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ABSTRACT. We show that the explicit ALE Ricci-flat Kähler metrics constructed
by Eguchi-Hanson, Gibbons-Hawking, Hitchin and Kronheimer, and their free
quotients are metrics obtained by Tian-Yau techniques. The proof relies on a
construction of good compactifications of Q−Gorenstein deformations of quo-
tient surface singularities as log del Pezzo surfaces with only cyclic quotient
singularities at infinity. We provide an intrinsic geometric description of the
compactifications.
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1. INTRODUCTION

The classification of asymptotically locally Euclidean (ALE) Ricci-flat Kähler
surfaces was accomplished by Kronheimer [13, 14] in the simply-connected case,
and completed by the second author [18] in the non-simply connected case (see
also [21]). More precisely, we have the following:

Theorem 1.1 ([13, 14, 18]). Let (M,J, g, ωg) be a smooth ALE Ricci-flat Kähler
surface asymptotic to C2/G, where G is a finite subgroup of U(2) acting freely
on C2 \ {0}. Then, the complex manifold (M,J) can be obtained as the minimal
resolution of a fiber of a one-parameter Q−Gorenstein deformation of the quotient
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singularity C2/G. Given the Kähler class Ω = [ωg] ∈ H2(M,R), then g is the
unique ALE Ricci-flat Kähler metric g in the class.

Moreover, any complex surface (M,J) obtained by the above construction ad-
mits a unique ALE Ricci-flat Kähler metric in any Kähler class Ω.

The classification of ALE Ricci-flat Kähler surfaces [18] is in direct correspon-
dence with the explicit description of quotient singularities which admit Q−Gorenstein
smoothings, which is due to Kollár and Shepherd-Barron [10]. Following their
terminology, we call such singularities of class T . The possible singularities are
either rational double points, i.e. singularities of type Ak, Dk, E6, E7 and E8, or

finite cyclic singularities of the type
1

dn2
(1, dnm− 1). The rational double points

correspond to the case when the surfaces M are simply connected, and then the
metrics are hyperkähler. They are associated to Gorenstein smoothings and have
trivial canonical line bundle. In the second case, the surfaces M have finite cyclic
fundamental group and the metrics are non-hyperkähler. They are Q−Gorenstein
smoothings, and have torsion canonical line bundle.

The ALE Ricci-flat Kähler metrics were explicitly constructed by Eguchi-Hanson,
Gibbons-Hawking, Hitchin and Kronheimer [4, 6, 8, 13] in the simply connected
case. In [18], the second author completes the list in the non-simply connected
case by adding the free quotients of certain A−type manifolds. The ALE property
was used in an essential way to obtain both the classification and the uniqueness
of the ALE Ricci-flat Kähler metric in a given Kähler cohomology class. Both the
hyperkähler manifolds of type Ak and Dk [7, 3], and the non-hyperkähler mani-
folds [18] admit asymptotically locally flat (ALF) Ricci-flat Kähler metrics, which
have cubic volume growth. The ALE and the ALF metrics are given by explicit
formulas [4, 6, 8, 7, 3].

Another method of constructing Kähler-Einstein metrics on non-compact man-
ifolds is by solving the complex Monge-Ampère equations. The technique is due
to Tian-Yau [19, 20] and Bando-Kobayashi [1]. In particular, they proved the ex-
istence of Ricci-flat Kähler metrics on the complement of a divisor in a complex
orbifolds, under certain technical conditions. In general, these metrics are not ALE,
and if one insist that the ambient space is a smooth surface, the examples are scarce
[19]. As we are only interested in manifolds with ALE Ricci-flat Kähler metrics,
the relevant results are in the context of the complement of a divisor in an orbifold
surface, and are due to Tian and Yau in [20]. A more detailed description of their
results is included in section 3. The Tian-Yau metrics are obtained by analytical
methods, and the existence of the metric is given implicitly. We compare the two
constructions, and we find:

Theorem A. The explicit ALE hyperkähler metrics on complex surfaces constructed
by Eguchi-Hanson, Gibbons-Hawking, Hitchin, Kronheimer, and their finite free
quotients can be obtained by Tian-Yau techniques.

To prove this theorem we first need to construct a good compactification of a
fiber of a deformation. The proof of the Theorem A follows from Theorem B
below, and the uniqueness part of Theorem 1.1.
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Starting from the classification of ALE Ricci-flat Kähler surfaces, we give a
natural setting where their methods apply. Using Kollár and Shepherd-Barron’s
classification, we consider compactifications of a fiber of a Q−Gorenstein defor-
mation as a hypersurface in a weighted projective space. These compactifications
obey the Tian-Yau conditions and yield ALE metrics on the complement of the
divisor at infinity. The properties of the compactifications are summarized in the
following theorem:

Theorem B. Let M be a fiber of a Q−Gorenstein deformation of a singularity of
class T. Then M embeds into a log del Pezzo surface, M, as the complement of
a smooth, rational curve, which is a rational multiple of the anticanonical divisor.
The singularities along the divisor at infinity are all isolated finite cyclic quotients.
Moreover, if M is associated to a finite cyclic quotient singularity then there are
infinitely many minimal compactifications with the above properties.

We say that a compactification is minimal if there is no rational component of the
divisor at infinity of self-intersection (−1) and passing only through smooth points
of M. We recall [9] that a normal complex surface M with at worst log terminal
singularities, i.e. quotient singularities, is called a log del Pezzo surface if its anti-
canonical divisor−KM is ample. We should point out that our constructions verify
stronger conditions: if we denote by C the curve at infinity, then the Q−Cartier
divisors C and −(KM + C) are both ample.

Our construction produces infinitely many minimal compactifications with the
properties stated in Theorem B when the manifold is associated to a cyclic singu-
larity, but only one for singularities of type Dk, E6, E7 and E8. It would be inter-
esting to see if there are other minimal compactifications in these cases satisfying
the same properties.

Given a singularity of type T, and a Q−Gorenstein smoothing, the underlying
smooth manifold of a generic fiber is the Milnor fiber of the singularity. An arbi-
trary fiber of a deformation might admit singularities, which are all rational double
points. Hence, if we consider the associated minimal resolution we obtain a man-
ifold diffeomorphic to the Milnor fiber. The general construction of considering a
deformation followed by the minimal resolution of the rational double points, con-
structs a family of complex structures on the Milnor fiber. Throughout this paper
we emphasize which particular complex structure we consider.

