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Abstract

In some pattern recognition tasks, the dimension of the sample space is larger than the number of the samplesin
the training set. This is known as the “small sample size problem”. The Linear Discriminant Analysis (LDA)
techniques cannot be applied directly to the small sample size case. The smal sample size problem is aso
encountered when kernel approaches are used for recognition. In this paper we try to answer the question of “How
should we choose the optimal projection vectors for feature extraction for the small sample size case?’ Then, we
propose a new method called the Kernel Discriminative Common Vector (Kernel DCV) method, based on our
findings. In this method, we first nonlinearly map the original input space to an implicit higher-dimensional feature
space through a kernel mapping, where the data are hoped to be linearly separable. Then, the optimal projection
vectors are computed in the transformed space. The proposed method yields an optimal solution for maximizing the
modified Fisher's Linear Discriminant criterion given in the paper. Thus, a 100% recognition rate is always
guaranteed for the training set samples. Experiments on test data sets also show that the generalization ability of the
proposed method outperforms other kernel approaches in many situations.
Index Terms. Discriminative common vectors, feature extraction, Fisher's linear discriminant analysis, kernel
methods, principal component analysis, small sample size, subspace methods.



. INTRODUCTION

Feature extraction has been one of the most important issues in pattern recognition. In the
problem of feature extraction, the aim is to select the variables that contain the most
discriminatory information. Most of the feature extraction methods have centered on finding
linear transformations that map the origina high-dimensional sample space into a lower-
dimensional space, which hopefully contains al the necessary discriminatory information. The
principal motivation behind dimensionality reduction is that it may reduce the worst effects of
the curse of dimensionality [1]. Often, improved performance is achieved over the application of
the selected classifier in the original sample space. Also, linear feature extraction techniques are
often used as pre-processors for more complex nonlinear classifiers. However, sometimes linear
methods may not provide sufficient nonlinear discriminant power for classification of linearly
non-separable classes (e.g., exclusive-or problem). Thus, kernel approaches have been proposed
to overcome this limitation. The main idea is to transform the input data into a higher-
dimensional space by a nonlinear kernel mapping and then apply the linear discriminant
techniques in this space. The motivation behind this is to transform the linearly non-separable
datainto a higher-dimensional space where the data are linearly separable. Therefore, it turns out
that a nonlinear discriminant method is applied in the original sample space.

One of the most popular feature extraction methods is the Principal Component Analysis
(PCA) method. In this method we find the best set of projection directions in the sample space

that will maximize the total scatter across al samples such that the criterion
Jpca (W, ) = argmax [WTS,W | is maximized. Here W is the matrix whose columns are the
projection vectors and S; is the total scatter matrix of the training set samples. This criterion is

maximized when the most significant eigenvectors (the elgenvectors corresponding to the largest



eigenvalues of S;) are chosen as the projection vectors. The PCA method is an unsupervised
method since it does not consider the classes of the training set data. Although it is useful for
reconstruction, it is not necessarily optima from a discrimination point of view. Thus, the
projection vectors chosen for optimal reconstruction may obscure the existence of separate
classes [1], [2]. The Fisher's Linear Discriminant Analysis (FLDA) method was proposed to
overcome the limitations of the PCA method [3]. It has been successfully applied in many
classification problems such as image recognition, multimedia information retrieval, and medical

applications. The method uses the FLDA criterion, which tries to maximize the ratio,

IW'SW |
IW'S,W |

Jeioa W, ) = argmax , where S, is the within-class scatter matrix, and S; is the

between-class scatter matrix. The above criterion is maximized when the eigenvectors of S, 'S,

are employed as projection vectors. Since the matrix Sw‘lsB is typically not symmetric, the

eigen-decomposition may be unstable. To avoid this problem, the simultaneous diagonalization
algorithm is often employed to obtain a stable eigen-decomposition [4], [5]. The major drawback

of the FLDA method is that it cannot be applied directly if the rank of the within-class scatter
matrix S, is smaller than the dimension of the sample space since S,, is singular in this case.
This problem is also known as the “small sample size problem” [4]. The Perturbation method has
been used in [6] and [7], where S,, is perturbed so as to become nonsingular. Swets and Weng
[5] proposed a two-stage PCA+FLDA method, also known as the Fisherface method, in which
PCA isfirst used for dimension reduction so as to make S,, nonsingular before the application
of the FLDA.

Recently, Yu and Y ang have proposed the Direct-LDA method to overcome the small sample

size problem [8]. This method also uses simultaneous diagonalization for finding the projection



vectorsin the range space of S;. First, the null space of S; isdiscarded, and then the projection
vectors that minimize the within-class scatter in the transformed space are selected from the
range space of S;. However, the range space of S; does not necessarily include the optimal
projection vectors [9], [10], [11]. Thisfact can be clearly seen in the example that is givenin Fig.
1. InFig. 1, we plotted two linearly separable classes with similar covariance matrices. The class
means are shown as stars. Since the class distributions are similar, we expect the decision regions
produced by the linear discriminant analysis techniques to be optimal in this case. As can be seen
in the figure, athough the FLDA method correctly discriminates all samples, the Direct-LDA
method fails for this example. Note that, the FLDA and the Direct-LDA methods produce the
same results if the ranks of both the between-class scatter and the within-class scatter matrices
are larger than or equal to the dimensionality of the sample space, or the within-class scatter of
the samples is isotropic. These conditions are not typically satisfied for the small sample size
case. Therefore, the Direct-LDA method fails to extract optimal projection vectors for feature

extraction in most cases.
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Fig. 1. Two linearly separable classes with the similar covariance matrices are plotted. Stars

represent class means and lines represent the decision boundaries found by the Direct-LDA and
the FLDA methods.



