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1 Introduction

The goal of this minicourse will be to present a proof of the following theo-
rem:
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Theorem 1.1 ([CP12]). Let G = G1×G2 where G1 is a simple higher rank
connected Lie group with trivial center, and G2 is a simple p-adic Lie group
with trivial center, and let Λ < G1 × G2 be an irreducible lattice. Then
for any ergodic, probability measure preserving action on non-atomic space
Λy(X, ν) is essentially free.

As an example, consider a prime p, and n ≥ 3. Take G1 = PSLn(R),
G2 = PSLn(Qp), and Λ = PSLn(Z[1/p]) embedded diagonally in G1 ×G2.

The above theorem is a special case of the results in [CP12], however, the
proof in this special case already contains most of the intricacies of the more
general situation. The theorem complements results of Stuck and Zimmer
from [SZ94] where they obtain the same conclusion under the assumption
that both G1 and G2 are connected and higher rank.

The proof of the above theorem can be seen as a measurable general-
ization of the proof of the normal subgroup theorem from [CS12] (see also
[Cre11]). The strategy of proof fits into the general framework of normal
subgroup rigidity techniques developed by Margulis. We refer the reader
to [Mar78, Mar79, Zim84, Mar91, SZ94], and [BS06] for other other re-
sults in a similar vein. We also refer the reader to [Tho64, Kir65, Ros89,
Ovč71, Bek07, DM12] and [PT13] for some similar rigidity results in the
non-commutative situation, which follow from different methods.

2 Lattices and induced representations

Let G be a second countable locally compact group. A lattice in G is
a discrete subgroup Γ < G, such that the quotient G/Γ has a finite G-
invariant measure. If Γ < G is a lattice then there exists a finite measure
Borel fundamental domain F ⊂ G, i.e., F is a Borel subset of finite measure
such that G = tγ∈ΓFγ. Given such a fundamental domain we may consider
the map α : G× F → Γ uniquely defined by the condition

gfα(g, f) ∈ F.

Note that the map f 7→ fΓ gives a Borel isomorphism between F and
G/Γ, and that under this isomorphism the action of G on G/Γ becomes
g · f = gfα(g, f)−1. Note also that for g, h ∈ G and f ∈ F we have
ghfα(h, f)α(g, h ·f) ∈ F , and from this it follows that α satisfies the cocycle
identity

α(gh, f) = α(h, f)α(g, h · f).

If Γy(X, ν) is a quasi-invariant action, then we obtain the induced
action of G on F ×X by the formula

g · (f, x) = (gf, α(g, f)−1x).

The fact that this is an action follows easily from the cocycle relation.
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Similarly, if π : Γ → U(H) is a representation, then we obtain the in-
duced representation on L2(F,H) by the formula

(π̃(g)ξ)(f) = π(α(g−1, f))ξ(g−1f).

Again, the fact that this is a unitary representation is an easy exercise.
Induced actions and representations defined in this way depend on the

fundamental domain F . However, it is not hard to see that taking different
fundamental domains gives equivalent induced actions and representations.

3 The Howe-Moore property

Let G be a second countable locally compact group. Recall that a represen-
tation π : G → U(H) is mixing if for every ξ, η ∈ H, the matrix coefficient
g 7→ 〈π(g)ξ, η〉 is in C0(G). Equivalently, the representation is mixing if for
any sequence gn ∈ G such that gn → ∞, we have that the unitary opera-
tors π(gn) converge in the weak operator topology to 0. A group G has the
Howe-Moore property if every representation without invariant vectors
is mixing.

Theorem 3.1 ([HM79]). Let G be a simple connected Lie group, then G
has the Howe-Moore property.

We will only prove the Howe-Moore property here for SLm(R). Recall
that any matrix a ∈ SLm(R) has a polar decomposition a = ub where u is
an orthogonal matrix and b is positive definite and symmetric. Since b is
positive definite and symmetric, it can be diagonalized as b = u0du

−1
0 where

d is a positive diagonal matrix with non-increasing entries, and u0 is an or-
thogonal matrix. Thus any matrix a ∈ SLm(R) has an expression a = u1du2

where u1 and u2 are orthogonal and d is diagonal with non-increasing posi-
tive entries. We thus obtain the Cartan decomposition SLm(R) = KA+K,
where K = SOm(R) and A is the semi-group of positive diagonal matrices
with non-increasing entries.

Proof of the Howe-Moore property for G = SL2(R). Suppose G = SL2(R),
and that π : G → U(H) is a (strong operator topology) continuous repre-
sentation which is not mixing, then we will show that there are G-invariant
vectors. Since the representation is not mixing, there exists a sequence π(gn)
such that gn → ∞, and π(gn) does not converge to 0 in the weak operator
topology. By taking a subsequence we may assume that π(gn) converges
weakly to a non-zero operator S ∈ B(H). Using the Cartan decomposition
we may write gn = knank

′
n where kn, k

′
n ∈ K, and an ∈ A+. Since K is

compact we have an → ∞, and we may take another subsequence so that
π(kn) and π(k′n) converge in the strong operator topology to unitaries v and
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w respectively. If we set T = v∗Sw∗ 6= 0 then we have that π(an) converges
in the weak operator topology to T .

Write an =
(
rn 0

0 r−1
n

)
, where rn →∞, and consider the subgroup N ⊂ G

consisting of upper triangular matrices with entries 1 on the diagonal. Note
that the conjugation action of A = 〈A+〉 on N is given by(

r 0
0 r−1

)
( 1 s

0 1 )
(
r−1 0

0 r

)
=
(

1 r2s
0 1

)
,

thus, for x ∈ N we have a−1
n xan → e ∈ G. Hence π(a−1

n xan) → 1 in
the strong operator topology, and so π(xan) = π(an)π(a−1

n xan) → T in
the weak operator topology. But we also have that π(xan) → π(x)T in
the weak operator topology, and so we conclude that π(x)T = T for all
x ∈ N , and hence π(x)TT ∗ = TT ∗ for all x ∈ N . Note that TT ∗ 6= 0 since
‖TT ∗‖ = ‖T‖2 6= 0. Replacing an with a−1

n then shows that π(y)T ∗T = T ∗T
for all y ∈ N t, where N t is the transpose of N consisting of lower triangular
matrices with 1’s down the diagonal.

