A geometric approach to the conjugacy problem for semisimple Lie groups

Andrew Sale
Vanderbilt University
January 11, 2015
Conjugacy Length Function

\(G \) group with length function \(| \cdot | : G \to [0, \infty) \)
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

\(\text{CLF}_{G} : [0, \infty) \to [0, \infty) \)
minimal function satisfying:

For \(x \geq 0, u, v \in G \) such that \(|u| + |v| \leq x \), then
\(u \) is conjugate to \(v \) \(\iff \exists g \in G \) such that
(i) \(gug^{-1} = v \) and
(ii) \(|g| \leq \text{CLF}_{G}(x) \).

Lemma
\(\Gamma \) finitely generated with solvable WP, \(| \cdot | \) word length. Then:
Conjugacy problem is solvable \(\iff \text{CLF}_{\Gamma} \) is recursive.

Andrew Sale
A geometric approach to the conjugacy problem
Conjugacy Length Function

G group with length function $|\cdot| : G \rightarrow [0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\text{CLF}_G : [0, \infty) \rightarrow [0, \infty)$ minimal function satisfying:

\[
\text{For } x \geq 0, u, v \in G \text{ such that } |u| + |v| \leq x, \text{ then } u \text{ is conjugate to } v \iff \exists g \in G \text{ such that (i) } gug^{-1} = v \text{ and (ii) } |g| \leq \text{CLF}_G(x).
\]

Lemma

Γ finitely generated with solvable WP, $|\cdot|$ word length. Then:

Conjugacy problem is solvable $\iff \text{CLF}_\Gamma$ is recursive.
Conjugacy Length Function

G group with length function $|·| : G \rightarrow [0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\text{CLF}_G : [0, \infty) \rightarrow [0, \infty)$ minimal function satisfying:

For $x \geq 0$, $u, v \in G$ such that $|u| + |v| \leq x$, then
Conjugacy Length Function

G group with length function $|·| : G \rightarrow [0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\text{CLF}_G : [0, \infty) \rightarrow [0, \infty)$ minimal function satisfying:

For $x \geq 0$, $u, v \in G$ such that $|u| + |v| \leq x$, then

u is conjugate to $v \iff \exists g \in G$ such that (i) $gug^{-1} = v$ and
Conjugacy Length Function

\(G \) group with length function \(|\cdot| : G \to [0, \infty)\)
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

\(\text{CLF}_G : [0, \infty) \to [0, \infty) \) minimal function satisfying:

For \(x \geq 0, u, v \in G \) such that \(|u| + |v| \leq x\), then

\(u \) is conjugate to \(v \) \iff \exists \ g \in G \) such that (i) \(gug^{-1} = v \) and (ii) \(|g| \leq \text{CLF}_G(x)\).
Conjugacy Length Function

G group with length function $|·| : G \rightarrow [0, \infty)$
(e.g. word length if finitely generated).

Definition (Conjugacy length function)

$\text{CLF}_G : [0, \infty) \rightarrow [0, \infty)$ minimal function satisfying:
For $x \geq 0$, $u, v \in G$ such that $|u| + |v| \leq x$, then

u is conjugate to $v \iff \exists g \in G$ such that (i) $gug^{-1} = v$ and (ii) $|g| \leq \text{CLF}_G(x)$.

Lemma

Γ finitely generated with solvable WP, $|·|$ word length. Then:
Conjugacy problem is solvable $\iff \text{CLF}_\Gamma$ is recursive.
Example: free groups

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

e.g. $u = aabbbaba^{-1}$
$v = babababba^{-1}b^{-1}$
Example: free groups

Let F be a free group with finite generating set X. Let u, v be reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

e.g. $u = aabbbaba^{-1}$
$v = babababba^{-1}b^{-1}$
Example: free groups

F free group, finite generating set X.

u,v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

(i) Cyclically reduce u,v to u',v',

$u' = a^{-1}ua = ab^3ab$

$v' = (ba)^{-1}vba = babab^2$

e.g. $u = aabbbaba^{-1}$

$v = babababba^{-1}b^{-1}$
Example: free groups

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u', v',

(ii) Cyclically conjugate u' to v'.

e.g. $u = aabbbaba^{-1}$
$v = babababba^{-1}b^{-1}$

(i) $u' = a^{-1}ua = ab^3ab$
$v' = (ba)^{-1}vba = babab^2$

(ii) $v' = babu'(bab)^{-1}$
Example: free groups

F free group, finite generating set X.

u, v reduced words on $X \cup X^{-1}$.

Algorithm to solve conjugacy problem

(i) Cyclically reduce u, v to u', v',

(ii) Cyclically conjugate u' to v'.

