Name (please print):

Math 250 Test 1, Wednesday 24 September 2008, 3 pages, 50 points, 50 minutes

(12 points) For each statement, check either true (T) or false (F).

\mid statement domain \rightarrow	real nu	ımbers	integers		explanation (not required)
	Т	F	Т	F	(mot roquirou)
$\forall x \forall y \exists z \ xy = z$	1		1		
$\forall x \forall y \exists z \ xz = y$		1		1	z = y / x fails when x=0
$\exists x \exists y \forall z \ xz = y$	1		1		Let x=y=0.

(12 points) Fill in the truth table. Use 1 for true, 0 for false, with classical two-valued logic.

\overline{P}	Q	$P \rightarrow Q$	$(P \to Q) \to P$	$((P \to Q) \to P) \to P$
0	Ō	1	o	1
0	1	1	0	1
1	0	0	1	1
1	1	1	1	1

(4 points) Let $S = (0,1) \cup [2,3]$. Consider this as a subset of \mathbb{R} .

If
$$\mathbb R$$
 has the Euclidean topology, then $\operatorname{int}(S) = \{0,1\} \cup \{2,3\}$

If $\mathbb R$ has the discrete topology, then $\operatorname{int}(S) = \{0,1\} \cup \{2,3\}$

(6 points) Let $A=\{1,2,3\}\cup[5,8]$ and $B=\{2,3,4\}\cup(7,10].$ Find:

$$A \cap B =$$
 {2,3} \cup (7,8]

$$A \cup B =$$
 {1,2,3,4} \cup [5,10]

$$A \setminus B = \boxed{\{1\} \cup [5,7]}$$

(2 points) What is the powerset of {1,2}?

$$\{\varnothing, \{1\}, \{2\}, \{1,2\}\}$$

(2 points)

	true	false
$\varnothing \in \{\varnothing\}$	1	
$\varnothing\subseteq\{\varnothing\}$	1	

Explanation (not required):

 $x \in \{x\}$ for any object x

 $\varnothing\subseteq S\quad \text{for any set } S$

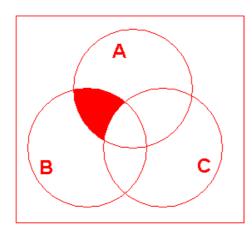
(8 points) Let $\Omega = \{1, 2, 3\}$. Then

$$\Sigma = \Big\{\varnothing, \; \{1\}, \; \{2\}, \; \{1,2\}, \; \Omega\Big\}$$

is a topology on Ω . (You do not have to prove that fact; you can take my word for it.) List all the subsets of Ω that are not open for this topology, and for each one, give its interior with respect to this topology.

s	{3}	{1,3}	{2,3}
int(S)	Ø	{1}	{2}

(4 points) Draw a Venn diagram of $A \cap (B \setminus C)$.



(The box is a necessary part of the diagram, as I explained in the book and in class; omitting it cost a point.)