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Abstract 

In some pattern recognition tasks, the dimension of the sample space is larger than the number of the samples in 

the training set. This is known as the “small sample size problem”. The Linear Discriminant Analysis (LDA) 

techniques cannot be applied directly to the small sample size case. The small sample size problem is also 

encountered when kernel approaches are used for recognition. In this paper we try to answer the question of “How 

should we choose the optimal projection vectors for feature extraction for the small sample size case?” Then, we 

propose a new method called the Kernel Discriminative Common Vector (Kernel DCV) method, based on our 

findings. In this method, we first nonlinearly map the original input space to an implicit higher-dimensional feature 

space through a kernel mapping, where the data are hoped to be linearly separable. Then, the optimal projection 

vectors are computed in the transformed space. The proposed method yields an optimal solution for maximizing the 

modified Fisher’s Linear Discriminant criterion given in the paper. Thus, a 100% recognition rate is always 

guaranteed for the training set samples. Experiments on test data sets also show that the generalization ability of the 

proposed method outperforms other kernel approaches in many situations. 

Index Terms: Discriminative common vectors, feature extraction, Fisher’s linear discriminant analysis, kernel 

methods, principal component analysis, small sample size, subspace methods. 
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I. INTRODUCTION 

Feature extraction has been one of the most important issues in pattern recognition. In the 

problem of feature extraction, the aim is to select the variables that contain the most 

discriminatory information. Most of the feature extraction methods have centered on finding 

linear transformations that map the original high-dimensional sample space into a lower-

dimensional space, which hopefully contains all the necessary discriminatory information. The 

principal motivation behind dimensionality reduction is that it may reduce the worst effects of 

the curse of dimensionality [1]. Often, improved performance is achieved over the application of 

the selected classifier in the original sample space. Also, linear feature extraction techniques are 

often used as pre-processors for more complex nonlinear classifiers. However, sometimes linear 

methods may not provide sufficient nonlinear discriminant power for classification of linearly 

non-separable classes (e.g., exclusive-or problem). Thus, kernel approaches have been proposed 

to overcome this limitation. The main idea is to transform the input data into a higher-

dimensional space by a nonlinear kernel mapping and then apply the linear discriminant 

techniques in this space. The motivation behind this is to transform the linearly non-separable 

data into a higher-dimensional space where the data are linearly separable. Therefore, it turns out 

that a nonlinear discriminant method is applied in the original sample space.  

One of the most popular feature extraction methods is the Principal Component Analysis 

(PCA) method. In this method we find the best set of projection directions in the sample space 

that will maximize the total scatter across all samples such that the criterion 

||maxarg)( WSWWJ T
T

optPCA =  is maximized. Here W is the matrix whose columns are the 

projection vectors and TS  is the total scatter matrix of the training set samples. This criterion is 

maximized when the most significant eigenvectors (the eigenvectors corresponding to the largest 
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eigenvalues of TS ) are chosen as the projection vectors. The PCA method is an unsupervised 

method since it does not consider the classes of the training set data. Although it is useful for 

reconstruction, it is not necessarily optimal from a discrimination point of view. Thus, the 

projection vectors chosen for optimal reconstruction may obscure the existence of separate 

classes [1], [2]. The Fisher’s Linear Discriminant Analysis (FLDA) method was proposed to 

overcome the limitations of the PCA method [3]. It has been successfully applied in many 

classification problems such as image recognition, multimedia information retrieval, and medical 

applications. The method uses the FLDA criterion, which tries to maximize the ratio, 

||

||
maxarg)(

WSW

WSW
WJ

W
T

B
T

optFLDA = , where WS  is the within-class scatter matrix, and BS  is the 

between-class scatter matrix. The above criterion is maximized when the eigenvectors of BW SS 1−  

are employed as projection vectors. Since the matrix BW SS 1−  is typically not symmetric, the 

eigen-decomposition may be unstable. To avoid this problem, the simultaneous diagonalization 

algorithm is often employed to obtain a stable eigen-decomposition [4], [5]. The major drawback 

of the FLDA method is that it cannot be applied directly if the rank of the within-class scatter 

matrix WS  is smaller than the dimension of the sample space since WS  is singular in this case. 

This problem is also known as the “small sample size problem” [4]. The Perturbation method has 

been used in [6] and [7], where WS  is perturbed so as to become nonsingular. Swets and Weng 

[5] proposed a two-stage PCA+FLDA method, also known as the Fisherface method, in which 

PCA is first used for dimension reduction so as to make WS  nonsingular before the application 

of the FLDA. 

Recently, Yu and Yang have proposed the Direct-LDA method to overcome the small sample 

size problem [8]. This method also uses simultaneous diagonalization for finding the projection 
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vectors in the range space of BS . First, the null space of BS  is discarded, and then the projection 

vectors that minimize the within-class scatter in the transformed space are selected from the 

range space of BS . However, the range space of BS  does not necessarily include the optimal 

projection vectors [9], [10], [11]. This fact can be clearly seen in the example that is given in Fig. 

1. In Fig. 1, we plotted two linearly separable classes with similar covariance matrices. The class 

means are shown as stars. Since the class distributions are similar, we expect the decision regions 

produced by the linear discriminant analysis techniques to be optimal in this case. As can be seen 

in the figure, although the FLDA method correctly discriminates all samples, the Direct-LDA 

method fails for this example. Note that, the FLDA and the Direct-LDA methods produce the 

same results if the ranks of both the between-class scatter and the within-class scatter matrices 

are larger than or equal to the dimensionality of the sample space, or the within-class scatter of 

the samples is isotropic. These conditions are not typically satisfied for the small sample size 

case. Therefore, the Direct-LDA method fails to extract optimal projection vectors for feature 

extraction in most cases. 

