Circular Bernstein-Bézier Polynomials
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Abstract. We discuss a natural way to define barycentric coordinates
associated with circular arcs. This leads to a theory of Bernstein-Bézier
polynomials which parallels the familiar interval case, and which has close
connections to trigonometric polynomials.

§1. Introduction

Bernstein-Bézier (BB-) polynomials defined on an interval are useful tools
for constructing piecewise functional and parametric curves. They play an
important role in CAGD, data fitting and interpolation, and elsewhere. The
purpose of this paper is to develop an analogous theory where the domain of
the polynomials is a circular arc rather than an interval. In addition to their
intrinsic interest, the circular BB-polynomials studied here are also useful for
describing the behavior of spherical BB-polynomials [1, 2, 3] on the circular
arcs making up the edges of spherical triangles.

The paper is organized as follows. In Section 2 we introduce circular
barycentric coordinates as the basis for our developments. These are used
in Section 3 to define circular BB-polynomials. Several basic properties of
BB-polynomials are developed in this section, including a de Casteljau al-
gorithm, subdivision, smoothness conditions for joining BB-polynomials, and
degree raising. In Section 4 we discuss certain curves naturally associated with
circular BB-polynomials. We introduce control curves, and describe various
geometric properties of the them. We conclude with a collection of remarks
and references.

§2. Barycentric Coordinates on Circular Arcs

Definition 1. Let C be the unit circle in R* with center at the origin, and
let A be a circular arc on C of length less than = with vertices vy # vy. Let v
be a point on C. Then the (circular) barycentric coordinates of v relative to
A are the unique pair of real numbers by, by such that

v = bl’Ul + 62’02. (1)
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It follows directly from the definition that
1) At the endpoints of A, b;i(v;) = 65, t,7 = 1,2.
2) For all v in the interior of A, b;(v) > 0.
3) In contrast to the usual barycentric coordinates on intervals which always
sum to 1, by (v) + b2(v) > 1 if v € A and v # vy, vs.
4) Circular barycentric coordinates are linear homogeneous functions of v.

5) The b; are ratios of the areas of triangles:

_area {0,v,vs} _area {0,v1,v}

~ area {0,vy,v9}’ ~ area {0,vy,v9}

6) The circular barycentric coordinates of a point v are invariant under
rotation, i.e., they depend only on the relative positions of v and vy, vs.

Circular barycentric coordinates have a very simple form if we express points
on C' in polar coordinates. Suppose
)T

)" (2)

with 0 < 6 — 6; < m. Let v € C be expressed in polar coordinates as
v = (cos §,sin #)T. Then equation (1) defining circular barycentric coordinates

can be written as
cosf; cosby bi\ [ cosé (3)
sinf; sinfy by /]  \siné /-
Clearly, the matrix in (3) is nonsingular, and solving this system we immedi-
ately get

v1 = (cosby,sinb;)", v = (cos by, sin 6,

Theorem 2. The circular barycentric coordinates of v = (cos 6,sin )1 rela-
tive to the circular arc A are
sin(f; — 6) sin(6 — 6;)
1(0) sin(92 - 91)7 2(0) sin(92 - 91) ( )

Here and in the sequel, we shall abuse notation and write both b;(v) and
b;(6) for the circular barycentric coordinates, although technically we should
write b;(v(0)). It will be clear from the context when we are talking about
points on the circle rather than their associated angles. We note that the
barycentric coordinates of points along a circular arc are defined as ratios
of sines of geodesic distances rather than the geodesic distances themselves.
For an interval lying on the real line, the barycentric coordinates are linear
functions. Here they are linear combinations of sin(#) and cos(6).

We conclude this section by discussing to what extent our construction of
barycentric coordinates on a circle is unique. Such a construction amounts to
finding a natural generalization of linear functions on the circle. This suggests
that we look for a space M of functions defined on C such that
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(i) M is a two-dimensional space of continuous functions on the circle,
(ii) M is rotation invariant.