The conjugator will be a product of subwords of u and v. Hence

$$\text{CLF}_F(x) \leq x.$$

e.g. $u = aabbbaba^{-1}$
$v = babababba^{-1}b^{-1}$

(i) $u' = a^{-1}ua = ab^3ab$
$v' = (ba)^{-1}vba = babab^2$

(ii) $v' = babu'(bab)^{-1}$

$g = bababa^{-1}$
$v = gug^{-1}$
Known results include:

<table>
<thead>
<tr>
<th>Class of groups</th>
<th>$\text{CLF}(x)$</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperbolic groups</td>
<td>linear</td>
<td>Bridson–Haefliger</td>
</tr>
<tr>
<td>CAT(0) and biautomatic groups</td>
<td>$\leq \exp(x)$</td>
<td>Bridson–Haefliger</td>
</tr>
<tr>
<td>RAAGs & special subgroups</td>
<td>linear</td>
<td>Crisp–Godelle–Wiest</td>
</tr>
<tr>
<td>2-Step Nilpotent</td>
<td>quadratic</td>
<td>Ji–Ogle–Ramsey</td>
</tr>
<tr>
<td>$\pi_1(M)$ where M prime 3–manifold</td>
<td>$\leq x^2$</td>
<td>Behrstock–Druţu, S</td>
</tr>
<tr>
<td>Free solvable groups</td>
<td>$\leq x^3$</td>
<td>S</td>
</tr>
</tbody>
</table>

Plus:

- wreath products (S),
- group extensions (S),
- relatively hyperbolic groups (Ji–Ogle–Ramsey, Z. O’Conner, Bumagin).
Mapping class groups

S connected, oriented surface of genus g and p punctures.

$$\text{Mod}(S) = \text{Homeo}^+(S)/\sim$$
Mapping class groups

S connected, oriented surface of genus g and p punctures.

$$\text{Mod}(S) = \text{Homeo}^+(S)/\sim$$

Theorem (Masur-Minsky '00; Behrstock-Druţu '11; J. Tao '13)

$$\text{CLF}_{\text{Mod}(S)}(x) \preceq x.$$
Mapping class groups

S connected, oriented surface of genus g and p punctures.

\[\text{Mod}(S) = \text{Homeo}^+(S)/\sim \]

Theorem (Masur-Minsky ’00; Behrstock-Druțu ’11; J. Tao ’13)

\[\text{CLF}_{\text{Mod}(S)}(x) \leq x. \]

Question: What about for arithmetic groups? Or $\text{Out}(F_n)$?
Semisimple Lie groups

G real semisimple Lie group, finite centre and no compact factors.

dG left-invariant Riemannian metric.

$X = G/K$ associated symmetric space.

$\Gamma < G$ non-uniform lattice.

e.g. $\text{SL}_n(\mathbb{Z}) < \text{SL}_n(\mathbb{R})$ and $X = \text{SL}_n(\mathbb{R})/\text{SO}(n)$.

Jordan decomposition:

Each $g \in G$ has unique decomposition as $g = su$ where:

- s is semisimple (translates along an axis in X);
- u is unipotent (fixes a point in the boundary of X),

and s, u commute.
Semisimple Lie groups

G real semisimple Lie group, finite centre and no compact factors.

d_G left-invariant Riemannian metric.

$X = G/K$ associated symmetric space.

$\Gamma < G$ non-uniform lattice.

e.g. $\text{SL}_n(\mathbb{Z}) < \text{SL}_n(\mathbb{R})$ and $X = \text{SL}_n(\mathbb{R})/\text{SO}(n)$.

Jordan decomposition:

Each $g \in G$ has unique decomposition as

$$g = su$$

where:

- s is semisimple (translates along an axis in X);
- u is unipotent (fixes a point in the boundary of X),

and s, u commute.
Complete Jordan decomposition:

Each $g \in G$ has unique decomposition as

$$g = kau$$

where:

- k is elliptic
- a is real hyperbolic
- u is unipotent

and k, a, u commute.
Complete Jordan decomposition:

Each \(g \in G \) has unique decomposition as

\[
g = kau
\]

where:

- \(k \) is elliptic (fixes a point of \(X \) — a rotation);
- \(a \) is real hyperbolic
- \(u \) is unipotent

and \(k, a, u \) commute.
Complete Jordan decomposition:

Each \(g \in G \) has unique decomposition as

\[
g = kau
\]

where:

- \(k \) is elliptic (fixes a point of \(X \) — a rotation);
- \(a \) is real hyperbolic (translates along an axis, \textit{and all parallel axes});
- \(u \) is unipotent

and \(k, a, u \) commute.
Complete Jordan decomposition:

Each \(g \in G \) has unique decomposition as

\[
g = kau
\]

where:

- \(k \) is elliptic (fixes a point of \(X \) — a rotation);
- \(a \) is real hyperbolic (translates along an axis, and all parallel axes);
- \(u \) is unipotent (fixes a point in the boundary of \(X \)),

and \(k, a, u \) commute.
Complete Jordan decomposition:

Each $g \in G$ has unique decomposition as

\[g = kau \]

where:

- k is elliptic (fixes a point of X — a rotation);
- a is **real hyperbolic** (translates along an axis, \textit{and all parallel axes});
- u is unipotent (fixes a point in the boundary of X), and k, a, u commute.
Slope

Let \(a \in G \) be real hyperbolic. The slope of \(a \) tells you the location of translated geodesics in Weyl chambers. (It lies in \(\partial X/G \)).
Slope

Let $a \in G$ be real hyperbolic. The slope of a tells you the location of translated geodesics in Weyl chambers. (It lies in $\partial X/G$).