Compactifications of Milnor fibers were also constructed by Saito [17] for ratio-
nal double points. More generally, Némethi and Popescu-Pampu [16] constructed
(smooth) compactifications of the Milnor fiber for each irreducible component of
the versal deformation space of finite cyclic quotient singularities. Our construc-
tion generalizes Saito’s compactifications [17] in several aspects. The construction
in Theorem B is quite different from the Némethi-Popescu-Pampu compactifica-
tion, and it would be interesting to compare the two constructions.

It will also be interesting to check if the known ALF Ricci-flat Kähler metrics
can also be recovered by the Tian-Yau methods.
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The last part of the paper is devoted to giving an intrinsic geometric description

of the compactification the Milnor fiber of a singularity of type
1

dn2
(1, dnm− 1).

Theorem C. LetM be the minimal resolution of a generic fiber of a one-parameter

Q−Gorenstein deformation of a singularity of type
1

dn2
(1, dnm− 1), where n,m

are relatively prime, and a, c any positive integers such that gcd(c, n) = 1 and
am = c mod n. Then M is biholomorphic to the complement of the proper
transforms of the coordinate axes (x = 0) and (w = 0) in the blow-up of d
smooth points along the line (x = 0) \ (w = 0) in the weighted projective space
P[x:z:w](a, c, n).

In particular, we obtain a geometric description of the minimal resolution of an
Ad−1 singularity as the complement of two divisors:

Corollary 1.2. The minimal resolution of a singularity of type Ad−1 is obtained as
the complement of the proper transforms of the coordinate axes (x = 0) and (w =
0) in the iterated blow-up of order d of a smooth point on the line (x = 0)\(w = 0)
in the weighted projective space P[x:z:w](a, c, 1), for any positive integers a, c.

Acknowledgements. While writing this paper, the second author was partially
supported by the NSF grant DMS-1007114 .

Notation and conventions. We always work over the field of complex numbers
C.

(1) Let n be a positive integer, µn the multiplicative group of the nth−roots

of unity, and ε ∈ µn a generator. We denote by the symbol
1

n
(a1, . . . , am)

the action of the group µn on Cm defined by

ε(z1, . . . , zm) = (εa1z1, . . . , ε
amzm),

where (a1, . . . , am) ∈ Zm.We refer to the corresponding quotient space as

a singularity of the type
1

n
(a1, . . . , am). Whenever necessary, we include

the coordinates

Cm
z /

1

n
(a1, . . . , am),

where z = (z1, . . . , zm) ∈ Cm, when denoting this cyclic quotient singu-
larity.

If ρ is a different choice of the generator of the group µn, there exists an
integer k, gcd(k, n) = 1, such that ε = ρk, and we obtain an equivalent

notation of the singularity of the form
1

n
(b1, . . . , bm), where bi = kai

mod n for i = 1, . . . ,m.
Let f ∈ C[z1, . . . , zm]. If (f = 0) ⊆ Cm is invariant under the above

action of µn, we will denote by (f = 0)/µn the induced quotient. If
necessary, we explicitly include in the notation the action of µn, as above.
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(2) Let (w0, w1, . . . , wm) be an (m + 1)−tuple of positive integers. The
weighted projective space P(w0, . . . , wm) is defined as the quotient of
Cm+1 \ {0} by the C∗−action given by

λ(z0, z1, . . . , zm) = (λw0z0, λ
w1z1, . . . , λ

wmzm).

Following [5], we say that the weighted projective space P(w0, . . . , wm) is
well-formed if gcd(w0, . . . , ŵi, . . . , wm) = 1, for each i = 0, . . . ,m.

The weighted projective space is covered by the standard charts Uzi =
(zi 6= 0) ' Cm

Zi
/ 1
wi

(w0, . . . , ŵi, . . . , wm) centered at Pi = [0 : . . . : 1 :

. . . : 0], i = 0, . . . ,m. The affine coordinates Zi = (Z0i, . . . , Ẑii, . . . , Zmi)
satisfy

Zwi
ji =

zwi
j

z
wj

i

, j = 0, . . . , î, . . . ,m,

and are well-defined up to the corresponding action of µwi . Whenever the
coordinates are relevant in the descriptions of the spaces involved, we in-
dicate them as

P[z0:···:zn](w0, . . . , wn).

However, to simplify the notations we omit the indices when it is clear
from the context.

(3) All of the varieties discussed in this paper have only mild singularities. In
particular, they are all Q− factorial [9]. We will not distinguish between
their Q−Cartier divisors and Weil divisors with rational coefficients.

2. A COMPACTIFICATION OF THE MILNOR FIBER

We begin by recalling the terminology and some general results contained in
[10, 15].

Definition 2.1. A normal variety X is Q−Gorenstein if it is Cohen-Macaulay and
a multiple of the canonical divisor is Cartier.

Definition 2.2. A flat map π : X → ∆ ⊆ C is called a one-parameter Q−Gorenstein
smoothing of a normal singularity (X,x) if π−1(0) = X and there exists U ⊆ ∆
an open neighborhood of 0 such that the following conditions are satisfied.

i) X is Q−Gorenstein,
ii) The induced map X → U is surjective,

iii) Xt = π−1(t) is smooth for every t ∈ U \ {0}.