 

Fig. 1. Two linearly separable classes with the similar covariance matrices are plotted. Stars 
represent class means and lines represent the decision boundaries found by the Direct-LDA and 
the FLDA methods. 
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Chen et al. proposed the Null Space method for the small sample size case based on the 

modified FLDA criterion, 
WSW

WSW
WJ

T
T

B
T

W
optMFLDA maxarg)( =  [12]. In this method, all training 

samples are first projected onto the null space of WS , resulting in a new within-class scatter that 

is a zero matrix. Then, PCA is applied to the transformed samples to obtain the final projection 

vectors. Chen et al. also proved that by applying this method, the modified FLDA criterion 

attains its maximum of 1; therefore the Null Space method extracts features, which are optimal 

from a discrimination point of view. It turns out that the orthonormal projection vectors obtained 

by the Null Space method span the space, which is the intersection of the null space of WS  and 

the range space of TS . We call it the optimal discriminant subspace since it is spanned by 

vectors that extract the optimal features for discrimination. However, Chen et al. did not give an 

efficient algorithm for applying this method in the original sample space. Instead, a pixel 

grouping method was applied to extract geometric features and reduce the dimension of the 

sample space. Then, they applied the Null Space method in this new reduced space. Vapnik 

suggests that when solving a given problem, one should avoid solving a more general problem as 

an intermediate step [13]. Following this suggestion we showed that any pre-processing step, 

such as a pixel grouping method that reduces the original dimension of the null space, is likely to 

reduce the performance and therefore should be avoided [14]. In [14], we proposed the 

Discriminant Common Vector (DCV) method to find optimal orthonormal projection vectors in 

the optimal discriminant subspace. This method is equivalent to the Null Space method, with the 

exception that the pixel reducing step is omitted and therefore the method exploits the original 

high-dimensional space. Two efficient algorithms were given to compute the optimal projection 

vectors. One algorithm uses the range space of WS , while the other uses subspace methods and 
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the Gram-Schmidt orthogonalization procedure. Another novel method, the PCA+Null Space 

method was proposed by Huang et al. in [10] to find optimal projection vectors that span the 

optimal discriminant subspace. In this method, PCA is first applied to remove the null space of 

TS . Then, optimal projection vectors are found in the remaining lower-dimensional space by 

using the Null Space method. However, this method is computationally expensive compared to 

the DCV method (see [14], for a comparison of these methods). 

The Kernel PCA method was proposed as a nonlinear extension of PCA [15]. The basic idea is 

first to transform the data into a higher-dimensional space via a nonlinear mapping and then 

apply the linear PCA method in this space. The projection onto this higher-dimensional space 

and the application of PCA in the transformed space are performed by using a set of kernel 

functions without explicitly working in the transformed space, making this process 

computationally feasible. However, the Kernel PCA method is also an unsupervised technique in 

that it extracts features that may not be optimal from the discrimination point of view. Therefore, 

discriminant analysis techniques that use kernels have been recently proposed [16], [17]. 

Similarly to the Kernel PCA, these methods also use kernel functions to project data into a 

higher-dimensional space via a nonlinear kernel mapping, and then the Linear Discriminant 

Analysis (LDA) is performed in this higher-dimensional space. However, the singularity 

problem of the matrices is encountered in these techniques. Two different approaches are 

adopted to solve this problem. Mika et al. use a perturbation method in which a small 

perturbation matrix is added to make singular matrices nonsingular [16]. Baudat and Anouar use 

the modified FLDA criterion instead of the original FLDA criterion [17]. They first project the 

data onto the range space of the total scatter matrix of mapped samples through the Kernel PCA, 

and then they apply the LDA method that maximizes the modified FLDA criterion in the reduced 



 7 

space [18]. The first approach is called the Kernel Fisher’s Discriminant Analysis (Kernel FDA) 

method and latter approach is called the Kernel Generalized Discriminant Analysis (Kernel 

GDA) method. 

In this paper we propose a new method called the Kernel DCV method, which applies the DCV 

method in the nonlinearly transformed higher-dimensional space. Since the modified FLDA 

criterion is guaranteed to attain its maximum value when using the Kenel DCV method, just as in 

the DCV method, the optimal features for discrimination are extracted from the nonlinearly 

transformed higher-dimensional space. 

The remainder of this paper is organized as follows. In Section II, we describe the optimal 

discriminant subspace concept in detail, and then we show how to extract the optimal projection 

directions from this subspace. In Section III, the Kernel DCV method is introduced. In Section 

IV, we describe the data sets and experimental results. Finally, our conclusions are presented in 

Section V. 

II. OPTIMAL PROJECTION VECTORS 

The modified FLDA criterion tries to maximize the ratio, 
WSW

WSW
WJ

T
T

B
T

W
optMFLDA maxarg)( = . 

However, this criterion is not appropriate since its maximum is not unique for the small sample 

size case. In particular, every projection vector matrix W such that 0=WSW W
T  and 

0≠WSW B
T  maximizes the modified FLDA criterion. Note that if WS  is singular, which is 

always the case for the small sample size problem, there are many such projection vector 

matrices W. However, it is not reasonable to use matrices W with a small number of projection 

vectors since they are not sufficient for an optimal feature extraction. On the other hand, the 
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following criterion given in [19] has a unique maximum and it also maximizes the modified 

FLDA criterion 

||maxarg ||maxarg)(
0||0||

WSWWSWWJ T
T

WSW
B

T

WSW
opt

W
T

W
T ==

== .                      (1) 

Therefore, to find the optimal projection vectors w in the null space )( WSN  of WS , we project 

the training set samples onto )( WSN  and then obtain the projection vectors by performing PCA. 

From this operation we get a set of orthonormal vectors that is a basis for a space, which we call 

the optimal discriminant subspace. The optimal discriminant subspace is the intersection of 

)( WSN  and the range space )( TSR  of the total scatter matrix TS . The criterion given in (1) 

attains its maximum for orthonormal vectors that form a basis for the optimal discriminant 

subspace. There are numerous algorithms to find this optimal subspace and an orthonormal basis 

for it. Some efficient algorithms are given in [14].  

A. The Optimal Discriminant Subspace Concept 

Let the training set be composed of C classes, where the i-th class contains iN  samples, and 

let i
mx  be a d-dimensional column vector which denotes the m-th sample from the i-th class. 

There will be a total of ∑
=

=
C

i
iNM

1

 samples in the training set. Suppose that d>M-C. In this case, 

the within-class scatter matrix WS , the between-class scatter matrix BS , and the total scatter 

matrix TS  are defined as 

T
i

i
mi

C

i

iN

m

i
mW xxS ))((

1 1
µµ −−∑ ∑=

= =
,                                                        (2) 

T
i

C

i
iiB NS )()(

1
µµµµ −∑ −=

=
,                                                        (3) 

and 
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BW
Ti

m

C

i

iN

m

i
mT SSxxS +=−−∑ ∑=

= =
))((

1 1
µµ ,                                               (4) 

where µ  is the mean of all samples, and iµ  is the mean of samples in the i-th class.  