Since T and T ∗ are both weak limits of unitaries from A, and since A is
abelian, we have TT ∗ = T ∗T , and since N and N t generate SL2(R) we then
have that π(g)TT ∗ = TT ∗ for all g ∈ SL2(R), thus any non-zero vector in
the range of TT ∗ gives a non-zero invariant vector for SL2(R)

Proof of the Howe-Moore property for SLm(R). For the case whenG = SLm(R),
with m > 2 we first note that again if π is not mixing then there exists a
sequence an ∈ A+ such that π(an)→ T 6= 0 in the weak operator topology.
where the upper left entry of an is tending to ∞, and that the lower right
diagonal entry is tending to 0.

For i 6= j, let Ni,j ⊂ SLm(R) denote the subgroup with 1’s down the
diagonal and all other entries zero except possibly the (i, j)-th entry, then
exactly as above we conclude that any non-zero vector in the range of TT ∗ is
fixed by the copy of SL2(R) generated by N1,m and Nm,1, and in particular,
is fixed by the subgroup A1,m consisting of those diagonal matrices with
positive entries which are 1 except possibly in the first or mth diagonal
entries.

If we let K denote the set of A1,m-invariant vectors, then to finish the
proof it is enough to show that K is G-invariant. Indeed, if this is the case
then A1,m is contained in the kernel of the representation restricted to K
and since G is simple this must then be the trivial representation.

To see that K isG-invariant note thatNi,j commutes with A1,m whenever
{i, j}∩{1,m} = ∅, in which case Ni,j leaves K invariant. On the other hand,
if {i, j} ∩ {1,m} 6= ∅ then A1,m acts on Bi,j by conjugation, and this action
is isomorphic to the action of A on N described above for SL2(R). Thus,
as above we must have that any vector which is fixed by A1,m is also fixed
by Bi,j and in particular we have that Bi,j leaves K invariant in this case as
well.
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Since G is generated by Bi,j , for 1 ≤ i, j ≤ m this then shows that K is
indeed G-invariant.

We remark that the proof above also works equally well for SLm(K)
where K is any non-discrete local field.

4 Property (T)

Let G be a locally compact group and let π : G→ U(H) be a representation.
The representation π has almost invariant vectors if there exists a net
ξn ∈ H, such that ‖ξn‖ = 1, and ‖π(g)ξn − ξn‖ → 0, for all g ∈ G. If
H < G is a closed subgroup, then the pair (G,H) has relative property
(T) if every representation of G which has almost invariant vectors, has
H-invariant vectors. The group G has property (T) if the pair (G,G) has
relative property (T).

Theorem 4.1. The pair (SL2(R) nR2,R2) has relative property (T).

Proof. Suppose π : SL2(R) n R2 → U(H) is a representation which has
almost invariant vectors ξn ∈ H. Restricting π to R2 we obtain a unitary
representation of R2, and hence this extends to a representation of the C∗-

algebra C∗(R2) ∼= C0(R̂2). The sequence {ξn} then defines a sequence of

states ϕn on C0(R̂2) by the formula ϕn(f) = 〈π(f)ξn, ξn〉. Since ξn are R2-

almost invariant it then follows that ϕn(f)→ f(e), for all f ∈ C0(R̂2). And
since ξn are SL2(R)-almost invariant, it also follows that for g ∈ SL2(R),

and f ∈ C0(R̂2) we have

ϕn(f ◦ gt)− ϕn(f) = 〈π(f)π(g)ξn, π(g)ξn〉 − 〈π(f)ξn, ξn〉 → 0.

By the Reisz representation theorem we may associate ϕn to a sequence

of Radon probability measures νn ∈ Prob(R̂2), which then satisfy νn(B)→ 1
for any neighborhood of e, and νn(gB) − νn(B) → 0 for any g ∈ SL2(R).
Taking a weak*-accumulation point we obtain a mean (i.e., a finitely additive

probability measure) m on R̂2 such that m(B) = 1 for any neighborhood of
e, and m(gB) = m(B) for all g ∈ SL2(R).

Identify R̂2 with R2 and set

A = {(x, y) ∈ R2 | x > 0,−x < y ≤ x};

B = {(x, y) ∈ R2 | y > 0,−y ≤ x < y};

C = {(x, y) ∈ R2 | x < 0, x ≤ y < −x};

D = {(x, y) ∈ R2 | y < 0, y < x ≤ −y}.

A simple calculation shows that for k ≥ 0 the sets Ak =
(

1 0
2k 1

)
A are pairwise

disjoint. Thus, we must have that m(A) = 0. A similar argument also shows
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that m(B) = m(C) = m(D) = 0. Hence we conclude that m({(0, 0)}) =
m(R2 \ (A ∪B ∪ C ∪D)) = 1.

Thus, we have sup
f∈C0(R̂2),‖f‖≤1

{|ϕn(f)−f(e)|} → 0, and hence supa∈R2 |1−
〈π(a)ξn, ξn〉| → 0. In particular, for some fixed n we have <(〈π(a)ξn, ξn〉) ≥
1/2 for all a ∈ R2. If we set K = co{π(a)ξn | a ∈ R2}, then K is a closed
convex set and hence has a unique element of minimal norm ξ0 ∈ K. Note
that ξ0 6= 0 since <(〈ξ0, ξn〉) ≥ 1/2. Also note that R2 acts on K and
preserves the norm, hence must also preserve the unique element of mini-
mal norm. Hence, we have produced a non-zero R2-invariant vector, and so
(SL2(R) nR2,R2) has relative property (T).

Theorem 4.2 ([Kaž67]). Let G be a simple higher rank Lie group. Then G
has property (T).

Proof for SLm(R), m ≥ 3. We consider the group SL2(R) < SLm(R) em-
bedded as matrices in the upper left corner. We also consider the group
R2 < SLm(R) embedded as those matrices with 1’s on the diagonal, and
all other entries zero except possibly the (1, n)th, and (2, n)th entries. Note
that the embedding of SL2(R) normalizes the embedding of R2, and these
groups generate a copy of SL2(R) nR2.

If π : SLm(R) is a representation which has almost invariant vectors,
then by Theorem 4.1 we have that the copy of R2 has a non-zero invariant
vector. By the Howe-Moore property it then follows that π has an SLm(R)-
invariant vector.

Theorem 4.3. [Kaž67] Let G be a second countable locally compact group,
and Γ < G a lattice, then G has property (T) if and only if Γ has property
(T).

Proof.

Recall that a group G is amenable for any compact Hausdorff space K
on which G acts, there exists an invariant probability measure.

Proposition 4.4. A locally compact group G is compact if and only if it is
amenable and has property (T).

Proof.