The following result of Kollár and Shepherd-Barron [10] gives a complete de-
scription of the singularities admitting a one-parameter Q−Gorenstein smoothing:

Proposition 2.3 (Kollár, Shepherd-Barron [10]). The quotient singularities admit-
ting a one-parameter Q−Gorenstein smoothing are the following:

1) Rational double points;

2) Cyclic singularities of the type
1

dn2
(1, dnm − 1), for d > 0, n ≥ 2, and

(m,n) = 1.
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For convenience, we recall that the rational double points are isolated quotients
of C2 by finite subgroups of SU(2). They are classified by their types A,D or
E. The singularities of type Ak−1 are cyclic quotient singularities of the type
1

k
(1,−1), while the other rational double points are quotients of C2 under the

action of the non-cyclic binary polyhedral groups. They also admit a description
as hypersurface singularities

(f(x, y, z) = 0) ⊆ C3,

where

f(x, y, z) =



xy + zk, for singularities of type Ak−1, k ≥ 2,

x2y + yk−1 + z2, for singularities of the type Dk, k ≥ 4,

x4 + y3 + z2, for singularities of the type E6,

x3y + y3 + z2, for singularities of the type E7,

x5 + y3 + z2, for singularities of the type E8.
(2.1)

Definition 2.4. A normal surface singularity is called of class T if it is a rational

double point or a cyclic quotient singularity the type
1

dn2
(1, dnm − 1), for d >

0, n ≥ 1, and (m,n) = 1.

Using the natural sequence of abelian groups:

1→ µdn → µdn2 → µn → 1,

the second type of singularities can be described as the double quotient

C2/
1

dn
(1,−1)/µn,

i.e. it is a quotient of an Adn−1− singularity. Motivated by this, we consider the

hypersurface Y = (xy− zdn = Q(zn)) ⊆ C3 ×Cd, where Q(z) =
d−1∑
k=0

ekz
k. It is

convenient to introduce the polynomial

P (z) = zd +Q(z) =

l∏
j=1

(zn − aj)kj ,

where a1, . . . , al ∈ C are distinct, and the positive integers kj , j = 1, . . . , l, satisfy
l∑

j=1

kj = d.

We denote by (x, y, z) and e = (e0, . . . , ed−1) the linear coordinates on C3 and
Cd, respectively. The action of the group µn on Y is generated by:

ζ(x, y, z, e0, . . . , ed−1) := (ζx, ζ−1y, ζmz, e0, . . . , ed−1),
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where ζ is a generator of µn. Let X = Y/µn and φ : X → Cd the quotient of the
projection Y → Cd. Let X0 be the fiber φ−1(0). Then (X0, 0) is a singularity of

the type
1

dn2
(1, dnm− 1) and we have:

Proposition 2.5. [15, 10] The map φ : X → Cd is a Q−Gorenstein deforma-

tion of the cyclic singularity (X0, 0) of type
1

dn2
(1, dnm − 1). Moreover, every

Q−Gorenstein deformationX → C of a singularity (X0, 0) of type
1

dn2
(1, dnm−

1) is isomorphic to the pullback of φ for some germ of holomorphic map (C, 0)→
(Cd, 0).

As in [15], given e ∈ Cd \ {0}, we want the group µn, n ≥ 2, to act freely on
the fiber Ye ⊆ C3 of the deformation Y → Cd. This condition is equivalent to the
fact that {0} ∈ C3 lies only on the central fiber Y0, and it translates into

aj 6= 0, for any j = 1, . . . , l. (2.2)

In the case n = 1, any fiber of the form Ye = (xy = P (z)), is biholomorphic to a
fiber of a deformation satisfying the above condition after a change of coordinates.
We impose the condition (2.2) throughout this paper for any n.

The variety Xe = φ−1(e) is the Milnor fiber of the Q−Gorenstein deformation
if it is smooth. This translates into l = d, and kj = 1, j = 1, . . . , d.

Remark 2.6. Notice that the Milnor fiber of the smoothing of a singularity of type
Ad−1 is recovered in the above construction by setting n = 1.

2.1. Cyclic quotient singularities of class T . In this section we construct a fam-
ily of singular compactifications of a fiber of a Q−Gorenstein deformation of a

singularity of the type
1

dn2
(1, dnm − 1). The compactifications are presented as

hypersurfaces in appropriate weighted projective spaces.
Let

P (z) =

l∏
j=1

(z − aj)kj , (2.3)

where a1, . . . , al ∈ C∗ are distinct, and kj , j = 1, . . . , l, are positive integers with
l∑

j=1

kj = d. The variety

M = (xy = P (zn)) /µn ⊆ C3/
1

n
(1,−1,m)

is a fiber of a Q−Gorenstein deformation of a
1

dn2
(1, dnm− 1)−singularity.

We define

M =

xy = wdkP

(
zn

wk

)
=

l∏
j=1

(zn − ajwk)kj

 ⊆ P(a, b, c, e),
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where we denoted by [x : y : z : w] the homogeneous coordinates in the weighted
projective space P(a, b, c, e), and k is a positive integer. The weights should satisfy
the homogeneity conditions:

a+ b = dnc = dke. (2.4)

We identify next sufficient conditions on the weights such that M embeds into
M as M ∩ Uw.

The standard affine coordinate chart Uw = (w 6= 0) ⊆ P(a, b, c, e) is isomor-
phic to C3

(X,Y,Z)/
1
e (a, b, c).We require the action of µe to be equivalent to an action

of the type 1
n(1,−1,m). This forces e = n, and from the homogeneity condition

we see that k = c. Furthermore, there should exist ρ ∈ µn such that
1) ρ = ξa;

2) ρ−1 = ξb;

3) ρm = ξc.

From the homogeneity condition we see that a + b = 0 mod n, and so the
conditions 1) and 2) are equivalent. Therefore, for any given c ≥ 0, the conditions
1)− 3) are simultaneously satisfied if and only if

am = c mod n. (2.5)

Let u ∈ {1, . . . , n− 1} be the unique integer such that mu = 1 mod n. Then
(2.5) is equivalent to

a = cu mod n.

Finally, a necessary condition we require is that the weighted projective space
P(a, b, c, n) is well-formed. From (2.4) and (2.5), we can see that this is equivalent
to requiring that gcd(n, c) = 1, which implies that gcd(a, n) = gcd(b, n) =
1. If gcd(a, c) = p 6= 1, then gcd(b, c) = p, and we write a = pa′, b = pb′,
and c = pc′, where gcd(a′, c′) = gcd(b′, c′) = 1. Notice that (2.4) yields a′ +
b′ = dnc′, while from (2.5) we see that a′ = c′u mod n. Moreover, we have an
isomorphism P(a, b, c, n) ' P(a′, b′, c′, n) [5]. By replacing (a, b, c) by (a′, b′, c′),
we can therefore assume that gcd(a, c) = 1. For convenience, we summarize our
requirements as

gcd(c, n) = 1 and gcd(a, c) = 1. (2.6)

Proposition 2.7. Let a, b and c satisfying the conditions (2.4), (2.5) and (2.6), and
let

M =

xy =
l∏

j=1

(zn − ajwc)kj

 ⊆ P(a, b, c, n).