Chen et al. proposed the Null Space method for the small sample size case based on the

TS,W
modified FLDA criterion, JMFLDA(VVOM):argmaxM [12]. In this method, all training
w

WS W
samples are first projected onto the null space of S,,, resulting in a new within-class scatter that

is a zero matrix. Then, PCA is applied to the transformed samples to obtain the final projection
vectors. Chen et al. also proved that by applying this method, the modified FLDA criterion
attains its maximum of 1; therefore the Null Space method extracts features, which are optimal
from adiscrimination point of view. It turns out that the orthonormal projection vectors obtained

by the Null Space method span the space, which is the intersection of the null space of S, and

the range space of S;. We cal it the optimal discriminant subspace since it is spanned by
vectors that extract the optimal features for discrimination. However, Chen et al. did not give an
efficient algorithm for applying this method in the original sample space. Instead, a pixel
grouping method was applied to extract geometric features and reduce the dimension of the
sample space. Then, they applied the Null Space method in this new reduced space. Vapnik
suggests that when solving a given problem, one should avoid solving a more general problem as
an intermediate step [13]. Following this suggestion we showed that any pre-processing step,
such as a pixel grouping method that reduces the original dimension of the null space, islikely to
reduce the performance and therefore should be avoided [14]. In [14], we proposed the
Discriminant Common Vector (DCV) method to find optimal orthonormal projection vectorsin
the optimal discriminant subspace. This method is equivalent to the Null Space method, with the
exception that the pixel reducing step is omitted and therefore the method exploits the original
high-dimensional space. Two efficient algorithms were given to compute the optimal projection

vectors. One algorithm uses the range space of S,,, while the other uses subspace methods and



the Gram-Schmidt orthogonalization procedure. Another novel method, the PCA+Null Space
method was proposed by Huang et al. in [10] to find optimal projection vectors that span the
optimal discriminant subspace. In this method, PCA is first applied to remove the null space of

S;. Then, optimal projection vectors are found in the remaining lower-dimensional space by

using the Null Space method. However, this method is computationally expensive compared to
the DCV method (see [14], for a comparison of these methods).

The Kernel PCA method was proposed as a nonlinear extension of PCA [15]. The basic ideais
first to transform the data into a higher-dimensional space via a nonlinear mapping and then
apply the linear PCA method in this space. The projection onto this higher-dimensional space
and the application of PCA in the transformed space are performed by using a set of kernel
functions without explicitly working in the transformed space, making this process
computationally feasible. However, the Kernel PCA method is aso an unsupervised technique in
that it extracts features that may not be optimal from the discrimination point of view. Therefore,
discriminant analysis techniques that use kernels have been recently proposed [16], [17].
Similarly to the Kernel PCA, these methods also use kernel functions to project data into a
higher-dimensional space via a nonlinear kernel mapping, and then the Linear Discriminant
Analysis (LDA) is performed in this higher-dimensional space. However, the singularity
problem of the matrices is encountered in these techniques. Two different approaches are
adopted to solve this problem. Mika et al. use a perturbation method in which a small
perturbation matrix is added to make singular matrices nonsingular [16]. Baudat and Anouar use
the modified FLDA criterion instead of the original FLDA criterion [17]. They first project the
data onto the range space of the total scatter matrix of mapped samples through the Kernel PCA,

and then they apply the LDA method that maximizes the modified FLDA criterion in the reduced



space [18]. The first approach is called the Kernel Fisher’s Discriminant Analysis (Kernel FDA)
method and latter approach is caled the Kernel Generalized Discriminant Analysis (Kernel
GDA) method.

In this paper we propose a new method called the Kernel DCV method, which applies the DCV
method in the nonlinearly transformed higher-dimensional space. Since the modified FLDA
criterion is guaranteed to attain its maximum vaue when using the Kenel DCV method, just asin
the DCV method, the optimal features for discrimination are extracted from the nonlinearly
transformed higher-dimensional space.

The remainder of this paper is organized as follows. In Section |1, we describe the optimal
discriminant subspace concept in detail, and then we show how to extract the optimal projection
directions from this subspace. In Section |11, the Kernel DCV method is introduced. In Section
IV, we describe the data sets and experimental results. Finally, our conclusions are presented in
Section V.

[I.OPTIMAL PROJECTION VECTORS
WS
WS

However, this criterion is not appropriate since its maximum is not unique for the small sample

The modified FLDA criterion tries to maximize the ratio, Jygpa(W,,) = argmax
W

size case. In particular, every projection vector matrix W such that W'S,W =0 and

WTS,W =0 maximizes the modified FLDA criterion. Note that if S, is singular, which is

aways the case for the small sample size problem, there are many such projection vector
matrices W. However, it is not reasonable to use matrices W with a small number of projection

vectors since they are not sufficient for an optimal feature extraction. On the other hand, the



following criterion given in [19] has a unique maximum and it also maximizes the modified

FLDA criterion

J(W,,) =argmax |[W'S;W |=argmax |W'SW |, (1)
WTSW|=0 WS, W|=0

Therefore, to find the optimal projection vectors w in the null space N(S,,) of S, , we project
the training set samples onto N(S,,) and then obtain the projection vectors by performing PCA.
From this operation we get a set of orthonormal vectors that is a basis for a space, which we call
the optimal discriminant subspace. The optimal discriminant subspace is the intersection of
N(S,) and the range space R(S;) of the total scatter matrix S;. The criterion given in (1)
attains its maximum for orthonormal vectors that form a basis for the optimal discriminant
subspace. There are numerous algorithms to find this optimal subspace and an orthonormal basis
for it. Some efficient algorithms are given in [14].

A. The Optimal Discriminant Subspace Concept

Let the training set be composed of C classes, where the i-th class contains N, samples, and

let x' be a d-dimensional column vector which denotes the m-th sample from the i-th class.

C
Therewill beatotal of M =) N, samplesin the training set. Suppose that d>M-C. In this case,

i=1
the within-class scatter matrixS,,, the between-class scatter matrix Sz, and the total scatter

matrix S; are defined as

S =5 3 (6, — )0 — 41" @
S = éNi (u; — )y — )", 3)

and



S =3 2 (K, @)%~ )" =S, + S, (4

isim
where 4 isthemean of al samples, and x; isthe mean of samplesin thei-th class.

If the dimensionality d of the sample space is larger than M-1, all scatter matrices will be rank
deficient. Thus, if we apply e gen-decomposition to the scatter matrices, we will obtain some
eigenvectors corresponding to the zero eigenvalues that span the null spaces of the scatter
matrices. As explained previously, if the projection directions are chosen from N(S,), the
modified FLDA criterion attains its maximum, 1. Therefore, we have to project the training set
data onto N(S, ). Then, optimal projection vectors can be obtained by applying PCA to the
samples, which are projected onto N(S,,) . The fact that the optimal projection vectors span the
optimal discriminant subspace follows from the following lemma.