If the dimensionality d of the sample space is larger than M-1, all scatter matrices will be rank 

deficient. Thus, if we apply eigen-decomposition to the scatter matrices, we will obtain some 

eigenvectors corresponding to the zero eigenvalues that span the null spaces of the scatter 

matrices. As explained previously, if the projection directions are chosen from )( WSN , the 

modified FLDA criterion attains its maximum, 1. Therefore, we have to project the training set 

data onto )( WSN . Then, optimal projection vectors can be obtained by applying PCA to the 

samples, which are projected onto )( WSN . The fact that the optimal projection vectors span the 

optimal discriminant subspace follows from the following lemma.  

Lemma 1: Suppose U  is a matrix whose column vectors ku ( drk T ,...,1+= , where Tr  is the 

rank of TS ) are orthonormal vectors that span the null space )( TSN  of TS . If all samples in the 

training set are projected onto )( TSN , they produce a unique common vector such that 

i
m

T xUUx = ,     iNmCi ,...,1,,...,1 == ,                                 (5) 

where x is independent of indices i and m. 

Proof:  By definition, a vector dRu ∈  is in )( TSN  if 0=uST . Let µ  be the mean vector of the 

samples in the training set, MxM
M R∈1  be the matrix with all elements equal to 1−M , and 

dxMRX ∈  be the matrix whose columns are the training set samples. Thus, by multiplying both 

sides of identity 0=uST  by Tu , we get 

2

1 1
||)1(||)1)(1())((0 uXIuXIIXuuxxu T

M
TT

MM
TTi

m

C

i

N

m

i
m

Ti

−=−−=−−∑ ∑=
= =

µµ ,          (6) 
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where ||.|| denotes the Euclidean norm. Thus, (6) holds if 0)1( =− k
T

M uXI , or 

k
T

Mk
T uXuX 1= . From this relation it can be seen that 

.,...,1,,...,1,,...,1,)( drkNmCiuux Tik
T

k
Ti

m +==== µ                       (7) 

Thus the projection of any i
mx  onto )( TSN , 

kk

d

rk
kk

d

rk

i
m uuuuxx

TT

〉∑ 〈=〉∑ 〈=
+=+=

,,
11
µ ,  ,,...,1,,...,1 iNmCi ==                     (8) 

is independent of m and i, which proves the lemma.                                                                      ⁮ 

This lemma shows that, )( TSN  does not contain any discriminative information, which can be 

used in the course of obtaining the optimal projection vectors. Therefore this null space can be 

removed. Then, the remaining subspace for extracting the features of discrimination will be the 

intersection of )( WSN  and )( TSR . 

There are numerous algorithms to find the optimal discriminant subspace and optimal 

projection vectors that span it. The following observation proposed by Therrien [20] can be used 

to find optimal projection vectors and the optimal discriminant subspace. 

Observation 1: Let )(iH  be a subspace of dR . A vector e is contained in I
n

i

iH
1

)(

=
if and only if it 

is an eigenvector of Ψ corresponding to an eigenvalue of 1, where 

∑=Ψ
=

n

i

i
i Pa

1

)(                                                    (9) 

with )(iP  being the projection matrix (also called the orthogonal projection operator) of the i-th 

subspace and 1,10
1

=<< ∑
=

n

i
ii aa . 



 11 

In our case we can choose )1(H  and )2(H  as )( TSR  and )( WSN , respectively, to find 

orthonormal vectors that span the optimal discriminant space. However, this approach is not 

always practical for real applications since the size of projection matrices of subspaces may be 

too large (e.g., images of size 256 by 256 yield projection matrices of size 65,536 by 65,536). 

We will use this observation for the numerical example given at the end of this section. 

There are better ways to find the optimal projection vectors. This is a result of the fact that the 

projection matrices of )( WSN  and )( TSR  commute, as shown in Theorem 1 below, namely 

)1()2()2()1( PPPP = , where )1(P  and )2(P  represent the projection matrices of )( TSR  and )( WSN , 

respectively. In this case, the projection matrix of the intersection )()( TW SRSN ∩  is found by 

the equation 

)1()2()2()1( PPPPPopt == ,                                          (10) 

where optP  is the projection matrix of the optimal discriminant subspace [21]. A consequence of 

Theorem 1 is that to obtain the optimal projection vectors we can first project the training set 

samples onto )( WSN  and then apply PCA or, alternatively, we can first project the training set 

samples onto )( TSR  through PCA, and then find the null space in the transformed space. The 

DCV method uses the first approach, whereas the PCA+Null Space method uses the second 

approach.  

Before we prove Theorem 1, we need the following auxiliary lemmas. 

Lemma 2: The following holds: 

 i) )()( WT SNSN ⊂ , 

 ii) )()()())()(( WTWWT SNSNSNSRSN ∩=∩+ , 

where “+” denotes the usual sum of sets. 
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Proof: i) Let )( TSNv ∈ . Then 

0)( =+= vSSvS WBT .                                             (11) 

Since the scatter matrices are positive semi-definite, this implies [14] 

0== vSvS WB ,                                                 (12) 

and hence )( WSNv ∈ . 

ii) To show that the equation )()()())()(( WTWWT SNSNSNSRSN ∩=∩+  holds, we have to 

show that )()()())()(( WTWWT SNSNSNSRSN ∩⊃∩+  and 

)()()())()(( WTWWT SNSNSNSRSN ∩⊂∩+ . It is trivial to see that the first inclusion holds. 

As for the second inclusion, let )())()(( WWT SNSRSNv ∩+∈ . The vector v  can be 

decomposed as bav += , where )( TSNa ∈  and )( WSRb ∈ . Then since )( WSNv ∈ , 

0)( =+ baSW .                                                (13) 

Moreover, as noted above, 0=aST  implies 0=aSW . These facts imply 0=bSW . On the other 

hand, since )( WSRb ∈ , 

00 =⇔= bbSW .                                             (14) 

Thus, )( TSNav ∈=  and this verifies the considered inclusion.                                                   ⁮ 

Lemma 3: Let )1(H  and )2(H  be subspaces of dR . Let )1(P  and )2(P  be the orthogonal 

projections onto )1(H  and )2(H , respectively. Let )2()1( HHH ∩=  and )2(H ′  be defined by 

)2()2( HHH =⊕′ ,                                           (15) 

i.e., )2(H ′  is the orthogonal complement of H in )2(H . Then )1(P  and )2(P  commute, that is 

)1()2()2()1( PPPP = , if and only if )1()2( HH ⊥′ . 
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Proof: Let )1(H ′  be the orthogonal complement of H in )1(H , i.e., )1()1( HHH =⊕′ . Suppose 

first that )1()2( HH ⊥′ . Thus, )2()1()2()1( HHHHH ′⊕′⊕=+  and each dRv ∈  has a unique 

decomposition dcbav +++= , where Ha ∈ , )1(Hb ′∈ , )2(Hc ′∈ , and ⊥+∈ )( )2()1( HHd . 

