

Name:

Problem 1 (20 points). Evaluate the integral $\int_C xe^y ds$ where C is portion of the circle $x^2 + y^2 = 4$ going counterclockwise from (2,0) to $(\sqrt{2},\sqrt{2})$.

Problem 2 (20 points). Evaluate $\iiint_E (x^2 + y^2 + z^2)^2 dV$ where E is the region above the xy-plane and in between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$.

Problem 3 (20 points). Evaluate $\int_C F \cdot d\mathbf{r}$, where $F(x,y,z) = yz\mathbf{i} + (x+1)z\mathbf{j} + ((x+1)y+1)\mathbf{k}$ and C is the curve given by $r(t) = (\cos t, \sin t, t)$, for $0 \le t \le 2\pi$.

Problem 4 (20 points). Evaluate the integral $\int_C -y^3 \ dx + x^3 \ dy$ where C is the curve orineted positively which is made of the line segment from (0,0) to $(\sqrt{2},0)$, the counterclockwise arc on $x^2 + y^2 = 2$ from $(\sqrt{2},0)$ to (1,1), and also the line segment from (1,1) to (0,0).

Problem 5 (20 points). Find the curl and divergence of the vector field $F(x, y, z) = e^x \mathbf{i} + e^{xy} \mathbf{j} + e^{xyz} \mathbf{k}$.

Problem 6 (Extra Credit - 10 points, no partial credit). Let $f: \mathbb{R}^3 \to \mathbb{R}$ be the function $f(x, y, z) = ze^{x^2+y^2+z^2}$. Find a vector field G such that div G = f and $G(0,0,0) = \mathbf{i} + \mathbf{j}$.