5 Boundaries

5.1 Harmonic functions on the unit disk

Recall that given a Dirichlet boundary condition on the unit disk f̂ ∈ L∞(T),
integration with respect to the Poisson kernels

Pr(θ) = Re

(
1 + reiθ

1− reiθ

)
, 0 ≤ r < 1
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yields a bounded harmonic function f on the unit disk D = {eiθ | −π < θ ≤
π}, given by the Poisson integration formula

f(reiθ) =
1

2π

∫ π

−π
Pr(θ − t)f̂(eit)dt.

Every bounded harmonic function arrises in this way and from f we can
recover f̂ by the formula

f̂(eiθ) = lim
r→1

f(reiθ).

Thus, the map f̂ 7→ f gives a positivity preserving Banach space isomor-
phism between L∞(T) and the space of bounded harmonic functions on D.

If G denotes the group of fractional linear transformations which preserve
the disk (i.e., G ∼= PSL2(R)), then G acts both on L∞(T) as well as the space
of bounded harmonic functions on D, and the isomorphism f̂ 7→ f is G-
equivariant. The action of G on the unit disk is a homogeneous space G/K
where K is a maximal compact subgroup, and so for a harmonic function f
on D we can lift this to a function f̃ on G by the formula f̃(g) = f(g(0))
and this function will also be harmonic in the sense that it will be in the
kernel of the corresponding differential operator ∆̃ on G. In this setting the
Poisson integration formula has a particularly nice form

f̃(g) =

∫
f̂(gζ)dm(ζ)

where m is the normalized Lebesgue measure on the circle T.

5.2 Poisson boundaries

In order to generalize the above situation to other locally compact groups,
Furstenberg introduced in [Fur63] the notion of an abstract Poisson bound-
ary. The starting point for this construction is to note that the differential
operator ∆̃ generates a 1-parameter semi-group under convolution of prob-
ability measures µt ∈ Prob(G) ([Hun56]), and a function f̃ ∈ L∞(G) is
harmonic if and only if it is stationary with respect to convolution for some
µt, i.e.,

f̃ ∗ µt = f̃ . (1)

Consider a second countable locally compact group G, and a probability
measure µ ∈ Prob(G) which is in the same measure class as Haar measure.
We define a function f ∈ L∞(G) to be µ-harmonic if it satisfies equation (1),
i.e., f ∗ µ = f .

Consider the Borel space Ω0 =
∏∞

1 G, which we endow with the product
probability measure

∏∞
1 µ. We define the map T : Ω0 → Ω0 by

T (x1, x2, x3, . . .) = (x1x2, x3, x4, . . .).
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The group G acts on Ω0 as

g(x1, x2, x3, . . .) = (gx1, x2, x3, . . .)

and as this action commutes with T we obtain a quasi-invariant action of G
on the algebra L∞(Ω0,

∏∞
1 µ)T of T -invariant functions. By Mackey’s point

realization theorem [Mac62] we may realize this action of G as a quasi-
invariant action on a probability space Gy(B, η). We refer to this action as
the µ-boundary of G. Note that this action is µ-stationary, i.e., µ ∗ η = η.

Given a function in the µ-boundary f̂ ∈ L∞(B, η) we can define a func-
tion f ∈ L∞(G), the Poisson transform of f̂ , by the formula

f(g) =

∫
f̂(gx)dη(x).

Note that we have

(f ∗ µ)(g) =

∫∫
f̂(ghx)dη(x)dµ(h) =

∫
f̂(gx)d(µ ∗ η)(x) = f(g),

thus f is µ-harmonic (and hence f is continuous since L∞(G) ∗ L1(G) ⊂
Cb(G)). Conversely, if we are given a µ-harmonic function f ∈ L∞(G),
then we can consider the sequence of functions f̂n ∈ L∞(Ω0) given by
f̂n(x1, x2, . . .) = fn(x1x2 · · ·xn). Each fn is measurable with respect to
the σ-algebra generated by the first n copies of G, and if we denote E the
conditional expectation onto this σ-algebra then since f is µ-harmonic we
have

E(f̂n+1)(x1, x2, . . .) =

∫
f̂n+1(x1, x2, . . . , xn+1)dµ(xn+1)

=

∫
f(x1x2 · · ·xnxn+1)dµ(xn+1) = f̂n(x1, x2, . . .).

Thus, the sequence {f̂n}n forms a martingale and hence by the martingale
convergence theorem converges strongly to a function f̂ ∈ L∞(

∏∞
1 G), which

is clearly T -invariant, hence f̂ ∈ L∞(B, η).
We have thus constructed a positivity preserving Banach space isomor-

phism f̂ 7→ f from L∞(B, η) to Har(G,µ), the space of bounded µ-harmonic
functions. Moreover, this isomorphism is G-invariant.

6 Contractive actions

Definition 6.1 ([Jaw94]). A quasi-invariant action Gy(B, η) is contrac-
tive if for every E ⊂ B, we have infg∈G η(gE) ∈ {0, 1}.

Note that we could also replace the infimum above with a supremum.
Also note that by considering simple functions it’s easy to see that an action
Gy(B, η) is contractive if and only if for every f ∈ L∞(B, η) we have
supg∈G |

∫
f dgη| = ‖f‖∞, i.e., the Poisson transform is isometric.
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Proposition 6.2 ([Jaw94]). Let G be a second countable locally compact
group, and let µ ∈ Prob(G) be a probability measure which is absolutely
continuous with respect to Haar measure. Then the action of G in its µ-
boundary (B, η) is contractive.

Proof. Identifying L∞(B, η) with the space of bounded µ-harmonic func-
tions via the map f̂ 7→ f defined above, we see that

∫
f̂dη = f(e), and

thus
∫
f̂dgη = f(g), for each g ∈ G. Therefore, supg∈G |

∫
f̂dgη| = ‖f‖∞ =

‖f̂‖∞. Thus, the action is contractive.

Lemma 6.3. Let G be a second countable locally compact group, suppose
G acts continuously on a compact metric space B, and η ∈ Prob(B) is a
Radon measure such that Gy(B, η) is contractive. Then for each y ∈ B
there exists a sequence gn ∈ G such that gnη → δy in the weak*-topology.

Proof. Consider y ∈ B and take On a sequence of open neighborhoods of
y such that ∩nOn = {y}. For each n ∈ N there exists gn ∈ G such that
ν(gnOn) > 1 − 1

n . Thus, if O ⊂ B is an open set which contains y, then O
will contain On for large enough n and hence ν(gnO)→ 1. Conversely, if O
does not contain y then we have that O ∩ On = ∅ for large enough n and
hence ν(gnO) → 0. Thus, for this sequence we have that gnη → δy in the
weak*-topology.