Clearly, 

vPPcaPabaPvPP )2()1()1()2()1()2( )()( =+==+= .                            (16) 

Conversely, if )1(P  and )2(P  commute, we have 

)2()1()2()2()2()1()2()1( HPPHPPHP ′=′=′ ,                                  (17) 

and hence, )2()2()1( HHP ⊂′  since )2(P  is the identity operator on )2(H . On the other hand, by 

definition we also have )1()2()1( HHP ⊂′ . As a result, HHHHP =∩⊂′ )2()1()2()1( . Finally, one 

can have HHP ⊂′ )2()1(  only if }0{)2()1( =′HP  since HH ⊥′ )2( . However this implies 

)1()2( HH ⊥′ .                                                                                                                                  ⁮ 

We are now ready to prove the following theorem: 

Theorem 1: Let )()1(
TSRH = , )()2(

WSNH = , and )()()2()1(
WT SNSRHHH ∩=∩= , the 

optimal discriminant subspace. Then, the projection matrices )1(P  and )2(P  of the subspaces 

)1(H  and )2(H  commute. 

Proof: Using the notation from Lemma 3, we know that )1()2()2()1()1()2( PPPPHH =⇒⊥′ . The 

orthogonal complement of )()( WT SNSRH ∩=  in dR  is 

)()())()(( WTWT SRSNSNSRH +=∩= ⊥⊥ .                                (18) 

Thus, )2(H ′  equals, 

)())()(()2(
WWT SNSRSNH ∩+=′ .                                   (19) 

From Lemma 2 we know that, 
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)()()()())()(()2(
TWTWWT SNSNSNSNSRSNH =∩=∩+=′ .                (20) 

Thus, it is clear that 1
'
2 HH ⊥  since this is equivalent to )()( TT SRSN ⊥ . Invoking Lemma 3 

now finishes the proof.                                                                                                                    ⁫ 

In [22], [23], and [24], the authors claim that the Direct-LDA method finds the projection 

vectors in the intersection space of )( WSN  and )( BSR , thus the projection vectors found by this 

method should be optimal and equivalent to the ones found by the Null Space method 

(equivalently the DCV method and the PCA+Null Space method). However this statement is 

incorrect. In fact, neither the Direct-LDA method nor the Null Space method finds the projection 

vectors in the intersection space of )( BSR  and )( WSN . The projection directions obtained by the 

Direct-LDA method come from )( BSR , and the intersection of )( BSR  and )( WSN  is in fact 

often trivial. Indeed, in all the face database examples considered in this paper, the intersection 

was trivial. Therefore, the intersection space of )( BSR  and )( WSN  cannot be used for 

recognition. This fact is illustrated in Fig. 2. In Fig. 2, two classes with the same covariance 

matrices having two samples each in a 3-dimensional space are plotted. Class means are 

represented with circles. )( WSR  and )( BSR  are shown in the figure. In this example )( TSR  is 

the plane spanned by the vectors representing )( WSR  and )( BSR , and )( TSN  is the line 

perpendicular to this plane. Note that it is also the intersection of )( BSN  and )( WSN . The 

optimal discriminant subspace, )()( WT SNSR ∩ , is the line in this plane that is perpendicular to 

)( WSR . )( WSN  is the plane spanned by the vectors representing )( TSN  and )()( WT SNSR ∩ . 

As can be seen in the figure, the intersection of )( WSN  and )( BSR  is the trivial space.  
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Fig. 2. Illustration of the optimal discriminant subspace. 

The projection vectors found by the Direct-LDA method and the Null Space method also differ 

in terms of orthogonality properties. The projection vectors found by the Direct-LDA method 

satisfy the orthogonality property, ijjW
T
i wSw δ= , whereas the projection vectors found by the 

Null Space method satisfy the property, ijji ww δ= , where ijδ  is the Kronecker’s delta. 

B. Numerical Example 

 In this subsection we present a numerical example to show techniques to compute the optimal 

projection vectors from the optimal discriminant subspace. The samples of each class given 

below are randomly chosen from the Gaussian distributions with different means and same 

identity covariance matrix. Let  

Tx ]0.7812    1.4751-   0.3775-   0.5689    0.0403    0.7310[1
1 = ,  

[ ]Tx 0.2656-   0.2340-   0.2959-   0.2556-   0.6771    0.57791
2 = ;  

[ ]Tx 2.5690    2.2120    2.9409    2.6232    3.4435    2.11842
1 = , 

T2
2 0.8122]    2.2379    1.0079    2.7990    1.6490    2.3148[=x ; 
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[ ]Tx 2.8217-   1.5563-   2.6355-   1.6101-   0.9177-   3.0078-3
1 = , 

[ ]Tx 1.0137-   2.9499-   2.5596-   1.9120-   2.1315-   2.7420-3
2 = . 

Thus there are 3=C classes, each of which contains 2 samples in a 6-dimensional sample space. 

The within-class scatter matrix is 



























=++=

3.7255      1.9322-      1.7239      0.0042       0.1457      0.1479

1.9322-     1.7416     0.0273-      0.2990-     1.2177    0.2777-

1.7239      0.0273-      1.8745      0.2150-     1.7143    0.1860-

0.0042      0.2990-     0.2150-     0.4009      0.2370-     0.0403

0.1457       1.2177       1.7143      0.2370-     2.5495    0.3863-

0.1479      0.2777-     0.1860-    0.0403      0.3863-     0.0663

321 SSSSW . 

The eigenvalues and corresponding eigenvectors of WS  are 

 5.57641 =λ , T
1 0.8064]    0.3656-   0.4428    0.0030-   0.1408    0.0152[=α ; 

 4.36722 =λ  , T
2 0.1459]    0.4721-   0.4227-   0.1043    0.7426-   0.1215[=α ; 

0.41473 =λ  , T
3 0.1279]    0.2352    0.0397    0.9231-   0.2703-   0.0387[=α ; 

04 =λ  , T
4 0.2498]-   0.1483-   0.2937    0.0283-   0.0229    0.9099[=α ; 

05 =λ  , T
5 0.1851]    0.6496    0.3660    0.3629    0.5236-   0.0630[=α ; 

06 =λ  , T
6 ] 0.4642    0.3798    0.6351-   0.0668    0.2843    0.3893 [=α . 