We have

1) The variety M embeds as a Zariski open subset in M.
2) The singular points ofM are at most rational double points of typeAkj−1,

for j = 1, . . . , l.
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3) The singular points of M lying on M \M are singularities of the types
1
a(c, n) and 1

b (c, n) at the points R1 = [1 : 0 : 0 : 0] and R2 = [0 : 1 : 0 :
0], respectively.

4) The complement C = M \M is a smooth rational curve. Moreover, C is
an ample Q−Cartier divisor of M.

5) The anti-canonical divisor of M is ample, and as Q−Cartier divisors, we
have

KM = −c+ n

n
C. (2.7)

In particular, M is a log del Pezzo surface.
6) The variety M is simply connected and its second homology group has

rank d.

Proof. 1) Notice that the condition (2.6) implies that the weighted projective space
is well-formed. The conditions (2.4) and (2.5) were defined to ensure that M
embeds into M as M ∩ Uw.

2) As discussed, the chart Uw = (w 6= 0) ⊆ P(a, b, c, n) is isomorphic to
C3
(X,Y,Z)/

1
n(a, b, c). In these coordinates

M ∩ Uw ' (XY = P (Zn)) /
1

n
(a, b, c).

From (2.6) we find that the fixed point (0, 0, 0) /∈ M ∩ Uw is the only point of
non-trivial isotropy.

The singular points of the hypersurface (XY = P (Zn)) ⊆ C3 occur when the

polynomial P has multiple roots. We find that Sj = [0 : 0 : a
1
n
j : 1] ∈ M are

singular points of type Akj−1 of M ∩ Uw, for any j = 1, . . . , l, such that kj ≥ 2.

3) We compute the singularities of M at infinity in the standard charts covering
the weighted projective space P(a, b, c, n).

Let Ux = (x 6= 0) ⊆ P(a, b, c, n). Then Ux ' C3
(Y,Z,W )/

1
a(b, c, n). In these

coordinates

M ∩ Ux '

Y =

l∏
j=1

(Zn − ajW c)kj

 /
1

a
(b, c, n).

Since a is relatively prime to b, c, and n, the only point of non-trivial isotropy is
the fixed point of the action of µa on C3, (0, 0, 0) ∈M ∩Ux. As the hypersurfaceY =

j∏
j=1

(Zn − ajW c)kj

 ⊆ C3 is smooth, the only singular point of M ∩ Ux

is R1 = [1 : 0 : 0 : 0]. Notice that the coordinates (Z,W ) parametrize M ∩ Ux,
and so the point R1 ∈M is a cyclic quotient singularity of the type 1

a(c, n).

An analogous computation finds one more singular point ofM in the chart Uy =
(y 6= 0) ⊆ P(a, b, c, n). This point is R2 = [0 : 1 : 0 : 0], a cyclic quotient singu-
larity of the type 1

b (c, n). Moreover, in the chart Uz = (z 6= 0) ⊆ P(a, b, c, n), as
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in the proof of part 1), we find no singular points on M \M, and we recover the

singular points Sj = [0 : 0 : a
1
n
j : 1] ∈M ∩ Uz above.

4) The curve at infinity C = M \ M is the hyperplane section (w = 0), of
weight n. As a Q-Cartier divisor

OM (C) = OM (n),

where by OM (1) we denote the restriction of the tautological sheaf OP(a,b,c,n)(1)

to M. In particular C is an ample Q−Cartier divisor.
In the local charts M ∩ Ux ' C2

(Z,W )/
1
a(c, n) and M ∩ Uy ' C2

(Z,W )/
1
b (c, n),

the curve at infinity C is given by the (W = 0).Hence C∩M ∩Ux ' C/ 1
a(c), and

C ∩M ∩Uy ' C/1b (c), and so C is smooth with the induced differential structure.
Moreover, since in the local chart M ∩Ux the curve C corresponds to the Z−axis,
and C is a one point compactification of C ∩M ∩ Ux, then it must be rational.

5) Since the weighted projective space P(a, b, c, n) is well-formed and the hy-
persurface M does not contain its singular lines (if any), then the adjunction for-
mula holds. The canonical divisor of M is

KM = (KP(a,b,c,n) +M)|M = OM (dnc− a− b− c− n)

Using the homogeneity condition (2.4) we obtain

KM = OM (−c− n) = −c+ n

n
C.

In particular, we see that M is a log del Pezzo surface.
6) To study the topological properties of M, we have to consider two cases. In

the first case, when n = 1 the manifoldM is a smooth deformation of a singularity
of type Ad−1. As a consequence, it is simply connected and the rank of its second
homology is d − 1. The compactification is obtained by adding a rational curve
at infinity, hence by Van Kampen’s theorem, the manifold M is simply connected.
Moreover, with respect to the decompositionM = M ∪Nbhd(C), the intersection
M ∩Nbhd(C) is homotopic to the lens space Ld(1,−1) whose first Betti number
is b1 (Ld (1,−1)) = 0. Thus, by the Mayer-Vietoris sequence the second Betti
number is b2(M) = d.

In the second case, when n ≥ 2, the manifold M is obtained by taking the
quotient of a deformation of the Adn−1 singularity by a free µn−action. Hence
the fundamental group of M is π1(M) = Z/nZ which embeds in the fundamental
group of a neighborhood of infinity which is π1(Ldn2(1, dnm − 1)) = Z/dn2Z.
The Euler characteristic of M is

χ(M) =
1

n
χ(Adn−1) =

1

n
dn = d,

hence the second Betti number of M equals d − 1. The Van Kampen’s theorem
and the Mayer-Vietoris sequence for M = M ∪Nbhd(C) imply that M is simply
connected, and its second Betti number is d. �
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Remark 2.8. For a given integer c ≥ 0, the conditions 1) − 3) will be satisfied
by d pairs (a, b) of non-negative integers. As a consequence, when taking different
values of c, the Milnor fiber M can be embedded in infinitely many log del Pezzo
surfaces.

