1. Day 2: Appendix A, Day 1 of 2
1.1. Review Questions. 1. State the rules for factoring $x^{2}-y^{2}, x^{3}-y^{3}$, and $x^{3}+y^{3}$. Verify that the formulas are correct by multiplying out the factored expressions.
2. Explain what it means for an expression to be a rational expression. How do you add or subtract two rational expressions? How do you multiply them? How do you divide one by another?
1.2. Basic Skills. Use the laws of exponents to simplify the following:
3. $x^{3} x^{5}$
4. $\frac{x^{3}}{x^{5}}$
5. $\frac{x^{a+b}}{x^{a}}$
6. $\left(y^{3} y^{4}\right)^{\frac{1}{5}}$
7. $\left(\frac{4 x^{-2} y^{3}}{x^{\frac{1}{2}} y^{-\frac{1}{3}}}\right)^{3}$
8. $\left(\frac{27 x^{3} y^{4}}{8}\right)^{\frac{1}{3}}$

Factor each of the following completely:
9. $x^{2}+5 x-6$
10. $x^{2}+5 x+6$
11. $6 x^{2}+13 x-5$
12. $x^{4}-16$
13. $4 a x^{2}+28 a x+49 a$
14. $2 x^{3}+16$
15. $8 x^{3} y^{3}-64$
16. $x^{3}-x^{2}-x+1$

Simplify the following expressions completely:
17. $\frac{4 x}{x^{2}-9}-\frac{5}{x-3}$
18. $\frac{2}{2 x^{2}+x-1}+\frac{x-1}{x^{2}-x-6}$
19. $\frac{x^{2}\left(x^{2}-4\right)^{-\frac{1}{2}}-\left(x^{2}-4\right)^{\frac{1}{2}}}{x^{2}}$
20. $\frac{1}{x+h}-\frac{1}{x}$
21. $\frac{3}{\sqrt{x+h}}-\frac{3}{\sqrt{x}}$
1.3. Explain Why or Why Not. 22. Determine whether the following statements are true, and give an explanation or a counterexample.
a. $\frac{0}{0}=1$.
b. The function $f(x)=x^{\frac{2}{7}}$ is never negative for any value of x.
c. $\sqrt{a+b}=\sqrt{a}+\sqrt{b}$ for all a and b.
d. $(a+b)^{n}=a^{n}+b^{n}$ for all a and b and any positive integer n.
e. The expression $x^{2}+y^{2}$ cannot be factored, but $x^{2}-y^{2}$ can be factored.

2. Day 3: Appendix A, Day 2 of 2

2.1. Review Questions. 1. Explain what the slope of a line is in relation to the graph of that line. If you are given the equation of a line, how do you find its slope? Are there any other ways you can find the slope of a line without its equation?
2. If the slope of a given line L is m, what is the slope of every line parallel to L ? What is the slope of every line perpendicular to L ?
3. Write $f(x)=|2 x-8|$ as a piecewise function. Give an interpretation of $f(x)$ in terms of the distance between x and another number.
2.2. Textbook Exercises. p.1067, numbers 1, 2, 6, 31, 33-44.
2.3. Distance Formula. Given the following points A and B, find the distance between A and B.
4. $A=(-8,-2), B=(4,3)$
5. $A=(0,0), B=(a, b)$
6. $A=(-2,1), B=(4,-7)$
7. $A=(5,-5), B=(11,-4)$
2.4. Explain why or why not. 8. Determine whether the following statements are true, and give an explanation or a counterexample.
a. The point $(1,1)$ is inside the circle of radius 1 centered at the origin.
b. $\sqrt{x^{2}}=x$ for all real numbers x.
c. $(\sqrt{x})^{2}=x$ for all real numbers x.

3. Day 4: Equations and Inequalities

3.1. Basic Skills. Solve the following for x :

1. $7 x-5=4-2(3-x)$
2. $x^{2}+4 x=5$
3. $3 x^{2}+4 x+1=0$
4. $5 x^{2}-4 x=12$
5. $x^{3}-k x^{2}-x+k=0$
6. $\frac{x^{2}}{x+3}=-4$
7. $x+\frac{4}{x}=4$
8. $\left|x^{2}+2 x\right|+1=0$.