Note that, by a result of Varadarajan, every quasi-invariant action of G
on a separable measure space has a model where the space B is a compact
metric space (see, e.g., Theorem 2.1.19 in [Zim84]). Also note that the
preceding proposition has a converse. That is to say if Gy(B, η) such that
every compact model has the above property then the action is contractive,
[FG10].

The next lemma follows trivially from the definitions.

Lemma 6.4. Let G be a second countable locally compact group and suppose
that Gy(B, η) is contractive, and π : (B, η) → (Z, ζ) is a G-map of G-
spaces, then Gy(Z, ζ) is contractive.

6.1 Boundary actions restricted to lattices

Proposition 6.5 (The random ergodic theorem [Kak51]). Let G be a sec-
ond countable locally compact group, with µ ∈ Prob(G) a Radon probability
measure in the same measure class as Haar measure. If Gy(X, ν) is an
ergodic, probability measure preserving action then for every f ∈ L1(X, ν),
and for ΠNµ-almost every sequence (gn)n, and ν-almost every x ∈ X we
have

lim
N→∞

1

N

n∑
n=1

f(gngn−1 · · · g1x) =

∫
f dν.
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The proof of the random ergodic is obtained by applying Birkhoff’s er-
godic theorem to the ergodic transformation T : Ω ×X → Ω ×X given by
T ((gn)n, x) = ((gn−1)n, g1x). We omit the details.

Proposition 6.6 ([CS12]). Let G be a second countable locally compact
group, with µ ∈ Prob(G) a Radon probability measure in the same measure
class as Haar measure, and suppose that Γ < G is a lattice. If Gy(B, η) is
the Poisson boundary action with respect to µ, then the restriction to Γ is
again contractive.

Proof. Fix a compact set K ⊂ G such that KΓ ⊂ G/Γ has positive measure.
By the random ergodic theorem we then have that

lim
N→∞

1

N

n∑
n=1

1KΓ(gngn−1 · · · g1x) = ν(KΓ),

for ΠNµ-almost every sequence (gn)n. In particular, for some x ∈ G, we have
that for almost every sequence (gn)n, the sequence intersects KxΓ infinitely
often.

Suppose E ⊂ B, such that 0 < η(E) < 1. By the discussion in Section 5
we have that

ΠN({(gn)n | η(gngn−1 · · · g1E)→ 0}) = 1− η(E) > 0,

hence there exists a sequence (gn)n such that η(gngn−1 · · · g1E) → 0, and
hn = gngn−1 · · · g1 meets KxΓ infinitely often. Taking a subsequence we
may then write hn = knxγn where kn ∈ K converges to an element k ∈ K.

Since η(hnE) → 0, and x−1k−1
n → x−1k−1 we have that η(γnE) =

η((x−1k−1
n )hnE)→ 0. Thus Γy(B, η) is contractive.

6.2 Rigidity of contractive actions

Proposition 6.7 ([CS12]). Let Gy(B, η) be a contractive action, and sup-
pose π : (B, η) → (Z, ζ) is a factor map. If π′ : (B, η) → (Z, ζ ′) is also a
factor map, where ζ ≺ ζ ′, then we have π = π′.

Proof. We may assume that B and Z are compact metric spaces such that
π and π′ are continuous. By Lemma 6.3 for each y ∈ B there exists a
sequence gn ∈ G such that gnη → δy in the weak*-topology. Since π is
continuous we have that π∗ : Prob(B) → Prob(Z) is weak*-continuous and
hence gnζ = gnπ∗η = π∗(gnη) → π∗(δy) = δπ(y) in the weak*-topology.
Similarly we have gnζ

′ → δπ′(y).
If π(y) 6= π′(y) then there would exist an open set O ⊂ Z such that

π(y) ∈ O, and π′(y) 6∈ O. Thus ζ(gnO) → 1 while ζ ′(gnO) → 0. Taking a
subsequence we may then assume that ζ(gnO) ≥ 1/2, while ζ ′(gnO) ≤ 1/2n,
for each n ∈ N, and hence

lim
N→∞

ζ ′(∪n≥NgnO) = 0,
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while
lim
N→∞

ζ(∪n≥NgnO) ≥ 1/2.

Thus if we consider the Gδ-set B = ∩N∈N(∪n≥NgnO) then we have ζ ′(B) = 0
while ζ(B) ≥ 1/2 contradicting the fact that ζ ≺ ζ ′.

7 Amenable actions

Recall that a group G is amenable if and only if whenever E is a Banach
space, α : G → Isom(E) is an isometric action, and K ⊂ E∗1 is a compact
convex subset which is invariant under the dual action of G, then there exists
a G-fixed point in K. Motivated by this characterization, Zimmer defined
the notion of amenability for actions which we will now describe.

Suppose Gy(B, η) is a quasi-invariant action of G on a standard prob-
ability space. If E is a separable Banach space, then a cocycle α : G×B →
Isom(E) is a Borel map, such that α(gh, b) = α(g, hb)α(h, b) for every g, h, b.
A cocycle induces a adjoint cocycle α∗ given by α∗(g, b) = (α(g, b)−1)∗. Sup-
pose for each b ∈ B we have a compact convex subset Kb ⊂ E∗1 , such that
Kb varies in a Borel fashion, i.e., {(b,Kb)} ⊂ B × E∗1 is a Borel subset. If
for all g ∈ G, and almost every b ∈ B we have that α∗(g, b)Kb = Kgb Then
F (B, {Kb}) = {ϕ : B → E∗1 | ϕ(b) ∈ Kb, for almost every b ∈ B} defines a
compact convex subset of L∞(B,E∗) which is invariant under the action of
G. We will call F (B, {Kb}) an affine G-space over B.

The action Gy(B, η) is amenable if for any affine G-space over B,
F (B, {Kb}) there exists an invariant section, i.e., there exists a Borel map
π : B → E∗1 such that π(b) ∈ Kb, and α∗(g, b)π(b) = π(gb) for all g ∈ G,
and almost every b ∈ B.

Theorem 7.1. Suppose Gy(B, η) is a quasi-invariant action. Then Gy(B, η)
is amenable if and only if there exists a G-equivariant conditional expectation
E : L∞(B ×G)→ L∞(B).

Proof. Let us first suppose that Gy(B, η) is amenable. Let Cb(G) denote
the C∗-algebra of all bounded left uniformly continuous functions on G.
For each G-invariant separable C∗-subalgebra A ⊂ Cb(G), we may consider
the cocycle α : G × B → Isom(A) given by α(g, x) = λg. Clearly α is a
cocycle, and hence since GyB is amenable there exists an invariant section
π : B → S(A), where S(A) ⊂ A∗ denotes the state space of A.