Theorem 3. Let M be a two-dimensional rotation invariant space of con-
tinuous functions on the circle C'. Then M must be one of the spaces

Ly := span{sinkf,cos k8}, k=12 ... (5)

Proof: It was shown in [4] that a two-dimensional translation invariant space
of continuous functions on IR must be the null space of a linear second order
constant coefficient differential operator. Clearly, a space of rotation invariant
functions on the circle must correspond to a space of translation invariant
functions on R which are periodic with period 27 /k, k an integer. It follows

that M must be the span of {cos(k6),sin(kf)} for some k. W

Theorem 3 shows that we could have defined circular barycentric coordi-
nates which span any one of the spaces L. However, for k£ > 1, the crucial
formula (1) would no longer hold.

§3. Circular Bernstein-Bézier Polynomials

Definition 4. Let A be a circular arc, and let b1(6), b2(6) denote the cor-
responding circular barycentric coordinates of the point v = (cos 6,sin )T
as functions of the angle 6. Given an integer d > 0, the Bernstein basis

polynomaals of degree d on A are

d 4 4
BY(8) := () b1(6)'be(0)', i=0,...,d.
i
It is clear from (4) that the B¢ are not algebraic polynomials in 6. Instead,
we have

Theorem 5. The Bernstein basis polynomials {B%(8)}L, form a basis for
the space ‘ ‘

Ty := span {sin?™*(#) cos'(6)}L,
of trigonometric polynomaials of degree d.

Proof: By Theorem 2, b;(6) and by(6) are both linear combinations of sin(6)
and cos(6). Thus, the products b;(6)?~¢by(8)! lie in 7 for all i = 0,1,...,d,
and it follows that the Bernstein basis polynomials also lie in 7;. The linear
independence of the B¢ can be shown directly by induction on d. W

It was shown in [8] that

span {1, cos(26),sin(26), ..., cos(df),sin(d6)}, d even,
T, =
span {cos(6),sin(8), cos(36),sin(36),. .., cos(df),sin(df)}, d odd.

The spaces 74 contain constants when d is even, but not when d is odd.
Similar spaces have been used to define trigonometric splines, see [8, 11],
but there trigonometric polynomials are defined using half angles, 1.e., 6 is

replaced by 6/2.
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Definition 6. We call

p('v) = ZCiB;i('U)v vedl, (6)

1=0

a circular Bernstein-Bézier (CBB-) polynomial of degree d.

CBB-polynomials can be evaluated by the following analog of the classical
de Casteljau algorithm.

Theorem 7. Let ¢ :=c¢;, i1 =0,....,d, be the coefficients of a CBB-polynom-
ial p on an arc A. Let w be a point on the circle with barycentric coordinates
by, by with respect to A.

Fork=1tod
Fori=0tod—k
cf = blcf_l + bgcf_ifll. (7)

Then p(w) = ct.

The intermediate results produced by the de Casteljau algorithm can be
used to subdivide a CBB-polynomial into two pieces (just as in the interval
case). Explicitly, we have

E?:o ch B (v), v E VW,
p(v) = L i _
Yo € ZBfl;z(‘U), v € Wy,
where B;i;l and BZZ are the Bernstein basis polynomials associated with the
arcs viw and wWog, respectively.
The following result is the exact analog of the well-known smoothness

condition for the classical case of Bernstein-Bézier curves associated with an
interval.

Theorem 8. Let p and p be CBB-polynomials defined on A = v1vz and
A = vavs with coefficients ¢; and ¢;, respectively. Then

Dip(6y) = Dip(6:),  j=0,....,m,

if and only if

[}
¢; = ZCd_sz_k(‘Ug), 1=0,...,m. (8)
k=0
For completeness, we also include the following degree-raising formula. It

is a direct analog of the usual univariate result, except that because of the
nature of the spaces 7;, we must always increase the degree by 2.
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Theorem 9. Suppose p is a CBB-polynomial as in (6) on an arc of length h.

Then
d+2
pv) =Y @Bt (v), (9)
1=0
where
1 » ) : ) )
c; = [6(1 — Dei—a + i(d+2—t)cics +(d+2—=1)(d+ 1 — )¢,

(d4+2)(d+1)

fOfiZO,...,d—I_Z; a’ndﬂ: siSIillzlzhi/lz -2

Proof: By Theorem 5, the constant function 1 can be written as a linear
combination of the circular Bernstein basis functions {B?}7_,. The coeffi-
cients can be found by interpolating at the endpoints and the midpoint of the
arc. This leads to

1= b3 + Bbyby + b3.