Lemma 1: Suppose U is a matrix whose column vectors u, (k=r; +1...,d, where r; is the
rank of S;) are orthonormal vectors that span the null space N(S;) of S;. If all samplesin the
training set are projected onto N(S; ), they produce a unique common vector such that

x=UU"x, i=1.,C, m=1..,N,, (5)

where x is independent of indicesi and m.

Proof: By definition, avector ue R® isin N(S;) if S;u=0. Let u be the mean vector of the
samples in the training set, 1,, € R™ be the matrix with all elements equal to M ™, and
X e R®™ be the matrix whose columns are the training set samples. Thus, by multiplying both

sides of identity S,u=0 by u', we get

0=§§UIT(X$n—ﬂ)(XL1 —@) u=u" X (1 =1,)(1 =1,)" XTu=] (1 =1, )X "u %, (6)

i=1m=1
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where ||| denotes the Euclidean norm. Thus, (6) holds if (I -1,,)X"u, =0, or
XTu, =1, X"u, . From this relation it can be seen that

(Xp) U = 47Uy, i=1..,C, m=L1.,N;, k=r +1..d. )

Thus the projection of any x:n onto N(S;),

x= S(X U = (U, i=1..C, m=L..N,, ®)

ket + ker +1
isindependent of mand i, which proves the lemma. O
This lemma shows that, N(S;) does not contain any discriminative information, which can be
used in the course of obtaining the optimal projection vectors. Therefore this null space can be
removed. Then, the remaining subspace for extracting the features of discrimination will be the
intersection of N(S,) and R(S;).

There are numerous algorithms to find the optimal discriminant subspace and optimal
projection vectors that span it. The following observation proposed by Therrien [20] can be used

to find optimal projection vectors and the optimal discriminant subspace.

Observation 1: Let H® be a subspace of R®. A vector e is contained in AH if and only if it
i=1

isan eigenvector of W corresponding to an eigenvalue of 1, where

¥=yaP®" ©)

i=1
with P® being the projection matrix (also called the orthogonal projection operator) of the i-th

subspaceand O< a, <1,> a =1.

i=1
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In our case we can choose H® and H® as R(S;) and N(S,), respectively, to find

orthonormal vectors that span the optimal discriminant space. However, this approach is not
always practical for real applications since the size of projection matrices of subspaces may be
too large (e.g., images of size 256 by 256 yield projection matrices of size 65,536 by 65,536).

We will use this observation for the numerical example given at the end of this section.

There are better ways to find the optimal projection vectors. Thisis aresult of the fact that the
projection matrices of N(S,) and R(S;) commute, as shown in Theorem 1 below, namely
POP@ = p@p® 'where P® and P represent the projection matrices of R(S;) and N(S,),
respectively. In this case, the projection matrix of the intersection N(S,) N R(S;) is found by
the equation

P, = PYP® = p@p®), (10)
where P, isthe projection matrix of the optimal discriminant subspace [21]. A consequence of
Theorem 1 is that to obtain the optimal projection vectors we can first project the training set
samples onto N(S,,) and then apply PCA or, aternatively, we can first project the training set
samples onto R(S;) through PCA, and then find the null space in the transformed space. The

DCV method uses the first approach, whereas the PCA+Null Space method uses the second
approach.

Before we prove Theorem 1, we need the following auxiliary lemmas.
Lemma 2: The following holds:

i) N(S:) < N(S).

i) (N(S;) +R(S,) " N(§y) = N(S;) 1 N(S,)

where “+" denotes the usual sum of sets.
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Proof: i) Let ve N(S;). Then
S;v=(5 +S,)v=0. (11)
Since the scatter matrices are positive semi-definite, thisimplies [14]
S;v=§,v=0, (12)
and hence ve N(S,).
il) To show that the equation (N(S;)+ R(S,)) " N(S,) = N(S;) " N(S,) holds, we have to
show that (N(S;) +R(S,)) A N(Sy) 2 N(S;) A N(S,,) and
(N(S;)+R(S,)) N N(S,) © N(S;) W N(S,) - It is trivid to see that the first inclusion holds.
As for the second inclusion, let ve (N(S;)+ R(S,)) " N(S,). The vector v can be
decomposed as v=a+b, where ae N(S;) and be R(S,,). Thensince ve N(S,),
Sy(a+b)=0. (13)
Moreover, as noted above, S;a=0 implies §,a=0. These factsimply S,b=0. On the other
hand, sincebe R(S,),
Syb=0<b=0. (14)
Thus, v=ae N(S;) and this verifies the considered inclusion. 0

Lemma 3: Let H® and H® be subspaces of R. Let P® and P® be the orthogonal

projectionsonto H® and H? | respectively. Let H=H® AH® and H’® be defined by
H@@®H=H®@, (15)

i.e, H’® is the orthogonal complement of H in H® . Then P® and P® commute, that is

POP® =p@PO if andonlyif H'® LH®.
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Proof: Let H’® be the orthogonal complement of Hin H® ,i.e, H'® ®@H =H®. Suppose
first that H'®@ LH®, Thus, HO +H@ =H®H'® ® H’® and each ve R® has a unique
decomposition v=a+b+c+d, where ac H, be H'®, ce H'®, and de (H® + H®@)*,
Clearly,

P@POy=pP@(a+b)=a=PY(a+c)=PYP?y, (16)
Conversely, if P® and P® commute, we have

POH/@ = pOPA /@ _p@pWH/® (17)

and hence, PPH"® = H® since P is the identity operator on H® . On the other hand, by
definition we also have PPH"® c H® . Asaresult, PPH"® c HY "H® =H . Finaly, one
can have PYH'® cH only if PYH'® ={0} since H'® LH. However this implies
H'® LH®, 0
We are now ready to prove the following theorem:
Theorem 1: Let H® =R(S;), H® =N(S,), and H=H® AnH® =R(S;)nN(S,), the
optimal discriminant subspace. Then, the projection matrices P and P® of the subspaces
H® and H® commute.
Proof: Using the notation from Lemma 3, we know that H'® | H® = pWp® = p@pD The

orthogonal complement of H = R(S;) " N(S,,) in R? is
H* = (R(S;) N N(S,))" = N(S;) +R(Sy). (18)
Thus, H’® equals,

