

Name:_____

 $Problem\ 1\ (15\ points).$ Find all solutions to the following system of linear equations, check your work:

$$x_1 + x_2 - x_3 = 0$$

$$2x_2 - 2x_3 = -2$$

$$x_1 - x_2 + x_3 = 2.$$

Problem 2 (10 points).

- 1. Show that the set of functions y(x) which satisfy the differential equation y'' 2y' + y = 0 form a subspace of the vector space of all functions.
- 2. Using part 1 and the fact that the functions $y_1(x) = e^x$ and $y_2(x) = xe^x$ are solutions to the above differential equation, find a solution y(x) such that y(0) = 1 and y(1) = 0.

Problem 3 (20 points). Find a basis and calculate the dimension for each of the following vector spaces V:

- 1. $V = \mathbb{R}^5$.
- 2. $V = \{0\}$.
- 3. V is the set of all 2×2 matrices A such that $A \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
- 4. V is the set of polynomials p of degree at most 3 such that p(0) = p(1) = 0.
- 5. V is the solution space to the following homogeneous system of linear equations:

$$x + z = 0$$

$$y - z = 0$$

$$x - y + 2z = 0.$$

Problem 4 (20 points). Determine whether or not the following set forms a basis for \mathbb{R}^3 , justify your answer.

$$\left\{ \left(\begin{array}{c} 1\\5\\-1 \end{array}\right), \left(\begin{array}{c} 2\\6\\1 \end{array}\right), \left(\begin{array}{c} 4\\8\\5 \end{array}\right) \right\}.$$

Problem 5 (20 points). Determine wether or not the following are vector spaces, if they are then calculate the dimension, if they are not then give a reason why not:

- 1. V is the set of points $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$ such that x = y with the vector space structure coming from \mathbb{R}^2 .
- 2. V is the set of points $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$ such that xy = yz with the vector space structure coming from \mathbb{R}^3 .
- 3. V is the set of convergent sequences $\{x_n\}_n$ with the zero vector given by the zero sequence $\vec{0} = \{0\}_n$, addition of vectors given by entrywise addition $\{x_n\}_n \oplus \{y_n\}_n = \{x_n + y_n\}_n$, and scalar multiplication given by entrywise multiplication $a \cdot \{x_n\}_n = \{ax_n\}_n$.
- 4. V is the set of positive real numbers r > 0 with the zero vector given by $\vec{0} = 1$, addition of vectors given by $r_1 \oplus r_2 = r_1 r_2$, and scalar multiplication given by $a \cdot r = r^a$.
- 5. V is the set of all linear operators $T: \mathbb{R}^2 \to \mathbb{R}$ with the zero vector given by the constant zero function $\vec{0} = 0$, addition of vectors given by pointwise addition $(T \oplus S)(v) = Tv + Sv$, and scalar multiplication given by pointwise multiplication $(a \cdot T)(v) = a(Tv)$.

Problem 6 (15 points). Recall from calculus the power series expansions for e^x , $\sin x$, and $\cos x$:

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots,$$

$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k+1}}{(2k+1)!} = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots,$$

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2k}}{(2k)!} = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \cdots.$$

Consider the matrix $A = \begin{pmatrix} 0 & \pi \\ -\pi & 0 \end{pmatrix}$.

- 1. Calculate A, A^2, A^3 and A^4 .
- 2. Given a natural number $n \in \mathbb{N}$ calculate A^{2n} and A^{2n+1} .
- 3. Calculate $e^A = 1 + A + \frac{1}{2!}A^2 + \frac{1}{3!}A^3 + \frac{1}{4!}A^4 + \cdots$