Multiplying (6) by this expression and collecting terms yields (9). W

64. Circular Bernstein-Bézier Curves
Given a CBB-polynomial p defined on a circular arc A, we define an associated

CBB-curve by

sin @

P =n6) (Gog )- (10)

We recall that a curve of the form

£(9) <COSG>, fecLa, (11)

sin 6

is a rose. When d is even it has 2d petals, while for d odd, it has d petals.
For d =1 a curve of this type is a circle passing through the origin.

We now give a geometric interpretation of the de Casteljau algorithm for
CBB-curves. Let A be a circular arc with endpoints as in (2), and let

Suppose {c¥} are the numbers produced by the de Casteljau algorithm for

a point w corresponding to an angle . For each £ = 0,...,d, and : =
0,....d —k, let
Cf = cjuy, (13)
where
k. cos ¢k
ti == sin £F
and (6 6,)
k._ ¢k—1 — 0
51 * 51 —I_ d 7

fork=1,...,d,and i =0,...,d — k, with £ :=&,,i=0,...,d.
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Fig. 1. Geometric interpretation of the de Casteljau algorithm and the
C-convex hull of a cubic CBB-curve.

Theorem 10. Foreach k=1,...,d, and:=0,...,d—k, let

Gﬂ@:wﬂm(ﬁj), gt <o <l

k—1
i+1
at ff_l and ff_l__ll, respectively. Then C¥ is the intersection of G¥ with the
ray {au¥ : « >0} for k = 1,....d, andi = 0,...,d — k. In particular,
Cd = GL(8).

Proof: The function g is given by
sin(d(§ry' — ¢))ei " +sin(d(é — & ))eiy
sin(d(¢7] —€571) '

With ¢ = £F, this reduces to formula (7), and we have g¥(¢F) = c¥. The
special case k = d,i = 0 follows from (¢ = 6. W

where g¥($) is the unique function in L4 which interpolates cf_l and ¢

95 (¢) =

Figure 1 illustrates the steps of the de Casteljau algorithm. The curve
corresponds to 67 = 1.5, 0, = 1.8, ¢ =1, ¢; = 1.75, ¢ = 2.0, ¢3 = 1.5, and
6 = 1.7. In analogy with the planar case, we are led to

Definition 11. Given a CBB-curve P defined on an arc A, we call the points
C; := C? defined in (13) the control points associated with P, and the points
u; = u? the associated Bézier sites. Moreover, we call the curve G in R*

consisting of the pieces G}, i =0,...,d — 1, the control curve of P.

To support our choice of G as the right analog of the classical control
polygon, we now show that if we choose a set of control points Cy,...,Cy
which lie on a curve G of the form (11), then the associated CBB-curve P is
equal to G.
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Theorem 12. Let A be a circular arc as above, and let £;, 7 = 0,...,d, be
defined as in (12). Then the operator

d

Qf(0) == f(&)BL®), (14)

J=0

defined on bounded complex-valued functions on A reproduces every function
f in the space Ly, i.e.,

Qf =1, for all f € Ly. (15)

Proof: It is sufficient to verify (15) for f(#) = €'?%, where i denotes the
imaginary unit. Using (4) and simple algebra, we have

f(o) = el = (cos @ + usin 9)d = (ei01 bi(0) + et 52(9))d
d d

d
=Y lmnhtit) plig) = NG Bl9) = Y f(&;)B6). W

J=0 J=0 J=0

The operator in Theorem 12 is the analog of the classical Bernstein op-
erator. We now establish an analog of the convez hull property of the classical
BB-polynomials. First we need a definition.

Definition 13. Let B be a set in R*. We call it C-convez of degree d > 1 if
for any two points c;(cos 6;,sin6;)T € B,i = 1,2, such that 0 < 6, — 6, < 7/d,
the curve of the form (11) connecting these two points lies entirely in B, that
18

sind(6; — 6) sind(6 — 6,) cos 0
S dlfs — 6.) —a A . B, 6¢€(6,,6y).
(sind(Gg—Gl)cl—l_sind(@z—el)cz <in 6 €D, €(01,6z)

The C-convez hull of degree d of a set B 1s the smallest C-convex set of degree
d containing the set B. We denote it by CCHy(B).