H’® = (N(S;) +R(S,) " N(S,). (19)

From Lemma 2 we know that,



14

H'® = (N(S;) + R(S,)) N N(S,) = N(S; ) N N(S, ) = N(S,).- (20)
Thus, it is clear that H, L H, since this is equivaent to N(S;) L R(S;). Invoking Lemma 3

now finishes the proof. 0
In [22], [23], and [24], the authors claim that the Direct-LDA method finds the projection

vectors in the intersection space of N(S,,) and R(S;), thus the projection vectors found by this

method should be optima and equivalent to the ones found by the Null Space method
(equivaently the DCV method and the PCA+Null Space method). However this statement is
incorrect. In fact, neither the Direct-LDA method nor the Null Space method finds the projection
vectorsin the intersection space of R(S;) and N(S,,) . The projection directions obtained by the

Direct-LDA method come from R(S;), and the intersection of R(S;) and N(S,) isin fact

often trivial. Indeed, in al the face database examples considered in this paper, the intersection

was trivial. Therefore, the intersection space of R(S;) and N(S,) cannot be used for

recognition. This fact is illustrated in Fig. 2. In Fig. 2, two classes with the same covariance
matrices having two samples each in a 3-dimensional space are plotted. Class means are

represented with circles. R(S,) and R(S;) are shown in the figure. In this example R(S;) is
the plane spanned by the vectors representing R(S,) and R(S;), and N(S;) is the line
perpendicular to this plane. Note that it is also the intersection of N(S;) and N(S,). The
optimal discriminant subspace, R(S;) " N(S, ), isthelinein this plane that is perpendicular to
R(S,)- N(S,) is the plane spanned by the vectors representing N(S;) and R(S;) N N(S,) -

As can be seen in the figure, the intersection of N(S,,) and R(S;) isthetrivial space.
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N(S;) = N(S5) A N(Syr)
Fig. 2. lllustration of the optimal discriminant subspace.
The projection vectors found by the Direct-LDA method and the Null Space method also differ

in terms of orthogonality properties. The projection vectors found by the Direct-LDA method
satisfy the orthogonality property, vviTSij = J,, whereas the projection vectors found by the

Null Space method satisfy the property, w,w; =9,

;» Where ¢; isthe Kronecker’s delta.
B. Numerical Example

In this subsection we present a numerical example to show technigques to compute the optimal
projection vectors from the optimal discriminant subspace. The samples of each class given
below are randomly chosen from the Gaussian distributions with different means and same
identity covariance matrix. Let
x; =[0.7310 0.0403 0.5689 -0.3775 -1.4751 0.7812]",
x; =[0.5779 0.6771 -0.2556 -0.2959 -0.2340 -0.2656] ;
x? =[2.1184 3.4435 26232 29409 22120 25690,
x5 =[2.3148 1.6490 2.7990 1.0079 22379 0.8122];
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x> =[-3.0078 -0.9177 -1.6101 -2.6355 -1.5563 -2.8217|",

X =[-2.7420 -2.1315 -1.9120 -2.5596 -2.9499 -1.0137]".

Thus there are C = 3classes, each of which contains 2 samples in a 6-dimensional sample space.

The within-class scatter matrix is

0.0663 -0.3863 0.0403 -0.1860 -0.2777 0.1479 |
-0.3863 25495 -0.2370 17143 12177  0.1457
0.0403 -0.2370 0.4009 -0.2150 -0.2990 0.0042
-0.1860 1.7143 -0.2150 18745 -0.0273 1.7239
-0.2777 12177 -0.2990 -0.0273 1.7416 -1.9322

10.1479  0.1457  0.0042 1.7239 -1.9322 3.7255

Si=S+5,+S =

The eigenvalues and corresponding eigenvectors of S,, are

A, =5.5764, o, =[0.0152 0.1408 -0.0030 0.4428 -0.3656 0.8064] ;
A, =4.3672, o, =[0.1215 -0.7426 0.1043 -0.4227 -0.4721 0.1459]";
A, =0.4147, a, =[0.0387 -0.2703 -0.9231 0.0397 0.2352 0.1279]";
A, =0, a,=[0.9099 0.0229 -0.0283 0.2937 -0.1483 -0.2498]";
A =0 , a;, =[0.0630 -0.5236 0.3629 0.3660 0.6496 0.1851]";

A =0, a, =[0.3893 0.2843 0.0668 -0.6351 0.3798 0.4642].

If we project samplesonto N(S,,), we obtain the same unique vector for all samples of the same

class. We call these vectors as “common vectors’ [14]. The common vectors of the classes are

X =X, 0 > 0+ < X, 0 > O+ < X, 0 > 0 = Xp— < X1, 0 > 0— < X1, 0, > Q= < X1, 0, >

=< X5, 00, > 0+ < Xo, 0y > Qg+ < X, 0 > g = Xa— < X3, > O — < X5, 0y, > 0y~ < X3,00 > Oy
=[0.6131 0.4971 -0.2522 -0.3373 -0.4085 -0.0993]",

X2 =X, > Uyt < X O > Ot < X0 > 0 = X — < X2, 0 > 04— < X2, 0, >y~ < X7, 00, > 1y
=< X2, 0 > O+ < X0 > O+ < X500 > 0y = Xo— < X5,00 > 0— < X2,0, > 0= < X2,0, >

=[2.6391 -0.5379 0.9154 0.0059 2.0184 0.9593]",
and
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XS =X, > Ot <X Oy > U+ < X O > 0 = Xo— < X2, 0, > 0~ < X, 0, > 0y— < X, 0, >

=<K, 0, > 0+ <X, O > O+ < X5, 0 > 0y = Xo— < Xo,0 > 04— < Xo,0y > 0l,— < X3,00; > Oy
=[-3.1844 0.9010 -1.0584 -0.6488 -2.1055 -0.6994]".