Examples 2.9. The embeddings of M in log del Pezzo surfaces in Theorem B are
indexed by the set of weights (a, b, c). We list below some interesting examples:

1) the natural weights induced by the action µn :

(a, b, c) = (1 + knm, (d− k)nm− 1,m), k ∈ {0, . . . , d− 1}.
2) a normalization for c = 1 :

(a, b, c) = (u+ kn, (d− k)n− 1, 1), k ∈ {0, . . . , d− 1}.
The case d = 1, k = 0 also appears in [11].

Remark 2.10. When n = 1, we compactify the singularity Ad−1 and its defor-
mations in P(a, dc − a, c, 1). A special case, when c = 1, d even and a = b
appears in Saito [17]. We generalize Saito’s compactification to an infinite family
of compactifications.

2.2. Non-cyclic quotient singularities of class T . In this section we construct
a family of singular compactifications of a fiber of the universal deformation of
singularities of the types Dk, E6, E7 and E8. These are also hypersurface singular-
ities, and this allows us to exhibit the compactifications as hypersurfaces in appro-
priate weighted projective spaces. The construction is essentially due to Saito [17].
We extend it to an arbitrary fiber of the universal deformation space of a rational
double point.

Let f be one of the polynomials (2.1), and let gi ∈ C[x, y, z], i = 1 . . . , k be
monomials yielding a basis of

C[x, y, z]/〈f, ∂f/∂x, ∂f/∂y, ∂f/∂z〉.
The fiber of the universal deformation of such a rational double point singularity

is the affine variety

M =

(
f =

k∑
i=1

aigi

)
⊆ C3,

where ai ∈ C are fixed. Notice that for a′is general enough, the surface M is
smooth. In general, it is known that M has at most rational double points singular-
ities. If ai = 0, i = 1, . . . , k, we recover the central fiber which is a singularity

of the type C2/G, where G ⊆ SU(2). For convenience, let h = f −
k∑

i=1

aigi ∈

C[x, y, z].
As before we would like to embedM in a weighted projective space P(a, b, c, e)

asM ∩Uw, where Uw is the standard chart (w 6= 0) andM is a hypersurface given
by a suitable quasi-homogeneization of the polynomial h :

M =
(
wNh

( x

wa
,
y

wb
,
z

wc

)
= 0
)
⊆ P(a, b, c, e),
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for some positive integers a, b, c, e and N. Then the weight e of w must be equal
to one. A brief inspection of the polynomials (2.1) yields weights defined uniquely
up to a common factor. The ambiguity is eliminated by the divisibility condition
gcd(a, b, c) = 1, which ensures that the ambient weighted projective space is well
formed, and we find

(a, b, c) =


(k − 2, 2, k − 1), for singularities of the type Dk

(3, 4, 6), for singularities of the type E6

(4, 6, 9), for singularities of the type E7

(6, 10, 15), for singularities of the type E8.

(2.8)

For the rest of this section, we consider h as a quasi-homogeneous polynomial
as above, and (a, b, c) the corresponding weights. With these choices, the weighted
degree of M in P(a, b, c, 1) is N = a+ b+ c− 1.

Proposition 2.11. Let

M =
(
wNh

( x

wa
,
y

wb
,
z

wc

)
= 0
)
⊆ P(a, b, c, 1),

where (a, b, c) as in (2.8). Then
1) M is embeds as a Zariski open subset in M.
2) The singular points of M lying in M \M are as follows:

i) Case Dk: two singularities of type 1
2(1, 1), and one of type 1

k−2(1, 1).

ii) CaseE6: two singularities of type 1
3(1, 1), and one of the type 1

2(1, 1).

iii) Case E7: three singularities of type 1
2(1, 1), 1

3(1, 1), and 1
4(1, 1),

respectively
iv) Case E8: three singularities of type 1

2(1, 1), 1
3(1, 1), and 1

5(1, 1),
respectively.

3) The complement C = M \M is a smooth rational curve. Moreover, C is
an ample Q−Cartier divisor of M.

4) The anti-canonical divisor of M is

KM = −2C. (2.9)

In particular, M is a log del Pezzo surface.
5) The variety M is simply connected and its second homology group has

rank k+ 1 for a singularity of type Dk, and n+ 1 for a singularity of type
En, n = 6, 7, 8.

Proof. The proofs of 1), 2), and 3) for h = f − 1 can be found in [17]. One can
easily check that the singularities at infinity remain the same for any deformation
h. The canonical class of M follows again from the adjunction formula:

KM = (KP(a,b,c,1) +M)|M = OM (N − a− b− c− 1) = OM (−2) = −2C.

The proof of 5) is as in Proposition 2.7.6. �

Notice that in particular we obtained a compactification of a rational double
point singularity with the properties stated in Proposition 2.11.
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2.3. Conclusions. If M is a fiber of the Q−Gorenstein deformation of a singu-
larity of class T, the Propositions 2.7 and 2.11 provide compactifications with the
properties summarized in Theorem B.

In general, M might admit rational double points as singularities. In this case,
we consider the minimal resolution N of M, and this gives us a special complex
structure on the Milnor fiber of the singularity. We have the following:

Corollary 2.12. The minimal resolution N of a fiber M of the Q−Gorenstein de-
formation of a singularity of class T embeds into a varietyN as the complement of
a smooth, rational curve, which is a rational multiple of the anticanonical divisor.
The singularities along the divisor at infinity are all isolated finite cyclic quotients.
Moreover, if M is associated to a finite cyclic quotient singularity then there are
infinitely many minimal compactifications with the above properties.

Proof. Let p : N → M be the minimal resolution of M. Correspondingly, let
p : N →M denote its extension to the compactification. Since the singular points
of M are at most rational double points

KN = p∗KM = −βC, (2.10)

for some β > 1. The singularities of N are only along the divisor at infinity as
described in Propositions 2.7 and 2.11. �

Notice thatN is no longer a log del Pezzo surface, as it contains the (−2)−curves
introduced when resolving the singularities of M. Moreover, the divisor at infinity
C is only almost ample, see Definition 3.2 below.

