Name (please print):
Math 250 Test 2, Wednesday 22 October 2008, 4 pages, 50 points, 50 minutes
Reference section. Following are two formulas that you were told you did not need to memorize, but did need to understand how to use:

Zadeh: $\quad \llbracket A \rightarrow B \rrbracket=1-\max \{0, \llbracket A \rrbracket-\llbracket B \rrbracket\}=1+\min \{0, \llbracket B \rrbracket-\llbracket A \rrbracket\}$
Sugihara: $\llbracket A \rightarrow B \rrbracket=\left\{\begin{array}{lll}\max \{-\llbracket A \rrbracket, \llbracket B \rrbracket\} & \text { if } \llbracket A \rrbracket \leq \llbracket B \rrbracket \\ \min \{-\llbracket A \rrbracket, \llbracket B \rrbracket\} & \text { if } \llbracket A \rrbracket>\llbracket B \rrbracket\end{array}\right.$
(12 points) Evaluate:
In the Zadeh interpretation, $\left(\frac{1}{2} \boxtimes \frac{1}{3}\right) \Theta \frac{1}{5}=$
Solution: $\frac{1}{2} \oslash \frac{1}{3}=\min \left\{\frac{1}{2}, \frac{1}{3}\right\}=\frac{1}{3}$, and then $\frac{1}{3} \Theta \frac{1}{5}=1-\max \left\{0, \frac{1}{3}-\frac{1}{5}\right\}=13 / 15$.

In the Sugihara interpretation, $(2 \otimes-3) \Theta 5=$
Solution: $2 \bowtie-3=\min \{2,-3\}=-3$, and then $-3 \Theta 5=\max \{--3,5\}=5$.
In the comparative interpretation, $(2 \boxtimes-3) \Theta 5=$

Solution: $2 \mathbb{\otimes}-3=\min \{2,-3\}=-3$, and then $-3 \Theta 5=5-(-3)=8$.
In the powerset interpretation with $\Omega=\mathbb{Z}$, evaluate
$(\{1,2,3\} \boxtimes\{3,4,5\}) \Theta\{1,2,3,4,5,6,7\}=$
Solution: $\{1,2,3\} @\{3,4,5\}=\{1,2,3\} \cap\{3,4,5\}=\{3\}$, and $\mathbf{C}\{3\}=\mathbb{Z} \backslash\{3\}=$ $\{1,2,4,5,6,7, \ldots\}$. Then $\{3\} \Theta\{1,2,3,4,5,6,7\}=\{1,2,3,4,5,6,7\} \cup \mathbf{C}\{3\}=\mathbb{Z}$ or Ω.
(6 points) Draw a diagram showing which of the following formula schemes are specializations or generalizations of which others:

$$
\mathcal{A}=P \rightarrow Q \quad \mathcal{B}=R \rightarrow(S \vee T) \quad \mathcal{C}=(U \wedge V) \rightarrow W
$$

$$
\mathcal{D}=(H \wedge I) \rightarrow(J \vee K) \quad \mathcal{E}=(H \vee I) \rightarrow(J \wedge K) \quad \mathcal{F}=R \rightarrow(\bar{S} \vee T)
$$

(4 points) Let X be the formula $\pi_{1} \rightarrow\left(\pi_{2} \vee \neg \pi_{3}\right)$. Draw a tree diagram of X.

(The plus
and minus
symbols were not required for this problem but were helpful for the next problem.)
(5 points) For the same formula X given above, list all of the subformulas of X. Classify each subformula's relation to X by listing it in one of the following two columns. $\underline{\text { order-preserving/isotone/increasing } \quad \text { order-reversing/antitone/decreasing }}$

$$
\begin{gathered}
\pi_{1} \rightarrow\left(\pi_{2} \vee \neg \pi_{3}\right), \quad \pi_{2} \vee \neg \pi_{3}, \\
\neg \pi_{3},
\end{gathered} \pi_{2} \quad
$$

$$
\pi_{1}, \quad \pi_{3}
$$

The most common error was to omit the formula X, which is an isotone subformula of itself; one-point penalty for that.
(8 points) Let $\Omega=\{0,1,2,3\}$ and

$$
\Sigma=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\{1,2,3\}, \Omega\} .
$$

Then Σ is a topology on Ω (you don't have to prove that fact; you can take my word for it). Now let $\llbracket A \rrbracket=\{1\}$ and $\llbracket B \rrbracket=\{2\}$ and $\llbracket C \rrbracket=\{3\}$. Evaluate
$\llbracket \bar{C} \rightarrow(A \vee B) \rrbracket=\quad$ in the topological interpretation.