The optimal projection vectors are those that maximize the scatter across the common vectors. In

other words, the optimal projection vectors are the eigenvectors corresponding to the nonzero

elgenval ues of Soom J where Scom = zsl(xti:om ~ Heom )(X(i:om ~ Heom )T and Heom = 23: X(i:om /3 The
i=1 i

nonzero eigenvalues and the corresponding eigenvectorsof S, are

A, =30.1010, w, =[0.7560 -0.1830 0.2528 0.0842 0.5283 0.2119]";
A, =0.6670, w, =[-0.6418 -0.3751 0.2628 0.0432 0.5364 0.2981]".

The projection matrix of the subspace spanned by the optimal projection vectorsis

[0.9834 0.1024 0.0225 0.0359 0.0551 -0.0311 |
0.1024 0.1741 -0.1448 -0.0316 -0.2978 -0.1506
0.0225 -0.1448 0.1329 0.0326 0.2745 0.1319
0.0359 -0.0316 0.0326 0.0089 0.0676 0.0307
0.0551 -0.2978 0.2745 0.0676 0.5668 0.2718
1-0.0311 -0.1506 0.1319 0.0307 0.2718 0.1337 |

Popt :[Wl WZ][Wl Wz]T =

As explained before, optimal projection vectors form an orthonormal basis for the intersection

subspace of N(S,) and R(S;). Thus, Observation 1 can also be used to find the projection
matrix P,, of this intersection subspace. Let P® and P® represent the projection matrices of
R(S.) and N(S,,) respectively. Then

[0.9917 0.0512 0.0112 0.0180 0.0276 -0.0156 |
0.0512 0.5871 -0.0724 -0.0158 -0.1489 -0.0753
0.0112 -0.0724 0.5665 0.0163 0.1372 0.0659
0.0180 -0.0158 0.0163 0.5045 0.0338 0.0153 |’
0.0276 -0.1489 0.1372 0.0338 0.7834 0.1359
|-0.0156 -0.0753 0.0659 0.0153 0.1359 0.56609 |

¥ =0.5P% +0.5P? =
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where

[0.9999 0.0039 -0.0006 -0.0071 0.0013 0.0038 |
0.0039 0.8186 0.0269 0.3340 -0.0623 -0.1799

-0.0006 0.0269 0.9960 -0.0495 0.0092 0.0266
~|-0.0071 0.3340 -0.0495 0.3853 0.1146 0.3312
0.0013 -0.0623 0.0092 0.1146 0.9786 -0.0618
10.0038 -0.1799 0.0266 0.3312 -0.0618 0.8216 |

and

109835 0.0985 0.0231 0.0431 0.0538 -0.0349 |
0.0985 0.3556 -0.1717 -0.3655 -0.2355 0.0294
0.0231 -0.1717 0.1369 0.0821 0.2653 0.1052
1 0.0431 -0.3655 0.0821 0.6236 -0.0470 -0.3005 |’
0.0538 -0.2355 0.2653 -0.0470 0.5882 0.3336
1-0.0349 0.0294 0.1052 -0.3005 0.3336 0.3122]

The eigenvectors corresponding to the eigenvalue 1 are

g =[0.9630 0.1968 -0.0649 0.0143 -0.1254 -0.1175]" , and
e, =[-0.2369 0.3680 -0.3588 -0.0935 -0.7423 -0.3463]" .

These vectors also span the same space spanned by the optimal projection vectors computed

before, since the projection matrix found by using these vectors is the same as P,, computed

before, i.e, P, =[e, elle &l .

Now let P® be the projection matrix of the range space of S,. We need to compute the

following matrix to find the intersection of the null space of S,, and the range space of S;,

[ 0.8436 0.0966 0.0258 0.1110 -0.0888 0.1507 |
0.0966 0.2561 0.0068 -0.1011 -0.0025 0.0623
0.0258 0.0068 0.1833 0.1324 0.2927 0.0909
0.1110 -0.1011 0.1324 0.4020 0.0736 -0.0833
-0.0888 -0.0025 0.2927 0.0736 0.5699 0.1569

| 0.1507 0.0623 0.0909 -0.0833 0.1569 0.2451 |

¥ =05P? +0.5P® =
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There is no eigenvalue of ¥ that corresponds to 1. Thus, the intersection of N(S,,) and R(S;)

is trivial, which clearly indicates that the optimal projection vectors are not in this intersection.

Hence the intersection of N(S,) and R(S;) aone cannot be used for recognition tasks.

We can also compute the projection matrix of the optimal discriminant subspace directly with
the following formula,

P =pOp@ —-ppH

opt
since P® and P® commute. Thus, the optima projection vectors that span the optimal
discriminant subspace can also be obtained by the PCA+Null space method. Note aso that the
projection matrix P® of N(S,) and P® of R(S;) do not commute, i.e., PP P® = pAp?,

That is why the Direct-LDA method does not extract features from the intersection of N(S, )

and R(S;).

Now we can use the optimal projection vectors for dimension reduction. In this case every
sample in each class produces the same feature vector, called the discriminative common vector.
In particular,

Q =[<xw > <xpw, > =[<xgw > <xp,w, >]T =[-0.9094 0.0436]",

Q, =[<xtw, >  <xXw,>]" =[<xjw > <xzw,>]" =[0.1174 3.5951]",

Q =[<xw > <xw,>]" =[<xXw, > <x;w,>]" =[0.0618 -4.1549] .

As a consequence a 100 % recognition rate is guaranteed for the vectors in the training set in the
reduced 2-dimensional space.