Remark 2.13. Let M0 = C2/
1

dn2
(1, dnm− 1), n 6= 1, and X its minimal resolu-

tion. The varietyM0 admits a compactificationM0 to a hypersurface in a weighted
projective space, as well, and it has similar properties to an A−type singularity.
The minimal resolutionX ofM0 has non-trivial canonical divisor, and this implies
that X does not admit Ricci-flat Kähler metrics. As expected, since KX is not a
multiple of the curve at infinity we can see that the conditions in the Theorem 3.2
below are not satisfied.

3. THE RELATION WITH TIAN-YAU’S RICCI-FLAT KÄHLER METRICS

In this section we recall for convenience the relevant theorems of Tian-Yau [20]
and Bando-Kasue-Nakajima [2]. Both Tian-Yau [20] and Bando-Kasue-Nakajima
[2] proved more general results, but we are going to restrict ourselves to the ALE
Ricci-flat case in complex dimension two. We conclude by proving Theorem A.

We first start by recalling the definition of ALE 4−manifolds:

Definition 3.1. Let G be a finite subgroup of SO(4) acting freely on R4 \{0}, and
let h0 be the Euclidean metric on R4/G. We say that the manifold (M4, g) is an
ALE manifold asymptotic to R4/G if there exist a compact subset K ⊆ M and a
map π : M \K → R4/G that is a diffeomorphism between M \K and the subset
{z ∈ R4/G | r(z) > R} for some fixed R > 0, such that

∇k(π∗(g)− h0) = O(r−4−k) for all k ≥ 0. (3.1)
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To emphasize that the condition (3.1) is satisfied, we say that the metric is ALE
of order 4 [2].

If the metric is Kähler, then the group G is a subgroup of U(2), and the dif-
feomorphism π identifies M \K with a subset C2/G. This identification is not a
biholomorphism in general. In fact, in some cases it can be showed that the com-
plex structure can be approximated by the canonical complex structure J0 up to
lower order terms O(r−4).

Tian and Yau constructed [20] complete Ricci-flat Kähler metrics on the com-
plements of divisors on compact Kähler orbifolds satisfying certain conditions:

Definition 3.2. Let D be a divisor in the Kähler orbifold M of complex dimension
2. Then

(i) D is almost ample if there exists an integer m > 0 such that a basis of
H0(M,O(mD)) gives a morphism from M into some projective space
PN which is a biholomorphism in a neighborhood of D.

(ii) D is admissible if Sing(M) ⊆ D, D is smooth in M \ Sing(M), and
for any x ∈ Sing(M) if πx : Ũx → Ux be its local uniformization with
Ũx ⊆ C2, then π−1x (D) is smooth in Ũx.

As we are interested in ALE manifolds, the topology at infinity has finite fun-
damental group, which necessarily implies that the divisor at infinity is a smooth
rational curve. In this situation, Tian-Yau proved:

Theorem 3.3 ([20]). Let M be a compact Kähler orbifold of complex dimension
2. Let D ' P1 be an almost ample admissible divisor in M, such that

−KM = βD, for some β > 1. (3.2)

Then M = M \D admits a complete Ricci-flat Kähler metric g.
Moreover, if we denote by R(g) the curvature tensor of g and by r the distance

function on M from some fixed point with respect to g, then R(g) decays at the
order of at least r−3 with respect to the g−norm whenever

OD(D) =
2

β − 1
OP1(1). (3.3)

Furthermore the metric g has euclidean volume growth.

The metrics constructed using the Tian-Yau result are not a priori ALE. This
follows from a remarkable result of Bando-Kasue-Nakajima:

Theorem 3.4 ([2]). Let (M, g) be a Ricci-flat Kähler surface with

1) VolB(p; r) ≥ Cr4 for some p ∈M,C > 0,

2)
∫
M
|R(g)|2dVg <∞.

Then (M, g) is ALE of order 4.

Here B(p; r) ⊆ M denotes the ball or radius r in (M, g) centered at the point
p ∈M.
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Proof of Theorem A. Given an ALE Ricci-flat Kähler surface (M,J, g), in [13, 14,
18] it is showed that g is one of the metrics constructed explicitly by Eguchi-
Hanson, Gibbons-Hawking, Hitchin, Kronheimer, and their free quotients. On the
other hand, in Theorem B and Corollary 2.12 we proved that the complex surface
(M,J) admits a compactification to a variety (N, J) with at most three three finite
cyclic quotient singular points along the divisor at infinity, and no other singular
points. The complex structure of the divisor at infinity was studied in Proposition
2.7.4. We showed that C is an almost ample, admissible, smooth rational curve.
Moreover, the numerical conditions of the Tian-Yau construction (3.2), (3.3) are
also satisfied, as it can be seen from (2.10) and the adjunction formula. Then the
complement of the divisor at infinity, M \ C, admits a complete Ricci-flat Käh-
ler metric by the Tian-Yau theorem. This metric must be ALE by Theorem 3.4.
Hence, by the uniqueness part of Theorem 1.1, the two constructions yield the
same metrics. �

4. A GEOMETRIC DESCRIPTION OF THE COMPACTIFICATIONS

In Section §2, we gave an extrinsic description of the compactification M as a
hypersurface in a weighted complex projective space. We give next an intrinsic
description of the compactification. This will prove Theorem C.

Let M =

xy =
l∏

j=1

(zn − ajwc)kj = wdcP

(
zn

wc

) ⊆ P[x:y:z:w](a, b, c, n),

where aj ∈ C∗ are distinct, be the variety constructed in Proposition 2.7. Recall
that M has singularities of type Akj−1 at the points Sj = [0 : 0 : zj : wj ] ∈
P(a, b, c, n) with znj = ajw

c
j , whenever kj > 1.

Let π : M 99K P(a, c, n) be the projection

π ([x : y : z : w]) = [x : z : w]

from the singular point R2 = [0 : 1 : 0 : 0] ∈ M to the weighted hyperplane
(y = 0) ' P[x:z:w](a, c, n).