If we project samples onto )( WSN , we obtain the same unique vector for all samples of the same 

class. We call these vectors as “common vectors” [14]. The common vectors of the classes are 

,]0.0993-   0.4085-   0.3373-   0.2522-   0.4971    0.6131[

,,,,,,

,,,,,,

33
1
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The optimal projection vectors are those that maximize the scatter across the common vectors. In 

other words, the optimal projection vectors are the eigenvectors corresponding to the nonzero 

eigenvalues of comS , where T
com

i

i
comcom

i
comcom )µ)(xµ(xS −∑ −=

=

3

1
 and 3/

3

1
∑=
=i

i
comcom xµ  The 

nonzero eigenvalues and the corresponding eigenvectors of comS  are 

30.10101 =λ , T
1 0.2119]    0.5283    0.0842    0.2528    0.1830-   0.7560[=w ; 

0.66702 =λ , T
2 0.2981]    0.5364    0.0432    0.2628    0.3751-   -0.6418[=w . 

The projection matrix of the subspace spanned by the optimal projection vectors is 



























==

0.1337    0.2718    0.0307    0.1319    0.1506-   0.0311-

0.2718    0.5668    0.0676    0.2745    0.2978-   0.0551

0.0307    0.0676    0.0089    0.0326    0.0316-   0.0359

0.1319    0.2745    0.0326    0.1329    0.1448-   0.0225

0.1506-   0.2978-   0.0316-   0.1448-   0.1741    0.1024

0.0311-   0.0551    0.0359    0.0225    0.1024    0.9834

]][[ 2121
T

opt wwwwP . 

As explained before, optimal projection vectors form an orthonormal basis for the intersection 

subspace of )( WSN  and )( TSR . Thus, Observation 1 can also be used to find the projection 

matrix optP  of this intersection subspace. Let )1(P  and )2(P  represent the projection matrices of 

)( TSR  and )( WSN  respectively. Then 



























=+=Ψ

0.5669    0.1359    0.0153    0.0659    0.0753-   0.0156-

0.1359    0.7834    0.0338    0.1372    0.1489-   0.0276

0.0153    0.0338    0.5045    0.0163    0.0158-   0.0180

0.0659    0.1372    0.0163    0.5665    0.0724-   0.0112

0.0753-   0.1489-   0.0158-   0.0724-   0.5871    0.0512

0.0156-   0.0276    0.0180    0.0112    0.0512    0.9917

5.05.0 )2()1( PP , 
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where 



























=

0.8216    0.0618-   0.3312    0.0266    0.1799-   0.0038

0.0618-   0.9786    0.1146    0.0092    0.0623-   0.0013

0.3312    0.1146    0.3853    0.0495-   0.3340    0.0071-

0.0266    0.0092    0.0495-   0.9960    0.0269    0.0006-

0.1799-   0.0623-   0.3340    0.0269    0.8186    0.0039

0.0038    0.0013    0.0071-   0.0006-   0.0039    0.9999

)1(P , 

and 



























=

0.3122    0.3336    0.3005-   0.1052    0.0294    0.0349-

0.3336    0.5882    0.0470-   0.2653    0.2355-   0.0538

0.3005-   0.0470-   0.6236    0.0821    0.3655-   0.0431

0.1052    0.2653    0.0821    0.1369    0.1717-   0.0231

0.0294    0.2355-   0.3655-   0.1717-   0.3556    0.0985

0.0349-   0.0538    0.0431    0.0231    0.0985    0.9835

)2(P . 

The eigenvectors corresponding to the eigenvalue 1 are 

T
1 0.1175]-   0.1254-   0.0143    0.0649-   0.1968    0.9630[=e  , and 

T
2 0.3463]-   0.7423-   0.0935-   0.3588-   0.3680    -0.2369[=e . 

These vectors also span the same space spanned by the optimal projection vectors computed 

before, since the projection matrix found by using these vectors is the same as optP  computed 

before, i.e., T
opt eeeeP ]][[ 2121= . 

 Now let )3(P  be the projection matrix of the range space of BS . We need to compute the 

following matrix to find the intersection of the null space of WS  and the range space of BS , 



























=+=Ψ

0.2451    0.1569    0.0833-   0.0909    0.0623    0.1507 

0.1569    0.5699    0.0736    0.2927    0.0025-   0.0888- 

0.0833-   0.0736    0.4020    0.1324    0.1011-   0.1110 

0.0909    0.2927    0.1324    0.1833    0.0068    0.0258 

0.0623    0.0025-   0.1011-   0.0068    0.2561    0.0966 

0.1507    0.0888-   0.1110    0.0258    0.0966    0.8436 

5.05.0
~ )3()2( PP . 
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There is no eigenvalue of Ψ~  that corresponds to 1. Thus, the intersection of )( WSN  and )( BSR  

is trivial, which clearly indicates that the optimal projection vectors are not in this intersection. 

Hence the intersection of )( WSN  and )( BSR  alone cannot be used for recognition tasks. 

 We can also compute the projection matrix of the optimal discriminant subspace directly with 

the following formula, 

)1()2()2()1( PPPPPopt ==  

since )1(P  and )2(P  commute. Thus, the optimal projection vectors that span the optimal 

discriminant subspace can also be obtained by the PCA+Null space method. Note also that the 

projection matrix )2(P  of )( WSN  and )3(P  of )( BSR  do not commute, i.e., )2()3()3()2( PPPP ≠ . 

That is why the Direct-LDA method does not extract features from the intersection of )( WSN  

and )( BSR . 

 Now we can use the optimal projection vectors for dimension reduction. In this case every 

sample in each class produces the same feature vector, called the discriminative common vector. 

In particular, 

TTT ,wx,wx,wx,wxΩ 0.0436]    -0.9094[][][ 2
1
21

1
22

1
11

1
11 =><><=><><= , 

TTT ,wx,wx,wx,wxΩ 3.5951]    0.1174[][][ 2
2
21

2
22

2
11

2
12 =><><=><><= , 

TTT ,wx,wx,wx,wxΩ 4.1549]-   0.0618[][][ 2
3
21

3
22

3
11

3
13 =><><=><><= . 

As a consequence a 100 % recognition rate is guaranteed for the vectors in the training set in the 

reduced 2-dimensional space. 