We thus obtain a conditional expectation EA : L∞(B, η)⊗A→ L∞(B, η)
given by EA(f1 ⊗ f2)(b) = π(b)(f2)f1(b). Since the section π is invariant we
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have

EA(f1 ⊗ f2)(gb) = π(gb)(f2)f1(gb)

= (α(g, b)∗π(b))(f2)f1(gb)

= π(b)(λg(f1))f2(gb)

= EA((f1 ⊗ f1) ◦ g)(b).

If we let E be a cluster point of the net {EA}A then we see that E is a
G-invariant conditional expectation E : L∞(B, η)⊗ Cb(G)→ L∞(B, η).

To produce a mean on L∞(B, η)⊗L∞(G) we start by taking an approx-
imate identity {ψn} ⊂ Cc(G). Specifically, we want that each ψn ∈ Cc(G)
is a non-negative function, ‖ψn‖1 = 1, supp(ψn) → {e}, and ‖ψn ∗ δg −
δg ∗ ψn‖1 → 0 for each g ∈ G. If f ∈ L∞(B, η)⊗L∞(G), then taking con-
volution pointwise we have ψn ∗ f ∈ L∞(X,µ) ⊗ UCb(G) for each n, and
‖(ψn ∗f)◦g−ψn ∗(f ◦g)‖∞ → 0 for each g ∈ G, and f ∈ L∞(B, η)⊗L∞(G).
If we set Φn : L∞(B, η)⊗L∞(G) → L∞(B, η), by Φn(f) = Φ(ψn ∗ f), then
it follows that any accumulation point of {Φn} gives a G-equivariant condi-
tional expectation.

Now suppose that there exists a G-equivariant conditional expectation
E : L∞(B, η)⊗L∞(G) → L∞(B, η), and let F (B, {Kb}) be an affine G-
space over B. Fix any section π0 : B → E∗1 such that π0(b) ∈ Kb. We
set K0

b = {α∗(g, g−1b)π0(g−1b) | g ∈ G} ⊂ Kb. Let A be the C∗-algebra
consisting of all essentially bounded Borel functions f : tb∈GK0

b → C such
that k 7→ f(b, k) is continous for almost every b ∈ B. Then we have a G-
equivariant homomorphism φ : A→ L∞(B, η)⊗L∞(G) given by φ(f)(b, g) =
f(α∗(g, g−1b)π0(g−1b)). If we restrict the condition expectation E to φ(A),
then we may interpret this as a G-equivariant map p : B → Prob(K0

b ) such
that we have the formula E(φ(f))(b) =

∫
f(b, k) dp(b)(k).

If we then let π(b) be the barycenter π(b) =
∫
k dp(b)(k) then a simple

calculation shows that π is an invariant section for F (B, {Kb}).

Proposition 7.2 ([Zim77]). Let G be a second countable locally compact
group, and H < G a closed subgroup. If the action Gy(B, η) is amenable,
then the action Hy(B, η) is also amenable.

Proof. If we fix a right Borel fundamental domain F for H, then we obtain a
H-equivariant homomorphism φ from L∞(S, η)⊗L∞(H) to L∞(S, η)⊗L∞(G),
by φ(f)(b, hs0) = f(b, h) whenever s0 ∈ F . If E : L∞(S, η)⊗L∞(G) →
L∞(S, η) is a G-equivariant conditional expectation, then E ◦φ defines a H-
equivariant conditional expectation, showing that Hy(B, η) is amenable.

Proposition 7.3 ([Zim77]). Let G be a locally compact group and µ ∈
Prob(G) a probability measure which is absolutely continuous with respect to
Haar measure. Then the action of G in its µ-boundary (B, η) is amenable.
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Proof. As above, we identify L∞(B, η) with the space of bounded µ-harmonic
functions Har(G,µ) ⊂ L∞(G). Let ω be a non-principle ultrafilter on N and
consider the G-invariant positivity preserving map E : Cb(G) → Har(G,µ)
given by E(f) = limn→ω

1
N

∑N
n=1 f ∗ µn.

Since the action of G on Cb(G) is continuous it follows that the action
of G on E(Cb(G)) is also continous and hence so is the action on the dense
C∗-subalgebra A of L∞(B, η) which the range of E generates.

Thus by replacing B with the Gelfand spectrum of A we may assume
that B is a compact Hausdorff space on which G acts continuously, and
E : Cb(G)→ C(B) ⊂ L∞(B, η). Hence we obtain a G-invariant map π from
B to the state space Σ of Cb(G) given by π(b)(f) = E(f)(b).

We then have a G-equivariant conditional expectation E : L∞(B, η) ⊗
Cb(G)→ L∞(B, η) given by E(f1 ⊗ f2)(b) = f1(b)π(b)(f2). The proof then
finishes as in Theorem 7.1.

8 The amenability half of the Creutz-Shalom nor-
mal subgroup theorem

Theorem 8.1 ([CS12]). Let G be a locally compact group with a lattice
Γ < G, suppose Λ < G is a countable dense subgroup which contains and
commensurates Γ. Suppose that for every closed normal subgroup N0 C G
we have either |N0 ∩ Λ| <∞, or [Γ : N0 ∩ Γ] <∞, (e.g., if G is simple). If
N C Λ such that |N | =∞, then Γ/(Γ ∩N) is amenable.

Proof. Suppose Γ/(Γ∩N)yK is a continuous action on a compact Hausdorff
space, which we view as an action of Γ such that (Γ ∩ N) acts trivially.
By Propositions 6.2, 6.6, 7.3, and 7.2, there exists a quasi-invariant action
Gy(B, η) such that the restriction of this action to Γ is amenable and
contractive.

Since the action Γy(B, η) is amenable, there exists a Γ-invariant map
π : B → Prob(K). We may then consider this as a Γ-factor map with the
push forward measure π : (B, η)→ (Prob(K), π∗η).

If λ ∈ Λ∩N then we may consider the map π′ : (B, η)→ (Prob(K), π′∗η)
defined by π′(y) = π(λy). Note that since λη ∼ η we have that π∗η ∼ π′∗η.