Theorem (S ’14)

Fix slope ξ. Then there exists $d_\xi, \ell_\xi > 0$ such that for $a, b \in G$ real hyperbolic of slope ξ and such that $|a|, |b| > d_\xi$.

Note: $|a| = d_G(1, g)$
Slope

Let $a \in G$ be real hyperbolic. The *slope* of a tells you the location of translated geodesics in Weyl chambers. (It lies in $\partial X/G$).

Theorem (S ’14)

Fix slope ξ. Then there exists $d_\xi, \ell_\xi > 0$ such that for $a, b \in G$ real hyperbolic of slope ξ and such that $|a|, |b| > d_\xi$.

a is conjugate to $b \iff \exists g \in G$ such that

(i) $ga = bg$

(ii) $|g| \leq \ell_\xi(|a| + |b|)$.

Note: $|a| = d_G(1, g)$
Assume G is higher rank and $\Gamma < G$ is an irreducible lattice.

Corollary

Fix a slope ξ. Then there exists $\ell_\xi > 0$ such that $a, b \in \Gamma$, real hyperbolic of slope ξ, are conjugate if and only if there is a conjugator $g \in G$ such that

$$|g| \leq \ell_\xi(|a|_\Gamma + |b|_\Gamma).$$

Note: $|a|_\Gamma$ is word length.
Assume G is higher rank and $\Gamma < G$ is an irreducible lattice.

Corollary

Fix a slope ξ. Then there exists $\ell_\xi > 0$ such that $a, b \in \Gamma$, real hyperbolic of slope ξ, are conjugate if and only if there is a conjugator $g \in G$ such that

$$|g| \leq \ell_\xi(|a|_\Gamma + |b|_\Gamma).$$

Note: $|a|_\Gamma$ is word length.

If $Z_\Gamma(a)$ is virtually \mathbb{Z}, then g can be “pushed” to a conjugator γ in Γ, retaining the linear bound on its length.
Idea of proof

Theorem

\(a \) is conjugate to \(b \) \iff \exists g \in G \text{ such that } (i) \ ga = bg \text{ and } (ii) \ |g| \leq \ell_\xi(|a| + |b|).
Idea of proof

Theorem

\(a\) is conjugate to \(b\) \iff \exists g \in G\) such that (i) \(ga = bg\) and (ii) \(|g| \leq \ell_\xi(|a| + |b|)\).

Assume slope \(\xi\) is regular. Then

\[
\text{Min}(a) := \left\{ x \in X \mid d(x, ax) = \inf_{y \in X} d(y, ay) \right\}
\]

and \(\text{Min}(b)\) are maximal flats.
Idea of proof

Theorem

\[a \text{ is conjugate to } b \iff \exists g \in G \text{ such that } (i) \ ga = bg \text{ and } (ii) \ |g| \leq \ell_\xi(|a| + |b|). \]

Assume slope \(\xi \) is regular. Then

\[\text{Min}(a) := \left\{ x \in X \mid d(x, ax) = \inf_{y \in X} d(y, ay) \right\} \]

and \(\text{Min}(b) \) are maximal flats.

Lemma

- If \(ga = bg \) then \(g \text{ Min}(a) = \text{Min}(b) \);
Idea of proof

Theorem

\[a \text{ is conjugate to } b \iff \exists g \in G \text{ such that (i) } ga = bg \text{ and (ii) } |g| \leq \ell_\xi(|a| + |b|). \]

Assume slope \(\xi \) is regular. Then

\[\text{Min}(a) := \left\{ x \in X \mid d(x, ax) = \inf_{y \in X} d(y, ay) \right\} \]

and \(\text{Min}(b) \) are maximal flats.

Lemma

- If \(ga = bg \) then \(g \text{Min}(a) = \text{Min}(b) \);
- if \(g \text{Min}(a) = \text{Min}(b) \) then \(\exists k \in G \) fixing a point in \(\text{Min}(a) \) such that
 \[(gk)a = b(gk). \]
Idea of proof, continued

Minimal distance between the flats is important — corresponds to length of shortest conjugator.

Andrew Sale

A geometric approach to the conjugacy problem
Minimal distance between the flats is important — corresponds to length of shortest conjugator.
Thank you for your attention!