Theorem 14. Let P be a CBB-curve of degree d on an arc A, and let C :=
{C;}L, be the set of its associated control points. Then P lies in the C-convex

hull of degree d of C, 1i.e.,
P(v) € CCH4{C}, wveA

Proof: Every point P(v) can be obtained by means of a sequence of points
C¥(v) arising in the de Casteljau algorithm, each of which belongs to CCH4{C}
by definition of a C-convex set. W

Figure 1 shows the C-convex hull of a cubic CBB-curve. Note that if the
control points of P all lie on a curve G of the form (11), then the circular
convex hull of C degenerates to the curve G itself.
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As in the standard Bernstein-Bézier theory, we can also build curves
in R? piecewise using a collection of CBB-polynomials defined on adjoining
circular arcs. Suppose that vy, vy, vs are three points on the unit circle C,
and let A = vyv; and A = ;03 be the associated circular arcs. Let p =
2?20 ¢;B¢ be a CBB-polynomial of degree d associated with the arc 4, and
let p = Z?:o 5i§1d be a CBB-polynomial of degree d associated with the arc
A. We denote their associated CBB-curves in R? by P and P. Since

P(vg) = Cy, ]5(‘02) = Cy,

to join P and P continuously at vy, we need only require that ¢y = cq. We
now describe higher order contact. A tangent vector to the curve P at the
point v(#) = (cos §,sin §)1 is given by

o = vio (g oo (7228,

This shows that in order to make the curves join with a continuous tangent,
we simply need to make p'(ve) = p'(v2). Similarly, m-th order derivatives of
the curve P will be continuous at ve if and only if all derivatives of p and p up
to order m agree at vy. Theorem 8 gives conditions on the coefficients of two
CBB-polynomials to assure that they join with C'™-continuity at a common
endpoint.

We conclude this section with a geometric interpretation of the C'l-
continuity conditions (m = 1 in (8)) between two CBB-curves on adjacent
arcs.

Theorem 15. Two CBB-curves join with C'-continuity if and only if the
control points Cy,Cyq,Cq_1 lie on a curve of the form (11).

Proof: Let ug_; and iy be the Bézier sites associated with the control points
Cyu_1 and C}, respectively. The assertion of the theorem is equivalent to the
existence of a function f € L4 such that f(£4-1) = ca—1, f(62) = ¢o = cq, and
f(él) = ¢;. Since

bl _ Sin(93 — 91) and 62 _ sin(92 — 93)

sin(92 — 91) Sin(92 - 91)7
equation (8) yields

sin(93 — 91) Sil’l(92 — 93)

= sin(92 — 91)Cd sin(92 — 91)

Cd—1.

Obviously, the function

. sm(d(@ — 92) + 92 — 91) Sil’l(d(ez — 9))
f( ) - sin(92 — 91) cd + sin(92 — 91) cd=1:

felR,
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belongs to £4 and, moreover,

fé)=+¢ (92 + b ;92> = Cq,
f(92)=cd,
fllamr)=1f (92 _ & ;91) = Cq-1,

which finishes the proof. W

§5. Remarks

Remark 1. For an interpretation of the de Casteljau algorithm for CBB-
polynomials based on polar forms, see [5].

Remark 2. Applying subdivision to a CBB-polynomial as discussed in Sec-
tion 3 leads to a sequence of control curves. One can show directly that these
control curves converge to the CBB-polynomial at a quadratic rate. This fact
also follows immediately from the analogous result for trigonometric splines
presented in [7], see also [5].

Remark 3. The results presented here can be generalized to spaces of trigono-
metric splines, see [7]. Indeed, with repeated knots at the endpoints, trigono-
metric B-splines reduce to our circular Bernstein basis functions. Theorem 12
was first established for trigonometric splines in [6].

Remark 4. Recently, H. Pottmann has brought to our attention the interest-
ing work of J. Sanchez-Reyes [9, 10] on “single valued curves in polar coordi-
nates”. These curves are essentially reparametrized circular Bernstein-Bézier
curves defined in this paper. In the construction of such curves, Sanchez-
Reyes utilized a certain class of rational parametric curves, rather than cir-
cular barycentric coordinates. Consequently, many of the properties of these
curves derived in [9, 10] as well as in the present paper can be obtained from
the corresponding properties of rational curves. We plan to give a more de-
tailed account of this surprising connection between circular Bernstein-Bézier
curves and rational curves elsewhere.
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