Problem 1. Find the general solution for the differential equation ty' + (t+1)y = t, for t > 0. Then compute $\lim_{t\to\infty} y(t)$.

Solution 1. Since t>0 we may rewrite the above equation as $y'+\frac{t+1}{t}y=1$, and note that this is a linear equation. We therefore multiply the equation by the integrating factor $\mu=\exp(\int\frac{t+1}{t})=te^t$ to obtain $\frac{d}{dt}(yte^t)=te^ty'+te^t\frac{t+1}{t}y=te^t$. Integrating both sides with respect to t gives $yte^t=(t-1)e^t+C$ (use integration by parts). Solving for y gives the general solution

$$y = \frac{t-1}{t} + C\frac{e^{-t}}{t}.$$

Where C is a constant.

As $t \to \infty$ we see that $C\frac{e^{-t}}{t} \to 0$, and $\frac{t-1}{t} \to 1$, hence $\lim_{t \to \infty} y(t) = 1$.