Since for any [x : y : z : w] ∈ M with x 6= 0, we can write y = wdc

x P
(
zn

wc

)
,

it follows that the map π is birational. More precisely, it is a biholomorphism
between M \ (x = 0) and P(a, c, n) \A, where A = (x = 0) ⊆ P(a, c, n). Along
the divisor (x = 0) ⊆M, the map π is not defined at R2, and contracts the lines

Lj = {[0 : y : zj : wj ]|znj = ajw
c
j} ⊆M, j = 1, . . . , l,

passing through R2 to distinct smooth points sj = π(Lj) = [0 : zj : wj ] ∈ A.
We eliminate the indeterminacy point R2 of the rational map π by a single suit-

able weighted blow-up, following [12, page 88].
As discussed in Proposition 2.7, the point R2 = [0 : 1 : 0 : 0] ∈ M is a

singularity of the type 1
b (c, n). More explicitly, if we denote by (X,Z,W ) the

local coordinates in the chart Uy = (y 6= 0) ⊆ P(a, b, c, n), then(
M ∩ Uy, R2

)
'
(
C2
(Z,W )/

1

b
(c, n), 0

)
.
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We consider the weighted blow-up of the point R2 in two steps. First, let U =
(tZn = sW c) ⊆ C2

(Z,W ) × P1
[s:t], where [s : t] are the homogeneous coordinates

on P1, and let E = ((0, 0), [s : t]) denote the exceptional divisor. The action of µb
on C2 extends trivially to an action on C2 × P1 as

α ((Z,W ), [s : t]) = ((αcZ,αnW ), [s : t]) ,

where α ∈ µb. The variety U is invariant under this action and E is its fixed locus.
Let Û = U/µb, and denote by Ê ⊆ Û the exceptional divisor.

Let Us, Ut ⊆ C2 × P1 be the standard charts given by (s 6= 0) and (t 6= 0),

respectively. We denote by Ûs ∩ U and Ût ∩ U the corresponding covering of Û .
In the chart Us, U is given by the equation (t′Zn = W c) ⊆ C3

(Z,W,t′), where

t′ = t/s, and so the action of the group µb is of the type
1

b
(c, n, 0). In this chart,

the variety U has a singular locus along the exceptional divisor E = (Z = 0).
We consider new complex coordinates on U in order to eliminate some of the
singularities, as follows.

Let f : C2 → C3 defined as

(u, v) 7→ (Z = uc,W = unv, t′ = vc). (4.1)

We notice that t′Zn −W c = vc(uc)n − (unv)c = 0, and hence U ∩ Us contains
the imagine of f. Let now µc act on C2 by

ρ(u, v) = (ρu, ρ−nv). (4.2)

The image of f is invariant under the action of µc, and we have an induced holo-
morphic map:

f ′ : C2
(u,v)/

1

c
(1,−n)→ U ∩ Us

To show that this map defines new complex coordinates we need to prove that f ′ is
a homeomorphism. It suffices to show that f ′ is a bijective map.

Let (Z,W, t′) ∈ C3 be a point in U ∩ Us, that is t′Zn = W c. If (Z,W, t′) =

(uc, unv, vc), then u is uniquely determined up to a cth root of unity ρ, u = ρZ
1
c .

If Z 6= 0, then v = ρ−nW (Z
1
c )−n. If Z = 0, then W = 0, u = 0, and v is

determined up to a cth root of unity. More precisely, as gcd(n, c) = 1, we can
write v = ρ−nt′

1
c for some ρ ∈ µc. In both cases, (u, v) is uniquely determined, up

to the action (4.2) of the group µc.Hence, any (Z,W, t′) on U ∩Us can be obtained
as the image of a point (u, v) of the form (Z

1
c ,W (Z

1
c )−n) or (0, t′−

1
c ).

This allows us to define new complex coordinates on the quotient Û ∩ Us :

Lemma 4.1. There exists an induced holomorphic map f̂s : C2
(u′,v)/

1
c (b,−n) →

Û ∩ Us. Moreover, the map f̂s is a homeomorphism and hence induces new com-
plex coordinates on Û ∩ Us.
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Proof. The µb action of type 1
b (c, n, 0) on C3

(Z,W,t′) is compatible with the action
of type 1

b (1, 0) on C2
(u,v), as (Z,W, t′) = (uc, unv, vc). Therefore, f ′ induces a

map:

f̂s :
(
C2
(u,v)/

1

c
(1,−n)

)
/

1

b
(1, 0)→ (U ∩ Us)/µb ' Û ∩ Us.

Notice now that(
C2
(u,v)/

1

c
(1,−n)

)
/

1

b
(1, 0) '

(
C2
(u,v)/

1

b
(1, 0)

)
/

1

c
(1,−n) ' C2

(u′,v)/
1

c
(b,−n),

after we use the commutativity of the two actions and the reparametrization u′ =
ub. As the map f ′ is holomorphic and a homeomorphism, so is the induced map
f̂s.

More explicitly, the map

f̂s : C2
(u′,v)/

1

c
(b,−n)→ Û ∩ Us ⊂ (C2

(Z,W ) × P1
[s:t])/

1

b
(c, n, 0, 0)

is of the form
f̂s(u

′, v) = (((u′
1
b )c, (u′

1
b )nv), [1 : vc]).

�

Notice that since a+ b = dnc, the singularity of the type 1
c (b,−n) is equivalent

to a type 1
c (−a,−n) singularity, or equivalently to a type 1

c (a, n) singularity.

Reverting the roles of n and c, an analogous computation which we do not repro-
duce, shows that we can consider complex coordinates on (Û ∩ Ut, (0, 0, [0 : 1]))
which are modeled by (C2

(w′,r)/
1
n(b,−c), 0). More precisely, the local coordinates

are given by the map

f̂t : C2
(w′,r)/

1

n
(b,−c)→ Û ∩ Ut ⊂ (C2

(Z,W ) × P1
[s,t])/

1

b
(c, n, 0, 0),

where
f̂t(w

′, r) = (((w′
1
b )cr, (w′

1
b )n), [rn : 1]) = (Z,W, [s : t]).