Answer. Ω or $\{0,1,2,3\}$.
Solution and partial credit. Reason as follows:
Noting $\llbracket \bar{C} \rightarrow(A \vee B) \rrbracket=\operatorname{int}(\llbracket A \vee B \rrbracket \cup \mathbf{C} \llbracket \bar{C} \rrbracket)$ is worth 1 point.
$\llbracket A \vee B \rrbracket=\{1\} \cup\{2\}=\{1,2\}$. That's worth 1 point.
$\mathbf{C} \llbracket C \rrbracket=\Omega \backslash\{3\}=\{0,1,2\}$ is worth 2 points, or $\llbracket \neg C \rrbracket=\operatorname{int}(\mathbf{C} \llbracket C \rrbracket)=$ $\operatorname{int}(\{0,1,2\})=\{1,2\}$ is worth 4 points, or $\mathbf{C} \llbracket \bar{C} \rrbracket=\{0,3\}$ is worth 5 points.

Finally, showing $\llbracket A \vee B \rrbracket \cup \mathbf{C} \llbracket \bar{C} \rrbracket=\{0,1,2,3\}$ or $=\Omega$ in your computations is worth 7 points. Putting either of those answers in the answer box (i.e., realizing that you've arrived at the answer) is the 8th point.

The answer, in any case, should be a member of Σ. I gave zero partial credit for any answer that was not a member of Σ.

The most common error was as follows: $\llbracket \neg C \rrbracket$ should be equal to int $(\mathbf{C} \llbracket C \rrbracket)$, but some students simply took $\llbracket \neg C \rrbracket$ to be $\mathbf{C} \llbracket C \rrbracket$, which is $\{0,1,2\}$. That's not a member of Σ, so it can't be the semantic value of a formula, but let's continue the computation as though it were. Now its complement is $\{3\}$, and so some students took $\llbracket \bar{C} \rightarrow(A \vee B) \rrbracket=\operatorname{int}(\llbracket A \vee B \rrbracket \cup \mathbf{C} \llbracket \neg C \rrbracket)$ to be equal to int $(\{1,2\} \cup\{3\})=\{1,2,3\}$. I gave 5 points for this incorrect answer.
(7 points) Show that $(A \rightarrow B) \rightarrow(A \rightarrow(A \rightarrow B))$ is not a tautology in the
comparative interpretation, by giving suitable values of

$$
\llbracket A \rrbracket=\square \quad \text { and } \quad \llbracket B \rrbracket=\square .
$$

Solution. Recall that in the comparative interpretation, $x \Theta y=y-x$. Therefore

$$
\llbracket(A \rightarrow B) \rightarrow(A \rightarrow(A \rightarrow B)) \rrbracket=((\llbracket B \rrbracket-\llbracket A \rrbracket)-\llbracket A \rrbracket)-(\llbracket B \rrbracket-\llbracket A \rrbracket)=-\llbracket A \rrbracket .
$$

To get that to be less than 0 (and thus false), we just need

$$
\llbracket A \rrbracket=\text { any positive integer; } \quad \llbracket B \rrbracket=\text { any integer } .
$$

(8 points) Church's chain is an interpretation that can be described as follows: For semantic values use the numbers ± 1 and ± 2, with $\Sigma_{+}=\{+2,+1,-1\}$ and $\Sigma_{-}=\{-2\}$. Let \otimes be the maximum and let \otimes be the minimum of two numbers. Let $\odot x=-x$. Finally, define implication by

(Thus $S \ominus T$ is true if and only if $S \leq T$.) This logic has enough in common with familiar logics such as classical logic that it is worthy of study. But it has at least a few properties of relevant logic. For instance, $(A \wedge \neg A) \rightarrow B$ is tautological in classical logic, but you are now to show that $(A \wedge \neg A) \rightarrow B$ is not a tautology in Church's chain, by giving suitable values of

Hint: First figure out what are the possible values of $A \wedge \neg A$.

Solution. We can compute

$$
\begin{array}{ccccc}
\llbracket A \rrbracket & -2 & -1 & +1 & +2 \\
\llbracket \neg A \rrbracket & +2 & +1 & -1 & -2 \\
\llbracket A \wedge \neg A \rrbracket & -2 & -1 & -1 & -2
\end{array}
$$

We're trying to find an example in which $\llbracket(A \wedge \neg A) \rightarrow B \rrbracket$ is false; that requires $\llbracket A \wedge \neg A \rrbracket>\llbracket B \rrbracket$. Since $\llbracket A \wedge \neg A \rrbracket$ is either -2 or -1 , the only way it can be greater than $\llbracket B \rrbracket$ is if $\llbracket A \wedge \neg A \rrbracket=-1$ and $\llbracket B \rrbracket=-2$. Thus we have either $\llbracket A \rrbracket=-1$ and $\llbracket B \rrbracket=-2$ or $\llbracket A \rrbracket=+1$ and $\llbracket B \rrbracket=-2$.