III. THE KERNEL DISCRIMINATIVE COMMON VECTOR METHOD 

In the Kernel approaches we transform the training set samples into an implicit higher-

dimensional space ℑ  through nonlinear kernel mapping. Let 
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C

CNN xxxxx ΦΦΦΦΦ  represent the transformed samples in ℑ . The within-

class scatter matrix Φ
WS , the between-class scatter matrix Φ

BS , and the total scatter matrix Φ
TS  in 

ℑ  are given by 

,))((      
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where Φµ  is the mean of all samples, Φ
iµ  is the mean of samples in the i-th class, and Φ  is the 

matrix whose columns are the transformed training set samples in ℑ . Here 

MxM
C RGGdiagG ∈= ],...,[ 1  is a block-diagonal matrix and each ixNiN

i RG ∈  is a matrix with all 

elements equal to iN/1 ; MxC
C RuudiagU ∈= ],...,[ 1  is a block-diagonal matrix and each 

1xiN
i Ru ∈  is a vector with all elements equal to iN/1 ; MxC

C RllL ∈= ],...,[ 1  is a matrix where 

each 1Mx
i Rl ∈  is a vector with entries MNi / ; MxM

M R∈1  is a matrix with entries M/1 .  

In the transformed space, Φ
WS  is typically singular. Thus the optimal projection vectors that 

maximize the modified FLDA criterion are in the intersection of the null space N( Φ
WS ) of Φ

WS  

and the range space )( Φ
TSR  of Φ

TS . Similar to the linear case, there are mainly two approaches to 

compute these optimal projection vectors. We can either first project the training set samples 

onto N( Φ
WS ) and then apply PCA, or we can first apply PCA to project the training set samples 



 21 

onto )( Φ
TSR  and then find an orthonormal basis for the new null space of the within-class scatter 

matrix of the transformed samples. However, the first approach is not feasible since the 

algorithms that accomplish this task work in a higher-dimensional space. Therefore, it is better to 

follow the second approach. The training set samples can be easily projected onto R( Φ
TS ) 

through the Kernel PCA. Then we can find the vectors that span the new null space of the 

within-class scatter matrix of the transformed samples. After this operation, we obtain the 

discriminative common vectors that represent each class. The algorithm can be summarized as 

follows: 

Step 1: Project the training set samples onto )( Φ
TSR  through the Kernel PCA. Let  

TMxM
MMMM PPRKKKKK Λ=∈+−−= 1111

~
          (24) 

where the diagonal elements of Λ  are nonzero and MxMRK ∈  is given by 
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The matrix that transforms the training set samples onto R( Φ
TS ) is 2/1)1( −ΛΦ−Φ PM . Then the 

new total and the within-scatter matrices in the reduced space will be 

Λ=ΛΛΛΛ=

ΛΦ−ΦΛΦ−Φ=
−−
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and 

,
~~

      

)1())1((
~

2/12/1

2/12/1

−−

−Φ−Φ

ΛΛ=

ΛΦ−ΦΛΦ−Φ=

PKKP

PSPS
T

WW
T

MW
T

MW           (27) 

where ))(1(11
~

GIKKKGKKGKK MMMW −−=+−−= . 
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Step 2: Find vectors that span the null space of Φ
WS

~
. This can be performed by an eigen-

decomposition. The normalized eigenvectors corresponding to the zero eigenvalues of Φ
WS

~
 form 

an orthonormal basis for the null space of Φ
WS

~
. Let V be a matrix whose columns are the 

computed eigenvectors corresponding to the zero eigenvalues such that, 

0
~ =ΦVSV W

T .                  (28) 

Step 3 (optional) : Remove the null space of VSV B
T Φ~

, if it exists and rotate the projection 

directions so that the new total and between-scatter matrices are diagonal (i.e., the scatter 

matrices of the feature vectors of the training set samples are uncorrelated). That is, 

TT
T

T
B

T LLVVVSVVSV Λ=Λ== ΦΦ ~~~
.            (29) 

Then the final projection matrix W will be 

VLPW M
2/1)1( −ΛΦ−Φ= .               (30) 

There are at most C-1 projection vectors. After performing the feature extraction, all the 

training set samples in each class produce the discriminative common vector of that class. 

Therefore, similar to the linear DCV case a 100% recognition accuracy is also guaranteed for this 

method.  

As we stated previously, the Kernel GDA method is equivalent to applying the Kernel PCA 

method followed by the linear discriminant analysis [18]. After this operation, we also obtain 

projection vectors that give rise to discriminative common vectors for each class, satisfying the 

orthogonality constraint ijjT
T
i wSw δ=Φ . Therefore this method also guarantees a 100% 

recognition accuracy. It should be noted that the discriminative common vectors obtained by the 

Kernel GDA are different from the ones obtained by the proposed method since the projection 

vectors of the proposed method are othonormal, i.e., ijj
T
i ww δ= . This property of the existence 



 23 

of such discriminative common vectors for the Kernel GDA does not seem to have been noticed 

in the literature. Thus, the feature vector of a test sample must only be compared to the 

discriminative common vector of each class during classification, which makes the Kernel DCV 

and the Kernel GDA methods practical for real-time applications. 

IV. EXPERIMENTAL RESULTS 

All supervised linear and kernel methods discussed in this paper can be classified in two 

groups. The methods in the first group (FLDA, Direct-LDA, and Kernel FDA) use the projection 

directions satisfying the conditions 0≠WSW B
T  and 0≠WSW W

T  or 0≠ΦWSW B
T  and 

0≠ΦWSW W
T  for feature extraction. On the other hand, the methods in the second group (DCV, 

PCA+Null Space, Kernel DCV, and Kernel GDA) use the projection directions that satisfy the 

conditions 0≠WSW B
T  and 0=WSW W

T  or 0≠ΦWSW B
T  and 0=ΦWSW W

T . As explained 

before, the projection directions from the second category come from the optimal discriminant 

subspace and all training set samples can be classified correctly by using these projection 

directions for feature extraction. However, the goal of a recognition method is not only to 

classify all the training data themselves, but also to classify well the test data samples that are not 

used for training. In other words, we want the recognition method to produce a correct input-

output mapping. This is known as the generalization ability of a method [1]. In our experiments, 

we first explored the generalization abilities of those methods coming from the two different 

general categories separately, and then we investigated whether the performance of the methods 

from the second category can be improved by adding some projection directions from the first 

category. In addition to the supervised methods, we also tested the unsupervised methods, the 

PCA and the Kernel PCA, to give a better assessment of the accuracy of the proposed method. 
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The dimensionality of the sample space and the size of the training set are two important 

factors that affect the recognition rates of the methods [25]. Therefore, experiments were 

performed on data sets from two different populations with different training set sizes and 

dimensionalities. We have selected two data sets from the first population and one data set from 

the second population. The size of the training set is larger than the dimensionality of the sample 

space for the data sets from the first population, unlike in the case of the second population. 