1. THE KERNEL DISCRIMINATIVE COMMON VECTOR METHOD

In the Kernel approaches we transform the training set samples into an implicit higher-

dimensional space R} through nonlinear kernel mapping. Let
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D(%;), (%) ,een P(Xy, ), P(X),..., DXy ) represent the transformed samplesin 3 . The within-

class scatter matrix S, , the between-class scatter matrix Sg , and the total scatter matrix S in

3 aregiven by
Sw = 2 2 (P(xn) = 47 NP 0Xn) — 447) (21)
= (® - DOG)(® - DG),
Sg' =2 N (u” —u”)u” —u®) (22)
= (PU - DL)(PU —L)",
and

Sr =2 X (@(xn) = 47) (@) = 417) (23)

= (0 -1, )(®-P1, )T = 5\3 + S;p'
where u#® isthe mean of al samples, #” isthe mean of samplesin thei-th class, and @ isthe

matrix whose columns are the transformed training set samples in 3. Here

G =diag[G,,...,G.]e R™ isablock-diagonal matrix and each G € R""™ is a matrix with all
elements equal to 1/N,; U =diag[y,,...,u.]e R™ is a block-diagonal matrix and each
u, € R"* is avector with all elements equal to 1/,/N, ; L=[l,,...,l.]e€ R*® is amatrix where
each |, e R™* isavector with entries /N, /M ; 1,, € R isamatrix with entries 1/ M .

In the transformed space, S, is typically singular. Thus the optimal projection vectors that
maximize the modified FLDA criterion are in the intersection of the null space N(S;) of S5

and the range space R(S;) of S? . Similar to the linear case, there are mainly two approaches to
compute these optimal projection vectors. We can either first project the training set samples

onto N(S; ) and then apply PCA, or we can first apply PCA to project the training set samples
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onto R(S?) and then find an orthonormal basis for the new null space of the within-class scatter

matrix of the transformed samples. However, the first approach is not feasible since the

algorithms that accomplish this task work in a higher-dimensional space. Therefore, it is better to
follow the second approach. The training set samples can be easily projected onto R(S;)

through the Kernel PCA. Then we can find the vectors that span the new null space of the
within-class scatter matrix of the transformed samples. After this operation, we obtain the
discriminative common vectors that represent each class. The algorithm can be summarized as

follows:

Step 1: Project the training set samplesonto R(S;”) through the Kernel PCA. Let
K=K-1, K-K1, +1,, K1, € R"™ = PAP’ (24)

where the diagona elements of A ae nonzero and Ke R™ is given by

K=0"®d=(K"),_, . whereeachmatrix K'e R"™ can be defined as
j=1..C
Kij = (kriiln)mzl ..... N =< (I)(X:n)'q)(xri) >= k(x:n’ Xr{)m:l ..... Ni : (25)

n=l,.., Nj n=1,..., N]

The matrix that transforms the training set samples onto R(S?) is (®—®1,, )PA™2. Then the

new total and the within-scatter matrices in the reduced space will be

~

SP = (-1, )PA )T SP (@ -@1,, )PA™? (26)
=AY2PTPAPTPAPTPA Y2 = A

and
Sw =((@-®1, )PA™Y?)T S (@ -1, )PA™?

/ c 1w T / (27)
=AY?PTK,, K, PA™?,

where K, =K - KG-1,, K +1,, KG=(K —1,, K)(I = G).
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Step 2: Find vectors that span the null space of Qﬁ This can be performed by an eigen-

decomposition. The normalized eigenvectors corresponding to the zero eigenvalues of S5, form

an orthonormal basis for the null space of éf,’ . Let V be a matrix whose columns are the
computed el genvectors corresponding to the zero eigenval ues such that,
VTSV =0. (28)

Step 3 (optional) : Remove the null space of VT§B‘I’V, if it exists and rotate the projection
directions so that the new total and between-scatter matrices are diagona (i.e., the scatter
matrices of the feature vectors of the training set samples are uncorrelated). That is,
VTSIV =VTS®V =VTAV = LAL". (29)
Then the final projection matrix Wwill be
W = (®-d1,, )PA™?VL. (30)
There are at most C-1 projection vectors. After performing the feature extraction, all the
training set samples in each class produce the discriminative common vector of that class.
Therefore, similar to the linear DCV case a 100% recognition accuracy is aso guaranteed for this
method.
As we stated previously, the Kernel GDA method is equivalent to applying the Kernel PCA
method followed by the linear discriminant analysis [18]. After this operation, we also obtain

projection vectors that give rise to discriminative common vectors for each class, satisfying the
orthogonality constraint w'S; w; =3;. Therefore this method aso guarantees a 100%
recognition accuracy. It should be noted that the discriminative common vectors obtained by the
Kernel GDA are different from the ones obtained by the proposed method since the projection

vectors of the proposed method are othonormal, i.e., W' w; = ;. This property of the existence
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of such discriminative common vectors for the Kernel GDA does not seem to have been noticed
in the literature. Thus, the feature vector of a test sample must only be compared to the
discriminative common vector of each class during classification, which makes the Kernel DCV
and the Kernel GDA methods practical for real-time applications.
IV.EXPERIMENTAL RESULTS
All supervised linear and kernel methods discussed in this paper can be classified in two

groups. The methods in the first group (FLDA, Direct-LDA, and Kernel FDA) use the projection

directions satisfying the conditions W'S,W =0 and W'SW#0 or WISSW =0 and

WTSIW = 0 for feature extraction. On the other hand, the methods in the second group (DCV,
PCA+Null Space, Kernel DCV, and Kernel GDA) use the projection directions that satisfy the
conditions WTS;W #0 and WS,W=0 or W'SSW =0 and W' S;W =0. As explained
before, the projection directions from the second category come from the optimal discriminant
subspace and all training set samples can be classified correctly by using these projection
directions for feature extraction. However, the goa of a recognition method is not only to
classify all the training data themselves, but also to classify well the test data samples that are not
used for training. In other words, we want the recognition method to produce a correct input-
output mapping. Thisis known as the generalization ability of a method [1]. In our experiments,
we first explored the generalization abilities of those methods coming from the two different
genera categories separately, and then we investigated whether the performance of the methods
from the second category can be improved by adding some projection directions from the first
category. In addition to the supervised methods, we also tested the unsupervised methods, the

PCA and the Kernel PCA, to give a better assessment of the accuracy of the proposed method.
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The dimensionality of the sample space and the size of the training set are two important
factors that affect the recognition rates of the methods [25]. Therefore, experiments were
performed on data sets from two different populations with different training set sizes and
dimensionalities. We have selected two data sets from the first population and one data set from
the second population. The size of the training set is larger than the dimensionality of the sample
gpace for the data sets from the first population, unlike in the case of the second population.
Therefore, S,, is nonsingular for the data sets from the first population and it is singular for the
data set of the second population. In the first group of experiments, since S,, is nonsingular, we
cannot apply the linear DCV method. However, it is possible to apply the Kernel DCV method
since, as we noted, the training set samples are first transformed into a higher-dimensional space
for which S is singular. For the second group of experiments, the FLDA method cannot be
applied directly. Therefore, we applied the approach suggested by Swets and Weng in which the
training set samples are first projected onto an M-C dimensional space through PCA, for which
Sy i1s nonsingular [5]. Then, the FLDA method is applied to the projected samples. For the
linear PCA and the Kernel PCA methods, the most significant el genvectors were chosen in such
away that the corresponding eigenvalues contain 95% of the total energy [5].