The transition map on the overlap set ̂U ∩ Us ∩ Ut, corresponding to s 6= 0 and
t 6= 0, or equivalently v 6= 0 and r 6= 0 is of the form:

f̂−1t ◦ f̂s(u′, v) = (u′(v
1
n )b, (v

1
n )−c) = (w′, r),

defined on

f̂−1t ◦ f̂s : C2
(u′,v)/

1

c
(b,−n) \ (v = 0)→ C2

(w′,r)/
1

n
(b,−c) \ (r = 0).

The above mapping is well-defined and biholomorphic. Hence, we have con-
structed the weighted blow-up of (C2

(Z,W )/
1
b (c, n), 0)) as the complex manifold

Û ⊆ (C2
(Z,W ) × P1

[s,t])/
1

b
(c, n, 0, 0)

with an endowed complex structure which has a singularity of the type 1
c (a, n)

at ((0, 0), [1 : 0]) and a singularity of the type 1
n(a, c) at ((0, 0), [0 : 1]). The
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exceptional divisor Ê is a smooth rational curve containing the two singular points
of Û .

Proposition 4.2. There exists a weighed blow-up b : M̂ → M of the mani-
fold M at the singular point R2 with exceptional divisor Ê such that the com-
plex manifold M̂ has two new singular points of type 1

c (b,−n) ' 1
c (a, n) and

1
n(b,−c) ' 1

n(a, c), respectively, both along Ê.

Proof. We construct M̂ by cutting out a neighborhood of the point R2 ∈ M ∩ Uy

and gluing in Û . Let b : M̂ →M be the blow-up projection. �

Let
Π : M̂ 99K P(a, c, n)

be the composition Π = π ◦ b.
We denote by L̂j the proper transforms in M̂ of the weighted projective lines

Lj ⊆M, j = 1, . . . , l.

Proposition 4.3. The map Π : M̂ → P(a, c, n) is a globally defined holomorphic
map of degree 1, contracting only the curves L̂j , j = 1, . . . , l to distinct smooth
points. The exceptional divisor Ê is mapped to the coordinate line (x = 0) ⊆
P[x:z:w](a, c, n).

Proof. We need to analyze the mapping Π in the two coordinate charts Û ∩ Us and
Û ∩ Ut ⊆ Û ⊆ M̂. In the chart Û ∩ Us, the mapping is defined on the complement
of the exceptional divisor Ê corresponding to the open subset

C2
(u′,v)/

1

c
(b,−n) \ (u′ = 0) ' Û ∩ Us \ Ê ⊆ (C2

(Z,W ) × P1
[s,t])/

1

b
(c, n, 0, 0)

and it is of the form

Π ◦ f̂s(u′, v) = Π
(

((u′
1
b )c, (u′

1
b )nv), [1 : vc]

)
= π

([
(u′

n
b v)dcP

(
u′

nc
b

u′
nc
b vc

)
: 1 : (u′

1
b )c : (u′

1
b )nv

])

=

[
u′

dnc
b vdcP

(
1

vc

)
: (u′

1
b )c : (u′

1
b )nv

]
=

[
u′

a+b
b vdcP

(
1

vc

)
: (u′

1
b )c : (u′

1
b )nv

]
=

[
u′vdcP

(
1

vc

)
: 1 : v

]
.

In this computation, we used thatM∩Uy is given by the equationX = W dcP ( Zn

W c ),

and for the last equality, that the image of Π ◦ f̂s lies in the weighted projective
space P(a, c, n). As P is a polynomial of degree d, the first term is a polynomial in
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v, and the projection can be extended to the entire local chart Û ∩ Us. Notice that
the orbifold point

0 ∈ C2
(u′,v)/

1

c
(b,−n) ' C2

(u′,v)/
1

c
(a, n)

is mapped to the point [0 : 1 : 0] ∈ P(a, c, n), as expected considering that the map-
ping is holomorphic of degree 1. In a similar way we can show that Π◦ f̂t(w′, r) =
[w′P (rn) : r : 1].

Hence the map Π extends to a holomorphic map defined on the entire variety
M̂. The rational map π contracts the lines Lj to the points sj = [0 : zj : wj ], and
so does its extension Π. �

Corollary 4.4. A smooth fiber of the Q−Gorenstein deformation of a singularity

of type
1

dn2
(1, dnm− 1) is biholomorphic to the complement of the proper trans-

forms of the coordinate lines (x = 0) and (w = 0) in the blow-up of d distinct
smooth points along the line (x = 0) \ (w = 0) in the weighted projective space
P[x:z:w](a, c, n).

Proof. The variety M̂ has two new singular points introduced by the weighted
blow-up, none of them lying on the contracted lines L̂j , j = 1, . . . , d. As these
lines are collapsed to distinct smooth points sj , then they must be rational curves
of self-intersection (−1). Hence, M̂ is biholomorphic to the blow-up of d distinct
smooth points along the line (x = 0) \ (w = 0) in the weighted projective space
P[x:z:w](a, c, n). �

Proof of Theorem C. An arbitrary fiber M of the Q−Gorenstein deformation has
singular points Sj , whenever kj > 1. Let N be the minimal resolution of the
singular points Sj in the compactificationM, N̂ the corresponding weighted blow-
up of N at the point R2, and Π̂ the induced projection

Π̂ : N̂ → P(a, c, n).

If kj = 1, then the proper transform of L̂j is a rational curve of self-intersection
(−1), which is collapsed to the smooth point sj ∈ P(a, c, n). In the case when
kj > 1, both the exceptional divisor above Sj and the proper transform of the line
L̂j are contracted to the smooth point sj . As the singular point Sj is of type Akj−1
the exceptional divisor introduced by the minimal resolution is a chain of (kj − 1)

rational curves of self-intersection (−2). Hence, as we know that Π̂ contracts this
chain and the proper transform of the line L̂j to the smooth point sj and there are no
singular points on any of these curves, then this configuration must be obtained as
the kj−times iterated blow-up of sj . In conclusion, the variety N̂ is biholomorphic
to the kj−times iterated blow-up of the points sj , j = 1, . . . , l. �

In particular, if we consider M = (xy = (z − a)n) ' C2/ 1
n(1,−1), and its

compactification M, the above proof implies the Corollary 1.2.
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