Find all values of x satisfying the following inequalities. State the solution in interval notation.
9. $(2 x-1)(x-3)(x-5)<0$
10. $x^{2}+b x \geq 0$
11. $x^{3}-4 x<0$
12. $4 x^{2}+5 x+1>0$
13. $\frac{-8(x-3)^{\frac{1}{3}}}{(6-x)^{\frac{5}{3}} x^{\frac{4}{3}}}>0$
14. $|2 x-5| \geq 7$
15. $|4 x+3|<\varepsilon$
16. $|a x+4|>3, a \neq 0$
4. Day 5: Section 1.1
4.1. Textbook Exercises. p. 7 , numbers 1, 2, 3, 5, 7, 9, 10; 21, 23, 26, 28, 30; $31,32,34 ; 47,49,50,52$ (no graphing); 55, 58, 73, 74
5. Day 6: SECtion 1.2
5.1. Textbook Exercises. p. 19, numbers 2, 3, 5-10, 17, 20, 30-32, 40, 41, 44-47, 52-54
6. Day 7: SECTION 1.3
6.1. Textbook Exercises. p. 31, numbers 1, 2, 5, 6, 11-15, 17-21, 41-43, 58
6.2. Explain why or why not. Determine whether the following statements are true, and give an explanation or a counterexample.
a. If there is a horizontal line that intersects the graph of $y=f(x)$ zero times, then $f(x)$ is not invertible.
b. $3^{2 x}=9^{x}$.
c. If $f(x)=\frac{1}{x}$, then $f^{-1}(x)=\frac{1}{x}$.
d. If $f(x)=\sqrt{x}$, then the domain of $f^{-1}(x)$ is all real numbers.

7. Day 8: SECTION 1.4

7.1. Textbook Exercises. p. 43 , numbers 1, 4, 5, 7, 8, 15, 17, 18, 19, 66, 67, 69, 71, 72, 75,76
7.2. Explain Why or Why Not. Determine whether the following statements are true, and give an explanation or a counterexample.
a. $\sin (x+y)=\sin x+\sin y$.
b. If (x, y) is a point on the unit circle, and the segment from (x, y) to the origin makes an angle of θ with the positive x-axis, then $\cos \theta=x$ and $\sin \theta=y$.
c. All of the six trigonometric functions are positive in the first quadrant, but there is no quadrant where all of the six trigonometric functions are negative.
d. In a right triangle, $\sec \theta$ is the length of the hypotenuse of the triangle divided by the length of the side opposite θ.

8. Day 9: Trigonometric Equations

8.1. Review Questions. 1. How many solutions does $\cos x=\frac{1}{2}$ have?
2. How many solutions does $\cos x=\frac{1}{2}, 0 \leq x<2 \pi$ have?
3. How many solutions does $\cos 3 x=\frac{1}{2}, 0 \leq x<2 \pi$ have?
4. To solve the equation $\sin x=y$, must y be in the domain or range of $\sin x$?
5. To solve the equation $\sec ^{2} x=2 \tan ^{2} x$, can you multiply both sides of the equation by $\cos ^{2} x$? Explain why or why not.
8.2. Basic Skills. Find all solutions to the following trigonometric equations in $[0,2 \pi)$:
6. $\sin x=\frac{\sqrt{3}}{2}$
7. $\tan x=-1$
8. $\csc ^{2} x=2$
9. $\sec 4 x=-2$
10. $\sin 3 x=\cos 3 x$
11. $2 \sin ^{2} x+\sin x=1$
12. $2 \cos ^{2} x+7 \cos x=4$
13. $\sin 2 x \sin x-\cos x=0$
14. $\cos 2 x+\sin ^{2} x=\frac{1}{2}$
15. $\sec ^{2} x=2 \tan ^{2} x$
16. $\tan ^{2} x+\sec x-1=0$
8.3. Explain Why or Why Not. 17. Determine whether the following statements are true, and give an explanation or a counterexample.
a. There are 2 values of x in $[0,2 \pi)$ where $\cos x=3$.
b. There is exactly one solution to $\tan x=0$ in $[0,2 \pi)$.
c. If $\sin 2 x=1$, then $\sin x=\frac{1}{2}$.
d. If $\cos x=y$ has a solution in $[0,2 \pi)$, then $\cos x=-y$ also has a solution in $[0,2 \pi)$.
e. If $\cos x=y$ has at least one solution in $[0,2 \pi)$, then $\cos x=y$ must have exactly two solutions in $[0,2 \pi)$.