Therefore, WS  is nonsingular for the data sets from the first population and it is singular for the 

data set of the second population. In the first group of experiments, since WS  is nonsingular, we 

cannot apply the linear DCV method. However, it is possible to apply the Kernel DCV method 

since, as we noted, the training set samples are first transformed into a higher-dimensional space 

for which Φ
WS  is singular. For the second group of experiments, the FLDA method cannot be 

applied directly. Therefore, we applied the approach suggested by Swets and Weng in which the 

training set samples are first projected onto an M-C dimensional space through PCA, for which 

WS  is nonsingular [5]. Then, the FLDA method is applied to the projected samples. For the 

linear PCA and the Kernel PCA methods, the most significant eigenvectors were chosen in such 

a way that the corresponding eigenvalues contain 95% of the total energy [5]. 

An appropriate selection of kernel functions for special tasks is still an open problem since 

different kernel functions give rise to different constructions of the implicit feature space [26]. 

We have used polynomial kernels kyxyxk ),(),( ><= , with degrees 4,3,2=k  and the Gaussian 

kernel )/||||exp(),( 2 γyxyxk −−=  for all data sets. The parameter γ  was chosen based on 

empirical observations for each database. 
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A. Experiments with Large Number of Training Samples 

In this group of experiments we used the digit data set, consisting of handwritten numerals (0-

9) extracted from a collection of utility maps [27]. There are 10=C  classes, each having 200 

patterns. Sample patterns are available in the form of binary images. These characters are 

represented in terms of different feature sets. In our experiments we used only a subset of the 

original data set consisting of 76 Fourier coefficients and 240 pixel averages.  

The odd-numbered samples were used for the training set and the even-numbered samples 

were used for testing. Thus, a training set of 1000=M  samples and a test set of 1000 samples 

were created. A nearest-neighbor algorithm was employed using the Euclidean distance for 

classification, except for the methods that employ the discriminative common vectors (DCV, 

Kernel DCV, and Kernel GDA), in which case the feature vector of the test sample was 

compared to the discriminative common vectors only by using the Euclidean distance for those 

methods. The discriminative common vector found to be the closest to the feature vector of the 

test sample was used to identify the test sample. Recognition results of the test sets for these data 

sets are given in Tables I and II. 

As can be seen from the results, the best recognition rates among the linear methods were 

obtained by the PCA method for both test sets. For the Fourier Coefficient Database, the best 

recognition rates among all methods for the test set were obtained by the Kernel DCV and the 

Kernel FDA methods using the Gaussian kernel. For the Pixel Averages Database, the best 

recognition rates were obtained by the Kernel DCV and the Kernel GDA methods with the 

Gaussian kernel. Although the Kernel PCA method did not outperform the classical linear 

counterpart for the test sets, both the Kernel FDA and the Kernel GDA methods significantly 

outperformed the FLDA method for both data sets. 
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TABLE I  
Recognition Rates of the 76 Fourier Coefficients Database 

Linear Methods Recognition Rates (%) 

PCA 82.5 

FLDA 80.5 

Direct-LDA 80.8 

Recognition Rates (%) 

Polynomial kernel functions with 

different degrees 

Gaussian kernel 

function 
Kernel Methods 

k = 2 k = 3 k = 4 =λ 0.38 

Kernel PCA 81.1 80.6 80.3 81.6 

Kernel FDA 82.5 82.6 83.8 85.4 

Kernel GDA 80.8 83.3 82.4 85.2 

Kernel DCV 83 83.5 83.4 85.4 

 
 

TABLE II 
Recognition Rates of the 240 Pixel Averages Database 

Linear Methods Recognition Rates (%) 

PCA 97.3 

FLDA 93.2 

Direct-LDA 95.2 

Recognition Rates (%)  

Polynomial kernel functions with 

different degrees 

Gaussian kernel 

function 
Kernel Methods 

k = 2 k = 3 k = 4 =γ 1200 

Kernel PCA 96.9 97 95.8 97.5 

Kernel FDA 97.4 97.6 97.6 97.9 

Kernel GDA 97.2 97.5 98 98 

Kernel DCV 97.6 97.6 97.7 98 
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The results show that the proposed method generalizes well compared to other kernel 

approaches for data sets with large number of samples since for both data sets, the proposed 

method gives the best recognition results. We also performed some experiments to see if the 

recognition performance of the Kernel DCV method can be increased by incorporating some 

projection directions from outside the optimal discriminant subspace into the Kernel DCV 

framework. In these experiments we used the Gaussian kernels, with the parameters as given in 

the tables, since these yielded the highest recognition rates. We employed the variation of 

PCA+Null Space method from [11], to add the projection directions coming from outside the 

optimal discriminant subspace. We split the new within-class scatter matrix, Φ
WS

~
 (the within-

class scatter matrix of the samples obtained after the Kernel PCA process), into its null space 

},...,{)
~

( 1 trW spanSN ξξ +
Φ =  and orthogonal complement (i.e., range space) 

},...,{)
~

( 1 rW spanSR ξξ=Φ  (where r is the rank of Φ
WS , and )( Φ= TSrankt  is the dimension of the 

reduced space after Kernel PCA step). Subsequently, all the projection vectors maximizing the 

between-class scatter in the null space are chosen. These are the projection vectors from the 

optimal discriminant subspace and there are 9 of them. Then, beginning with these optimal 

projection vectors, we gradually added new projection vectors from the range space until we 

reached to the number of 998=t  projection vectors, and we computed the corresponding 

recognition rates. The results for the training and test sets are illustrated in Fig. 3. As can be seen 

from the figure, adding new projection directions from outside the optimal discriminant subspace 

does not increase the performance; in fact the performance can be seen to degrade. Adding 

projection directions from the outside the optimal discriminant subspace also degrades the real-

time performance since the added projections no longer produce a unique discriminative 

common vector for each class. As a result, the comparisons must be made over all feature vectors 
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of the training set, rather than just over a much smaller number of discriminative common 

vectors, leading to an increase in the computational cost. 

 
Fig. 3. Recognition rates (%) as a function of projection vectors that are used for feature 
extraction. 
 