An appropriate selection of kernel functions for specia tasks is still an open problem since

different kernel functions give rise to different constructions of the implicit feature space [26].
We have used polynomial kernels k(x, y) = (< x, y >)*, with degrees k = 2,3,4 and the Gaussian
kernel k(x,y) =exp(— || x=Yy|* /y) for all data sets. The parameter y was chosen based on

empirical observations for each database.
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A. Experiments with Large Number of Training Samples

In this group of experiments we used the digit data set, consisting of handwritten numerals (0-
9) extracted from a collection of utility maps [27]. There are C=10 classes, each having 200
patterns. Sample patterns are available in the form of binary images. These characters are
represented in terms of different feature sets. In our experiments we used only a subset of the
original data set consisting of 76 Fourier coefficients and 240 pixel averages.

The odd-numbered samples were used for the training set and the even-numbered samples
were used for testing. Thus, atraining set of M =1000 samples and a test set of 1000 samples
were created. A nearest-neighbor algorithm was employed using the Euclidean distance for
classification, except for the methods that employ the discriminative common vectors (DCV,
Kernel DCV, and Kernel GDA), in which case the feature vector of the test sample was
compared to the discriminative common vectors only by using the Euclidean distance for those
methods. The discriminative common vector found to be the closest to the feature vector of the
test sample was used to identify the test sample. Recognition results of the test sets for these data
setsaregivenin Tables| and I1.

As can be seen from the results, the best recognition rates among the linear methods were
obtained by the PCA method for both test sets. For the Fourier Coefficient Database, the best
recognition rates among all methods for the test set were obtained by the Kernel DCV and the
Kernel FDA methods using the Gaussian kernel. For the Pixel Averages Database, the best
recognition rates were obtained by the Kernel DCV and the Kernel GDA methods with the
Gaussian kernel. Although the Kernel PCA method did not outperform the classical linear
counterpart for the test sets, both the Kernel FDA and the Kernel GDA methods significantly

outperformed the FLDA method for both data sets.



TABLE|

Recognition Rates of the 76 Fourier Coefficients Database

Linear M ethods

Recognition Rates (%)

PCA 825
FLDA 80.5
Direct-LDA 80.8

Recognition Rates (%)

K ernel Methods Polynomial kernel functions with Gaussian kernel

different degrees function

k=2 k=3 k=4 1=0.38
Kernel PCA 81.1 80.6 80.3 81.6
Kernel FDA 82.5 82.6 83.8 85.4
Kernel GDA 80.8 83.3 82.4 85.2
Kernel DCV 83 835 83.4 85.4

TABLEII

Recognition Rates of the 240 Pixel Averages Database

Linear Methods

Recognition Rates (%)

PCA 97.3
FLDA 93.2
Direct-LDA 95.2

Recognition Rates (%)

Polynomial kernel functions with Gaussian kernel
Kernel Methods : .
different degrees function
k=2 k=3 k=4 y =1200
Kernel PCA 96.9 97 95.8 97.5
Kernel FDA 97.4 97.6 97.6 97.9
Kernel GDA 97.2 97.5 98 98
Kernel DCV 97.6 97.6 97.7 98

26
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The results show that the proposed method generalizes well compared to other kernel
approaches for data sets with large number of samples since for both data sets, the proposed
method gives the best recognition results. We also performed some experiments to see if the
recognition performance of the Kernel DCV method can be increased by incorporating some
projection directions from outside the optimal discriminant subspace into the Kernel DCV
framework. In these experiments we used the Gaussian kernels, with the parameters as given in
the tables, since these yielded the highest recognition rates. We employed the variation of

PCA+Null Space method from [11], to add the projection directions coming from outside the
optimal discriminant subspace. We split the new within-class scatter matrix, 5@’ (the within-
class scatter matrix of the samples obtained after the Kernel PCA process), into its null space

N (§f,’ )=span{<, ., ..., &} and  orthogona complement  (i.e, range  space)

R(§f,’) = span{¢,,...,&} (wherer istherank of S, and t =rank(S?) is the dimension of the

reduced space after Kernel PCA step). Subsequently, all the projection vectors maximizing the
between-class scatter in the null space are chosen. These are the projection vectors from the
optimal discriminant subspace and there are 9 of them. Then, beginning with these optimal
projection vectors, we gradually added new projection vectors from the range space until we
reached to the number of t=998 projection vectors, and we computed the corresponding
recognition rates. The results for the training and test sets areillustrated in Fig. 3. As can be seen
from the figure, adding new projection directions from outside the optimal discriminant subspace
does not increase the performance; in fact the performance can be seen to degrade. Adding
projection directions from the outside the optimal discriminant subspace also degrades the real-
time performance since the added projections no longer produce a unique discriminative

common vector for each class. As aresult, the comparisons must be made over all feature vectors
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of the training set, rather than just over a much smaller number of discriminative common

vectors, leading to an increase in the computational cost.

Recognition Rates (%) for Training Set Recognition Rates (%) for Test Set
100 100
96 96
92 92
88 88
84 84
80 - ] o4
9 109 209 309 409 509 609 709 B80S 909 998 9 109 209 309 409 509 609 709 809 909 998

Number of Projection Vectors Number of Projection Directions
—e— Fourier Coefficients Database
—=— Pixel Averages Database

Fig. 3. Recognition rates (%) as a function of projection vectors that are used for feature
extraction.