If γ ∈ Γ∩λ−1Γλ, and we write γ = λ−1γ0λ for γ0 ∈ Γ then we have that
γ−1γ0 = λ−1(γ−1

0 λγ0) ∈ N ∩ Γ hence γ0k = γk for each k ∈ K. Thus, we
have

π′(γy) = π(λ(λ−1γ0λ)y) = γ0π
′(y) = γπ′(y),

for each y ∈ B and hence π′ is (Γ ∩ λ−1Γλ)-invariant. Since this group
has finite index in Γ, the action (Γ ∩ λ−1Γλ)y(B, η) is also contractive by
Proposition 6.6. Thus from Proposition 6.7 it follows that π′ = π, i.e.,
π(λy) = π(y) for almost every y ∈ B.
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But the action Gy(B, η) is weakly continuous and hence the map λ 7→
π ◦ λ is also weakly continuous. Thus, for every g ∈ N we have that π =
π ◦ g. Since |N | = ∞ it follows from the hypothesis of the theorem that
[Γ : N ∩ Γ] <∞, thus γ ◦ π = π ◦ γ = π for γ ∈ Γ0 = N ∩ Γ. It then follows
that Γ0 acts almost everywhere trivially on (Prob(K), π∗η), but as this is a
factor of a contractive space, this space is again contractive and hence must
be the trivial one point space. Thus, π is almost everywhere constant, and
the essential range provides a Γ-invariant probability measure on K showing
that Γ/(Γ ∩N) is amenable.

Corollary 8.2 ([BS06]). Let G = G1 × G2 be a product of locally compact
second countable simple groups, and let Λ < G1×G2 be an irreducible lattice.
Suppose that G has property (T), and G2 is totally disconnected, then any
non-trivial normal subgroup of Λ has finite index.

Proof. Suppose Λ < G1×G2 is as above, and N CΛ is a non-trivial normal
subgroup. Let K < G2 be a compact open subgroup, and set Γ = Λ ∩
(G1 ×K). Since K is open it follows that Γ < G1 ×K is a lattice which is
commensurated by Λ.

For i = 1, 2 we set Γi (resp. Λi, Ni) to be the projection of Γ (resp. Λ,
N) into Gi. Note that since Λ is an irreducible lattice, and since G1 and G2

are simple we have that these projections are injective, so that Λi ∼= Λ, and
Γi ∼= Γ. Moreover, Λi is dense in Gi, while Γ1 < G1 is a lattice.

Note that since Λi is dense in Gi, and since Gi is simple, we have that
Ni = Gi. In particular, N1 is not finite. Applying the previous theorem to
Γ1 < Λ1 < G1 then gives Γ1/(Γ1 ∩ N1) is amenable. Since G1 has (T), so
does Γ1/(Γ1 ∩N1). We therefore conclude that Γ/(Γ ∩N) ∼= Γ1/(Γ1 ∩N1)
is finite.

Note that we have a natural bijection between the countable sets Λ/Γ and
G2/K which is given by λΓ 7→ p2(λΓ) = p2(λ)K, where p2 is the projection
onto G2. Moreover, the inverse of this bijection is given by gK 7→ p−1

2 (gK).
Take F ⊂ Γ finite so that Γ ⊂ FN . From this bijection we then see that
FN = Λ ∩ p−1

2 (p2(FN)) ⊃ Λ ∩ p−1
2 (p2(N)) = Λ, hence [Λ : N ] <∞.

The previous corollary actually holds in a much more general situation.
In particular, the hypothesis that G2 is totally disconnected can be dropped,
and the hypothesis that G has property (T) can be significantly relaxed. We
refer the reader to [BS06], and [CS12] for details.

9 Stabilizers for actions restricted to dense sub-
groups

Theorem 9.1 ([Zim87], Lemma 6). Let G be a locally compact second count-
able connected simple group with the Howe-Moore property, and let Λ < G
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be a countable subgroup. If Gy(X, ν) is a non-trivial ergodic probability
measure preserving action, then the restriction Λy(X, ν) is free.

Proof. Suppose Gy(X, ν) is a non-trivial ergodic probability measure pre-
serving action. For each x ∈ X let Kx be the connected component of the
stabilizer subgroup Gx, and let k(x) denote it’s dimension.

Note that for g ∈ G we have k(gx) = dim(Kgx) = dim(gKxg
−1) = k(x).

Thus, k is G-invariant and hence must be constant by ergodicity. Since G
has the Howe-Moore property, and G acts ergodically on (X,µ) it follows
that the action of G on X is mixing, and so the action of G on X × X is
again ergodic.

By ergodicity, we again have that k̃(x, y) = dim(K(x,y)) = dim(Kx∩Ky)

is constant. If k̃ = k > 0 then we would have that K = Kx = Ky for almost
every (x, y) ∈ X ×X. But then gKg−1 = K for every g ∈ G, and hence K
is a non-trivial normal subgroup of G contradicting that G is simple.

Thus, either k = 0, or else k̃ < k. Applying induction it then follows
that the action of G on Xm has discrete stabilizers almost everywhere, for
some m ≥ 1.

Suppose now that Λ < G is a countable dense subgroup and λ ∈ Λ \ {e}
such that E = {x ∈ X | λx = x} has positive measure. We then have that
Em = {x̃ ∈ Xm | λx̃ = x} also has positive measure. By continuity we
have limg→e ν(Em∆gEm) → 0, and hence there exists a sequence gn ∈ G
such that gn → e, {gnλg−1

n }n are pairwise distinct, and ν(∩n∈NgnEm) > 0.
But then for x̃ ∈ ∩n∈NgnEm we have that gnλg

−1
n ∈ Gx̃, and gnλg

−1
n → λ,

contradicting the fact that Gx̃ is discrete for almost every x̃ ∈ Xm.

Corollary 9.2 ([CP12]). Let G be a locally compact second countable con-
nected simple group with the Howe-Moore property, and let Λ < G be a
countable dense subgroup. If Λy(X, ν) is an ergodic probability measure
preserving action, then either this action is essentially free, or else Λx is
dense in G for almost every x ∈ X.

Proof. Let Λy(X, ν) be an ergodic probability measure preserving action,
and suppose that this action is not free. Let Sub(G) denote the space of
closed subgroups of G, which we view as a closed (and hence compact)
subspace of 2G. Note that G acts on Sub(G) by conjugation, and that this
action is continuous. The map π : X → Sub(G) given by π(x) = Λx defines
a Borel map, and we have π(λx) = λπ(x)λ−1. Thus, if we consider the
push-forward measure π∗ν on Sub(G) then we have that this measure is
Λ-invariant.

Since G acts continuously on Sub(G) and since Λ is dense, we then have
that π∗ν is also G-invariant. Note that as a Λ action (Sub(G), π∗ν) is a
factor of (X, ν), and since Λ does not act freely on (X, ν) it follows that Λ
does not act freely on (Sub(G), π∗ν) either. Therefore, by Theorem 9.1 the
action of G on (Sub(G), π∗ν) must be the trivial action, i.e., π∗ν is supported

15



on the space of normal subgroups, which is {{e}, G} since G is simple. Since
the action of Λ is non-free and ergodic, it follows that {e} cannot be in the
support of π∗ν, and so π∗ν = δG. Or in other words Λx = G for almost
every x ∈ X.

