Problem 1. Let $\vec{x}=(1,1,-1,1)^{T}, \vec{y}=(1,2,3,4)^{T}$. Determine the distance and the angle between \vec{x} and \vec{y}.

Solution: The distance is the length of $\vec{x}-\vec{y}=(0,-1,-4,-3)$, which is $\sqrt{26}$. The angle α is given by

$$
\cos (\alpha)=\frac{\langle\vec{x}, \vec{y}\rangle}{\|\vec{x}|\|\mid \vec{y}\|}=\frac{4}{2 \cdot \sqrt{30}}=\frac{2}{\sqrt{30}}
$$

Problem 2. Consider the data:	x	-1	0	1	2
y	2	3	4	1	. Find the best least squares fit to this data by a linear polynomial.

Solution: We are looking for the least squares fit of the form $a x+b$, i.e., the best "non-solution" of the system of equations

$$
\left\{\begin{array}{l}
a *(-1)+b=2 \\
a * 0+b=3 \\
a * 1+b=4 \\
a * 2+b=1
\end{array}\right.
$$

The matrix A of this system is $\left(\begin{array}{cc}-1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1\end{array}\right)$, and the vector of the right hand sides is $r=(2,3,4,1)^{T}$. The least squares solution $u=(a, b)^{T}$ is obtained by solving the system $A^{T} A u=A^{T} r$. Solving it, we obtain $u=\left(-\frac{1}{5}, \frac{13}{5}\right)$. Hence the answer is $-\frac{1}{5} x+\frac{13}{5}$.

Problem 3. Consider the vector space $C[-1,1]$ with inner product defined by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Find an orthonormal basis for the subspace spanned by $1, x, x^{2}$.
Solution: We need to obtain three pairwise orthogonal functions e_{1}, e_{2}, e_{3} of unit norm. Let $g_{1}=1$. The norm is $\sqrt{\int_{-1}^{1} g_{1}^{2} d x}=\sqrt{2}$, so $e_{1}=\frac{1}{\sqrt{2}}$. Let $g_{2}=x$. Apply Gram-Schmidt to e_{1}, g_{2}, we get $n:=g_{2}-\left\langle g_{2}, e_{1}\right\rangle e_{1}=g_{2}$. Its norm is $\sqrt{\int_{-1}^{1} x^{2} d x}=\sqrt{\frac{2}{3}}$. Hence $e_{2}=\sqrt{\frac{3}{2}} x$. Now apply Gram-Schmidt to $e_{1}, e_{2}, g_{3}=x^{2}$. We get $n=g_{3}-\left\langle g_{3}, e_{1}\right\rangle e_{1}-\left\langle g_{3}, e_{2}\right\rangle e_{2}=$ $\left(x^{2}-\frac{1}{3}\right)$. Its norm is $\sqrt{\frac{8}{45}}$. So $e_{3}=\sqrt{\frac{45}{8}}\left(x^{2}-\frac{1}{3}\right)$.

Problem 4. Let $A=\left(\begin{array}{cc}5 & 6 \\ -2 & -2\end{array}\right)$. Factor A into a product $X D X^{-1}$ where D is a diagonal matrix.

Solution: The eigenvalues of matrix A are 2,1 . The diagonal matrix then is $D=$ $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$. Corresponding eigenvectors are $(-2,1)^{T}$ and $\left(-\frac{3}{2}, 1\right)^{T}$. The transition matrix is $C=\left(\begin{array}{cc}-2 & -\frac{3}{2} \\ 1 & 1\end{array}\right)$. Therefore $A=C D C^{-1}$.

Problem 5. Let $\vec{z}_{1}=\binom{\frac{1+i}{2}}{\frac{1-i}{2}}, \vec{z}_{2}=\binom{\frac{i}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$. Show that \vec{z}_{1}, \vec{z}_{2} is an orthogonal basis of \mathbb{C}^{2} and write the vector $\vec{z}=\binom{2+4 i}{-2 i}$ as a linear combination of $\overrightarrow{z_{1}}, \overrightarrow{z_{2}}$.

Solution. The dot product of \vec{z}_{1} and \vec{z}_{2} is 0 and the lengths of these vectors are equal to 1 . Since \mathbb{C}^{2} is 2-dimensional, these two vectors form an orthonormal basis of \mathbb{C}^{2}. The coordinates of \vec{z} in that basis are $\left\langle\vec{z}, \vec{z}_{1}\right\rangle=(2-4 i)(1+i) / 2+(1-i) / 2 \cdot 2 i=4$ and $\left\langle\vec{z}, \vec{z}_{2}\right\rangle=2 \sqrt{2}$.

Problem 6. Show that for every square matrix A with real entries matrices $A A^{T}$ and $A^{T} A$ are conjugate.

Solution: Let us use the singular value decomposition $A=U D V$ where U, V are orthogonal, D is diagonal. Then $A A^{T}=U D V V^{T} D^{T} U^{T}=U D^{2} U^{T}=U D^{2} U^{-1}$ since U and V are orthogonal matrices, whence $U^{T}=U^{-1}, V^{T}=V^{-1}$. Similarly $A^{T} A=V^{-1} D^{2} V$. Therefore $A^{T} A=V^{-1} D^{2} V=V^{-1} U^{-1} U D^{2} U^{-1} V=\left(U^{-1} V\right)^{-1} A A^{T}\left(U^{-1} V\right)$, thus $A A^{T}$ is conjugate to $A^{T} A$.

Problem 7. a) Find a singular value decomposition of the matrix $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)$.
b) What is the best rank 1 approximation of this matrix?

Solution: a) The eigenvalues of $A A^{T}$ are 2,1 . So the singular values are $\sqrt{2}, 1$ (in that order since $\sqrt{2}>1$). So the matrix E in the singular value decomposition $A=U E V$ is $\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)$. The orthonormal basis of eigenvectors is $(1,0)^{T},(0,1)^{T}$. So the matrix V is the identity matrix I. An orthonormal basis of eigenvectors of the matrix $A A^{T}=$ $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ consists of vectors $\frac{1}{\sqrt{2}}(1,1,0)^{T},(0,0,1)^{T}$ and $\frac{1}{\sqrt{2}}(-1,1,0)$ (belonging to the eigenvalues $2,1,0$). So the matrix U is $\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0\end{array}\right]$.
b) To get the best rank 1 approximation, we replace the lowest singular value $(=1)$ by 0 . The answer is $\left(\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 0 & 0\end{array}\right)$.