B. Experiments with High-Dimensional Sample Space

In this group of experiments we used the ORL (Olivetti-Oracle Research Lab) face database
[28]. The ORL face database contains C=40 individuals with 10 images per person. The images
aretaken at different times with varying lighting conditions, facial expressions, and facial details.
All individuals are in an up-right, frontal position (with tolerance for some side movement). The
size of the each image is 92x112 pixels. Some individuals from the ORL face database are

snhowninFig. 4.

Fig. 4. Three sample sets from the ORL face database.

We randomly selected N =35,7 samples from each class for training and the remaining

(10— N) samples of each class were used for testing. We have not applied any pre-processing to
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the images. A nearest-neighbor algorithm was utilized using the Euclidean distance for
classification, except for the methods that employ discriminative common vectors. The
recognition rates were then computed. This process was repeated six times and the recognition
rates for the experiment were found by averaging these rates in each run. The recognition rates
for the linear and kernel methods are given in Tables Il and IV, respectively. The best
recognition was obtained by the DCV method among the linear methods in all cases. The
recognition performance of the DCV method is especially superior to the other methods when
N =3 samples are used for training. As the number of training samples is increased, the
difference between the recognition rates of the DCV method and other linear methods decreases.
Similarly, the best recognition results among the Kernel methods were obtained by the Kernel
DCV method for al cases. Although the best recognitions among all the methods were obtained
by the Kernel DCV method, there was not a significant difference between the recognition rates
of the linear DCV and the Kernel DCV methods for this database. An interesting observation is
that as the degree of the polynomia kernel is increased, the recognition rates of the test set
decrease, which shows that the second-order data correlation is sufficient for good recognition
performance.

We also carried out some experiments in order to judge whether the performance of the DCV
and the Kernel DCV methods can be increased by adding projection directions from outside the
optimal discriminant subspace. The same procedure was followed as in the previous subsection.
These experiments were performed on the data sets using N =5 samples for training. The

Gaussian kernel with parameter y =1.06e8 was used for the Kernel DCV method. For both

methods, starting with 39 optimal projection vectors, we gradually added new projection vectors

from outside the optimal discriminant subspace, until we reached the number t=199 of
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projection vectors. This procedure was repeated 6 times and the recognition rates were found by
averaging the computed recognition rates in each run. The results are given in Fig. 5. As can be
seen, adding new projection vectors degraded the performance of the method similar to the

previous case.

Recognition Rates (%) of Training Sets Recognition Rates (%) of Test Sets

55
| —=— KernelDCV | —&— Kernel DCV

39 59 79 99 119 139 189 179 199 39 59 79 99 119 139 159 179 199

Number o f Projection Directions Number of Projection Directions

Fig. 5. Recognition rates (%) as a function of projection vectors that are used for feature
extraction.

TABLE I
Recognition Rates of the ORL Face Database for Linear Methods
Number of training Recognition Rates & Standard Deviations

samplesin each class PCA FLDA Direct-L DA DCV
N=3 87.15% 86.76% 86.61% 91.31%
c=4.03 c=281 oc=344 c=201

N=5 93.66% 93.33% 96.58% 97%
=201 c=262 c=139 =141
N =7 96.94% 95.27 % 98.33% 98.47%
oc=125 =194 oc=117 c=110

These results show that the proposed method leads to a reliable input-output mapping for the

data sets with a high-dimensional space by using only afew training set samples.
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C. Discussion

We have seen in the described experiments that when the dimension of the sample space was
smaller than the size of the training set, the Kernel methods typically produced better results than
the linear methods. Although the Kernel PCA did not improve the classical PCA method
significantly, the supervised kernel approaches, the Kernel FDA and the Kernel GDA methods,
outperformed the FLDA method significantly. In most cases the proposed method outperformed
the other kernel methods. Unlike the results obtained for the data sets from the first population,
there is not a significant difference between the recognition rates of the linear and the kernel
methods for the face database. The DCV method outperformed all other linear methods in all
cases. Similarly, the Kernel DCV method outperformed all other kernel methods in al cases.
This supports the conclusion that the proposed method is suitable for data sets with high-
dimensional sample spaces.

The recognition results may be improved for different kernels that fulfill Mercer’s theorem
[29]. However, we did not attempt to find better kernels since our aim here was to compare the
accuracy of the Kernel DCV method with other kernel techniques. The test results show that the
projection vectors coming from the optimal discriminant subspace are the best suited set of
projection directions for feature extraction. Another advantage of the Kernel DCV method is its
real-time performance. The proposed method and the Kernel GDA method yield the highest real-
time efficiency among the kernel methods. In these methods, after atest image is projected onto
the (C-1) optimal projection vectors, the feature vector of the test sample is compared to C
discriminative common vectors only, in sharp contrast to all other methods, where it must be
compared to al training set feature vectors if the nearest neighbor algorithm is used. Thus, if we

assume that each class has N samples and each kernel method uses (C-1) projection vectors for
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feature extraction, then the computational complexity of the other kernel approaches will be N
times greater than the computational complexity of the Kernel DCV and the Kernel GDA
methods.
V. CONCLUSIONS
In this paper we proposed a new method that uses kernel functions for recognition. The
proposed method combines kernel-based methodologies with the optimal discriminant subspace
concept. We first showed that the optimal projection vectors come from the optimal discriminant

subspace, which is the intersection of the null space of the within-class scatter matrix S,, and the

between-class scatter matrix S;. We then proposed an algorithm for finding these projection

vectors in the nonlinearly mapped higher-dimensiona space. When the training set samples are
projected onto the computed projection vectors, al training set samples in each class produce a
unique vector called the discriminative common vector. Thus a 100% recognition rate is
guaranteed for the training set samples. To assess the performance of the proposed method, we
performed several tests. First, we compared the proposed method with the methods that use
projection directions from outside the optimal discriminant subspace. The proposed method
outperformed al other kernel methods in most of the cases. Then, we generated a new set of
projection vectors by adding new projection vectors from outside the optimal discriminant
subspace to the optimal projection vectors. We then used these new vectors for feature
extraction. However, this process degraded the performance of the method presented. The results
show that the generalization ability of the proposed method is superior to all tested kernel
approaches. Also the fact that the test sample feature vectors are compared to only the
discriminative common vectors, as opposed to all training set sample feature vectors, makes the

proposed method ideal for real-time applications.
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