10 Weakly amenable actions

Let Γ be a countable group, and suppose that Γy(X, ν) is a quasi-invariant
action. An affine Γ-space F (B, {Kb}) over X is said to be orbital if α(g, b) =
id whenever g ∈ Γb. The action Γy(X, ν) is weakly amenable if every
orbital affine Γ-space over X has an invariant section.

Given an action of Γ we consider the orbit equivalence relation R =
RΓyX given by xRy if and only if Γy = Γx. If θ : X → X is a measurable
bijection such that (θ(x), x) ∈ R for all x ∈ X, then we may obtain a map
α : X → Γ such that θ(x) = α(x)x for all x ∈ X. We may assume that the
map α is measurable by choosing an enumeration of Γ, and letting α(x) be
the first element in Γ such that θ(x) = α(x)x. Since the Γ action is measure
preserving it is then easy to check that θ is also measure preserving. The set
of all such θ is the full group of the equivalence relation R, and is denoted
by [R].

Consider on R the measure ν̃ given by ν̃(E) =
∫
|{(x, y) ∈ E}| dν(x).

Note that we have an embedding L∞(X, ν) ⊂ L∞(R, ν̃) as functions which
are supported on the diagonal ∆ = {(x, x) | x ∈ X}. If θ ∈ [R] then we may
consider the diagonal action on R given by θ · (x, y) = (θ(x), y). Note that
this action preserves the measure ν̃.

Similar to Theorem 7.1 (and with a similar proof which we will not
present here), we have the following characterization of weakly amenable
actions.

Proposition 10.1 ([Zim77]). If Γy(X, ν) is a quasi-invariant action and
R = RΓyX . Then Γy(X, ν) is weakly amenable if and only if there exists
a conditional expectation E : L∞(R, ν̃) → L∞(X, ν) such that E(f ◦ θ) =
E(f) ◦ θ for all f ∈ L∞(R, ν̃) and θ ∈ [R].

Corollary 10.2. Let Γ be a countable group with property (T), and suppose
that Γy(X, ν) is a measure preserving action. Then R = RΓyX is amenable
if and only if almost every Γ-orbit is finite.

Proof. If almost every Γ-orbit is finite then it is an easy exercise to see
that R is amenable, thus we will only focus on the converse. Suppose that
R is amenable. Then there exists a Γ-equivariant conditional expectation
E : L∞(R, ν̃) → L∞(X, ν). Composing E with the integral on L∞(X, ν)
then gives a Γ-invariant state ϕ on L∞(R, ν̃). Since L1(R, ν̃) is weak* dense
in L∞(R, ν̃)∗, there exists a sequence ηn ∈ L1(R, ν̃)+ such that ‖ηn‖1 = 1,
and ‖ηn − γηn‖1 → 0, for all γ ∈ Γ.
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If we set ξn =
√
ηn then ξn forms a sequence of almost invariant vectors

for the representation of Γ on L2(R, ν̃), as Γ has property (T) it then follows
that there is a non-zero Γ-invariant vector ξ0 ∈ L2(R, ν̃). But as ξ0 ∈
L2(R, ν̃) is constant on Γ-orbits it follows that for almost every (x, y) ∈ R
such that ξ0(x, y) 6= 0, we have |Γx| <∞. Since ξ0 6= 0 it follows that there
is a positive measure set E0 ⊂ X such that the Γ-orbit of x is finite whenever
x ∈ E0. This property also holds for E = ΓE0, and E is Γ-invariant.

A simple maximality argument then finishes the corollary.

11 Relatively contractive actions

Theorem 11.1 ([CP12]). Let Γy(B, η) be a contractive action, and let
Γy(X, ν) be probability measure preserving. Suppose that Z is a Borel space,
on which Γ acts, and we have a Γ-equivariant Borel map θ : Z → X.
Suppose also that π : X×B → Z, and π̃ : X×B → Z are two Γ-equivariant
maps such that ζ = π∗(ν × η) ∼ π̃∗(ν × η) = ζ̃, and the following diagram
commutes:

X ×B X

Y

Y

.............................................................................................................................................................................................. ............

p

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............
............

θ

........................................................................................................................................ ........
....

π

............................................................................................................................................................................................................................................... .......
.....

π̃

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............

θ

Then we have π = π̃.

Proof. We’ll show that π = π̃ by showing that for every Borel set E ⊂
Y we have (ν × η)(π−1(E)∆π̃−1(E)) = 0. So, arguing by contradiction
suppose that this is not the case and E ⊂ Y is Borel such that (ν ×
η)(π−1(E)∆π̃−1(E)) 6= 0. With out loss of generality we may assume that
if Ẽ = π−1(E) \ π̃−1(E), then we have (ν × η)(Ẽ) > 0.

Write Ẽ = ∪b∈BEb × {b}, and let c0 = supb∈B ν(Eb) which must be
positive by Fubini’s theorem. Fix ε > 0 and set F0 = {b ∈ B | ν(Eb) >
c0 − ε}. If we consider the map F0 3 b 7→ Eb ⊂ X, then by separability of
L1(X, ν) there exists a set F ⊂ F0 such that η(F ) > 0, and ν(Eb∆Eb′) < ε
for all b, b′ ∈ F . Fix one such b0 ∈ F and set X0 = Eb0 .

Since Γy(B, η) is contractive there exists γ ∈ Γ such that η(γF ) > 1−ε,
and hence (ν × η)(γ(Ẽ ∩ (X0 ×B))) > ν(γE0)− 2ε > c0 − 3ε.

It then follows that

ζ(γ(E ∩ θ−1(X0))) ≥ ζ(γ(π(Ẽ) ∩ θ−1(X0)))

≥ (ν × η)(γ(Ẽ ∩ (X0 ×B))) > c0 − 3ε,
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while

ζ̃(γ(E ∩ θ−1(X0))) = ν(γX0)− ζ̃(γ(Ec ∩ θ−1(X0)))

< ν(X0)− ζ̃(γ(π̃(Ec) ∩ θ−1(X0)))

< ν(X0)− (ν × η)(γ(Ẽ ∩ (X0 ×B))) < 4ε.

Since ε > 0 is arbitrary and independent of c0 it then follows that ζ 6∼ ζ̃.

Theorem 11.2 ([CP12]). Let G be a locally compact second countable group
with the Howe-Moore property and having no compact normal subgroups,
Γ < G a lattice, and Λ < G a countable dense subgroup which contains and
commensurates Γ.

