformation
1) 0=(io) 0=

However, when we apply this transformation to existence theorems for (1.1), it yields existence theorems for
(1.2) which are not at all understood except via this transformation. For instance, some of the theorems
discussed in §9-10 assume, roughly, that F'(¢,z) is dissipative in z, and integrable in ¢ in some sense. For
t1 # tq, the functions F'(t1, ) and F(f2, -) may be almost entirely unrelated. Hence, although the operator G
given by (15.1) must satisfy some conditions sufficient for existence of solutions, those conditions have very
little resemblance to dissipativeness, compactness, or isotonicity.
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