B. Experiments with High-Dimensional Sample Space 

In this group of experiments we used the ORL (Olivetti-Oracle Research Lab) face database 

[28]. The ORL face database contains C=40 individuals with 10 images per person. The images 

are taken at different times with varying lighting conditions, facial expressions, and facial details. 

All individuals are in an up-right, frontal position (with tolerance for some side movement). The 

size of the each image is 92x112 pixels. Some individuals from the ORL face database are 

shown in Fig. 4.  

 
Fig. 4. Three sample sets from the ORL face database. 

 
We randomly selected 7,5,3=N  samples from each class for training and the remaining 

)10( N−  samples of each class were used for testing. We have not applied any pre-processing to 
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the images. A nearest-neighbor algorithm was utilized using the Euclidean distance for 

classification, except for the methods that employ discriminative common vectors. The 

recognition rates were then computed. This process was repeated six times and the recognition 

rates for the experiment were found by averaging these rates in each run. The recognition rates 

for the linear and kernel methods are given in Tables III and IV, respectively. The best 

recognition was obtained by the DCV method among the linear methods in all cases. The 

recognition performance of the DCV method is especially superior to the other methods when 

3=N  samples are used for training. As the number of training samples is increased, the 

difference between the recognition rates of the DCV method and other linear methods decreases. 

Similarly, the best recognition results among the Kernel methods were obtained by the Kernel 

DCV method for all cases. Although the best recognitions among all the methods were obtained 

by the Kernel DCV method, there was not a significant difference between the recognition rates 

of the linear DCV and the Kernel DCV methods for this database. An interesting observation is 

that as the degree of the polynomial kernel is increased, the recognition rates of the test set 

decrease, which shows that the second-order data correlation is sufficient for good recognition 

performance.  

We also carried out some experiments in order to judge whether the performance of the DCV 

and the Kernel DCV methods can be increased by adding projection directions from outside the 

optimal discriminant subspace. The same procedure was followed as in the previous subsection. 

These experiments were performed on the data sets using 5=N  samples for training. The 

Gaussian kernel with parameter 8e06.1=γ  was used for the Kernel DCV method. For both 

methods, starting with 39 optimal projection vectors, we gradually added new projection vectors 

from outside the optimal discriminant subspace, until we reached the number 199=t  of 
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projection vectors. This procedure was repeated 6 times and the recognition rates were found by 

averaging the computed recognition rates in each run. The results are given in Fig. 5. As can be 

seen, adding new projection vectors degraded the performance of the method similar to the 

previous case. 

 

Fig. 5. Recognition rates (%) as a function of projection vectors that are used for feature 
extraction. 

 
TABLE III 

Recognition Rates of the ORL Face Database for Linear Methods 
Recognition Rates & Standard Deviations Number of training 

samples in each class PCA FLDA Direct-LDA DCV 

3=N  87.15% 
03.4=σ  

86.76% 
81.2=σ  

86.61% 
44.3=σ  

91.31% 
01.2=σ  

5=N  93.66% 
01.2=σ  

93.33% 
62.2=σ  

96.58% 
39.1=σ  

97% 
41.1=σ  

7=N  96.94% 
25.1=σ  

95.27 % 
94.1=σ  

98.33% 
17.1=σ  

98.47% 
10.1=σ  

 

 These results show that the proposed method leads to a reliable input-output mapping for the 

data sets with a high-dimensional space by using only a few training set samples. 
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C. Discussion 

We have seen in the described experiments that when the dimension of the sample space was 

smaller than the size of the training set, the Kernel methods typically produced better results than 

the linear methods. Although the Kernel PCA did not improve the classical PCA method 

significantly, the supervised kernel approaches, the Kernel FDA and the Kernel GDA methods, 

outperformed the FLDA method significantly. In most cases the proposed method outperformed 

the other kernel methods. Unlike the results obtained for the data sets from the first population, 

there is not a significant difference between the recognition rates of the linear and the kernel 

methods for the face database. The DCV method outperformed all other linear methods in all 

cases. Similarly, the Kernel DCV method outperformed all other kernel methods in all cases. 

This supports the conclusion that the proposed method is suitable for data sets with high-

dimensional sample spaces.  

 The recognition results may be improved for different kernels that fulfill Mercer’s theorem 

[29]. However, we did not attempt to find better kernels since our aim here was to compare the 

accuracy of the Kernel DCV method with other kernel techniques. The test results show that the 

projection vectors coming from the optimal discriminant subspace are the best suited set of 

projection directions for feature extraction. Another advantage of the Kernel DCV method is its 

real-time performance. The proposed method and the Kernel GDA method yield the highest real-

time efficiency among the kernel methods. In these methods, after a test image is projected onto 

the (C-1) optimal projection vectors, the feature vector of the test sample is compared to C 

discriminative common vectors only, in sharp contrast to all other methods, where it must be 

compared to all training set feature vectors if the nearest neighbor algorithm is used. Thus, if we 

assume that each class has N samples and each kernel method uses (C-1) projection vectors for 
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feature extraction, then the computational complexity of the other kernel approaches will be N  

times greater than the computational complexity of the Kernel DCV and the Kernel GDA 

methods. 

V. CONCLUSIONS 

In this paper we proposed a new method that uses kernel functions for recognition. The 

proposed method combines kernel-based methodologies with the optimal discriminant subspace 

concept. We first showed that the optimal projection vectors come from the optimal discriminant 

subspace, which is the intersection of the null space of the within-class scatter matrix WS  and the 

between-class scatter matrix BS . We then proposed an algorithm for finding these projection 

vectors in the nonlinearly mapped higher-dimensional space. When the training set samples are 

projected onto the computed projection vectors, all training set samples in each class produce a 

unique vector called the discriminative common vector. Thus a 100% recognition rate is 

guaranteed for the training set samples. To assess the performance of the proposed method, we 

performed several tests. First, we compared the proposed method with the methods that use 

projection directions from outside the optimal discriminant subspace. The proposed method 

outperformed all other kernel methods in most of the cases. Then, we generated a new set of 

projection vectors by adding new projection vectors from outside the optimal discriminant 

subspace to the optimal projection vectors. We then used these new vectors for feature 

extraction. However, this process degraded the performance of the method presented. The results 

show that the generalization ability of the proposed method is superior to all tested kernel 

approaches. Also the fact that the test sample feature vectors are compared to only the 

discriminative common vectors, as opposed to all training set sample feature vectors, makes the 

proposed method ideal for real-time applications. 
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