If Λy(X, ν) is an ergodic probability measure preserving action, then
either Λy(X, ν) is free, or else Γy(X, ν) is weakly amenable.

Proof. Suppose Λy(X, ν) is an ergodic probability measure preserving ac-
tion which is not free. Suppose F (X, {Kx}) is an orbital affine Γ-space,
with orbital cocycle action α : Γ×X → Isom(E). By Propositions 6.2, 6.6,
7.3, and 7.2, there exists a quasi-invariant action Gy(B, η) such that the
restriction of this action to Γ is amenable and contractive.

Consider the cocycle β : B × Γ→ Isom(L1(X,E)) given by β(γ, b)(x) =
α(γ, x). Since Γy(B, η) is amenable there exists a Γ-equivariant map π0 :
B → L∞(X,E∗1) such that π0(b)(x) ∈ Kx for almost all (x, b) ∈ X × B.
Consider the Γ-equivariant map π : X × B → X × E∗1 given by π(x, b) =
(x, π0(b)(x)), and let θ : X ×E∗1 → X be the natural projection map. Then
setting (Y, ζ) = (X × E∗1 , π∗(η × ν)), and p : X × B → X the natural
projection map, we have a commutative diagram of Γ-equivariant maps:

X ×B X

Y

.............................................................................................................................................................................................. ............

p

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............
............

θ

........................................................................................................................................ ........
....

π

Fix λ ∈ Λ, and let Eλ = {x ∈ X | x ∼ λx}. Choose a measurable map
ϕ : Eλ → Γ so that λx = ϕ(x)x for each x ∈ Eλ.

We define a new map π̃ : X × B → Y by π̃(x, b) = ϕ(x)−1π(λ(x, b)) for
x ∈ Eλ, and π̃(x, b) = π(x, b) for x 6∈ Eλ.

We again have p = θ ◦ π̃, and if γ ∈ Γ ∩ λ−1Γλ, then for x ∈ E we have

π̃(γ(x, b)) = ϕ(γx)−1π(λγ(x, b)) = ϕ(γx)−1λγλ−1π(λ(x, b)).

Since ϕ(x)x = λx we have (ϕ(γx)−1λγλ−1)λx = γϕ(x)−1λx. Hence, π̃(γ(x, b)) =
γϕ(x)−1π(λ(x, b)) = γπ̃(x, b).

Thus, we have a commutative diagram of (Γ∩λ−1Γλ)-equivariant maps:
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X ×B X

Y

Y

.............................................................................................................................................................................................. ............

p

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..............
............

θ

........................................................................................................................................ ........
....

π

............................................................................................................................................................................................................................................... .......
.....

π̃

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
............

θ

Note that since Λ action on X × B is quasi-invariant, it follows that
π̃∗(ν × η) ∼ π∗(ν × η). By Theorem 11.1 it then follows that π̃ = π. In
particular, for almost every (x, b) ∈ X ×B we have π(x, λb) = π(λ(x, b)) =
π(x, b) for all λ ∈ Λx.

However, for almost every x ∈ X, the map b 7→ π(x, b) is measurable,
and since Gy(B, η) weakly continuously, and since almost every Λx is dense
in G by Corollary 9.2, we then must have that π(x, gb) = π(x, b) for almost
every (x, b) ∈ X × B and every g ∈ G. Since Gy(B, η) is ergodic it then
follows that π is independent of the second variable, i.e., π is a Γ-equivariant
map from X to E∗1 , such that π(x) ∈ Kx for almost every x ∈ X. Thus
Γy(X, ν) is weakly amenable.

Corollary 11.3 ([CP12]). Let G be a locally compact second countable group
with the Howe-Moore property, property (T), and having no non-trivial com-
pact normal subgroups, Γ < G a lattice, and Λ < G a countable dense
subgroup which contains and commensurates Γ.

If Λy(X, ν) is an ergodic probability measure preserving action, then
either Λy(X, ν) is free, or else [Γ : Γx] <∞ for almost every x ∈ X.

Proof. If Λy(X, ν) is not free then from the previous theorem we have that
Γy(X, ν) is weakly amenable. Since Γ has property (T) we then have from
Corollary 10.2 that the orbits of Γ are finite, and so [Γ : Γx] <∞ for almost
every x ∈ X.

We are now in position to prove the theorem stated in the introduction.

Theorem 11.4 ([CP12]). Let G = G1 × G2 where G1 is a simple higher
rank connected Lie group with trivial center, and G2 is a simple p-adic Lie
group with trivial center, and let Λ < G1×G2 be an irreducible lattice. Then
for any ergodic, probability measure preserving action on non-atomic space
Λy(X, ν) is essentially free.

Proof. Suppose that Λy(X, ν) is not free. If K < G2 is a compact open
subgroup then we may consider Γ = Λ∩ (G1×K), and Γ1 the projection of
Γ to G1. Then as in Corollary 8.2 we have that Γ1 < G1 is a lattice and the
projection of Λ to G1 is dense and commensurates Γ.
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By Corollary 11.3 we then have that [Γ1 : (Γ1)x] < ∞ for almost every
x ∈ X. Let p2 denote the projection fromG1×G2 toG2 and note that p2(Λx)
contains p2(Γx) which is compact and finite index in K, hence open. Thus
p2(Λx) is also open since it contains a compact open subgroup. Since G2

has Howe-Moore we have that the only open subgroups are either compact
or all of G2. If p2(Λx) were compact for a positive measure subset of X,
then by ergodicity it would then follows that p2(Λx) is compact for almost
every x ∈ X. Since there are only countably many compact open subsets of
G2 it would then follow that there is a positive measure subset E ⊂ X such
that K0 = p2(Λx) does not depend on x ∈ E. But since λK0λ

−1 = p2(Λλx)
for λ ∈ Λ, and since Λy(X, ν) is measure preserving , we then have that
K0 has finite conjugacy class in G2, which implies that G2 has a compact
open normal subgroup contradicting the fact that G2 is simple. Hence, we
conclude that p2(Λx) = G2 for almost every x ∈ X.

We have a natural bijection between Λ/Γ and G2/K given by λΓ 7→
p2(λΓ) = p2(λ)K. For each x ∈ X let Fx ⊂ Γ be finite such that Γ ⊂
FxΓx. From the above bijection we have FxΛx = Λ ∩ p−1

2 (p2(FxΓx)) ⊃
Λ ∩ p−1

2 (p2(Λx)) = Λ, hence [Λ : Λx] < ∞ for almost every x ∈ X. By
ergodicity it then follows that Λ has a single orbit, and hence (X, ν) is a
finite atomic probability space.
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