Math 194

Midterm Test 2.

Solutions

Problem 1. Let $\vec{v}_{1}=(1,2,3)^{T}, \vec{v}_{2}=(1,1,-1)^{T}, \vec{v}_{3}=(0,-1,-2)^{T}$.
(a) Show that these vectors form a basis in \mathbb{R}^{3},

Solution. The determinant of the matrix A whose columns are $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ is not zero, so the columns are linearly independent. Since the dimension of \mathbb{R}^{3} is 3 , these vectors form a basis of \mathbb{R}^{3}.
(b) Find the transition matrix from the standard basis to that basis,

Solution. Let \mathcal{B} be that basis. Then the matrix A is the transition matrix $[\mathcal{B} \rightarrow \mathcal{S}]$. The transition matrix $[\mathcal{S} \rightarrow \mathcal{B}]$ is then A^{-1}.
(c) Use the transition matrix to find coordinates of the vector $(2,3,1)^{T}$ in that basis.

Solution. The answer: $A^{-1}(2,3,1)^{T}$.
Problem 2. How many solutions will the linear system $A x=b$ have
(a) if b is in the column space of A and the columns of A are linearly independent?
(b) if b is not in the column space of A

Explain your answer.

Solution.

(a) Since b is in the column space of A, it is a linear combination of columns of A, hence there is a solution of the system $A x=b$. Since the columns of A are linearly independent in the reduced row echelon form of A every column will have a pivot. Therefore the system $A x=b$ does not have free unknowns, hence it has exactly one solution.
(b) Since b is not in the column space of A, it is not a linear combination of columns of A, hence $A x=b$ has no solutions.

Problem 3. Find the matrix of the projection of \mathbb{R}^{3} onto the the plane $x-y-z=0$.
Solution. A normal vector of the plane is $\vec{n}=(1,-1,-1)^{T}$. The vectors $\vec{a}=(1,1,0)^{T}$, $\vec{b}=(1,0,1)^{T}$ are parallel to the plane. These three vectors $\vec{n}, \vec{a}, \vec{b}$ form a basis \mathcal{B} of \mathbb{R}^{3}. Let $[\mathcal{B} \rightarrow \mathcal{S}]$ be the corresponding transition matrix. In the basis \mathcal{B}, the matrix of the projection is $P=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ (because the projection of \vec{n} is $\overrightarrow{0}$, the projection of \vec{a} is \vec{a}, the projection of \vec{b} is \vec{b}. Then the matrix of the projection is $[\mathcal{B} \rightarrow \mathcal{S}] P[\mathcal{B} \rightarrow \mathcal{S}]^{-1}$.

Problem 4. (a) Is it possible for a matrix to have the vector $(1,2,3)$ in its row space and the vector $(2,-1,-1)^{T}$ in its null space?

Solution. No, it is not possible. If a vector \vec{a} in the row space of a matrix, then it is a linear combination $\alpha_{1} \vec{r}_{1}+\ldots+\alpha_{n} \vec{r}_{n}$ of the rows of the matrix. If \vec{b}^{T} is in the null space of the matrix, then $\vec{r}_{i} \vec{b}^{T}=0$ for each i. Therefore $\vec{a} \vec{b}^{T}$ should be equal to 0 , but $(1,2,3)(2,-1,-1)^{T}=-3 \neq 0$.
(b) Give an example of a matrix having $(1,2,3)$ in its row space and $(-2,1,0)^{T}$ in its null space.

Solution. Let A be the 1×3 matrix consisting of one row $(1,2,3)$. Then $A(-2,1,0)^{T}=$ 0 , hence $(-2,1,0)^{T}$ is in the null space of A. Clearly, $(1,2,3)$ is in the row space of A.

Problem 5. Find the matrix of the linear transformation of \mathbb{R}^{2} which is the composition of dilation by $1 / 2$, rotation through 60 degrees and reflection about the line $y=x$.

Solution. The basic vectors $(1,0)$, and $(0,1)$ are mapped by this linear transformation as follows (we first apply the dilation, then the rotation, then the reflection):

$$
\begin{aligned}
& (1,0)^{T} \rightarrow\left(\frac{1}{2}, 0\right)^{T} \rightarrow\left(\begin{array}{ll}
\cos \left(60^{\circ}\right) & -\sin \left(60^{\circ}\right) \\
\sin \left(60^{\circ}\right) & \cos \left(60^{\circ}\right)
\end{array}\right)\binom{\frac{1}{2}}{0}=\left(\begin{array}{ll}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\binom{\frac{1}{2}}{0}=\binom{\frac{1}{4}}{\frac{\sqrt{3}}{4}} \\
& \rightarrow\binom{\frac{\sqrt{3}}{4}}{\frac{1}{4}} \\
& \quad(0,1)^{T} \rightarrow\left(0, \frac{1}{2}\right)^{T} \rightarrow\left(\begin{array}{ll}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{array}\right)\binom{0}{\frac{1}{2}}=\binom{-\frac{\sqrt{3}}{4}}{\frac{1}{4}} \rightarrow\binom{\frac{1}{4}}{-\frac{\sqrt{3}}{4}}
\end{aligned}
$$

Therefore the matrix of this linear transformation is

$$
\left(\begin{array}{ll}
\frac{\sqrt{3}}{4} & \frac{1}{4} \\
\frac{1}{4} & -\frac{\sqrt{3}}{4}
\end{array}\right) .
$$

Problem 6. Prove that if A, B, C are square matrices of the same size, and A is similar to B, B is similar to C, then A is similar to C.

Solution. Since A is similar to B, there exists a matrix S such that $A=S^{-1} B S$. Since B is similar to C, there exists a matrix T such that $B=T^{-1} C T$. Therefore $A=S^{-1} T^{-1} C T S=(T S)^{-1} C(T S)$. Thus A is similar to C.

Problem 7. Consider functions $1+x^{2}, x-1, x^{2}+x+1$ as elements of the vector space $C[0,1]$. Are these functions linearly independent? Explain your answer.

Solution. The Wronskian of these functions is the determinant of the matrix

$$
\left(\begin{array}{lll}
1+x^{2} & x-1 & x^{2}+x+1 \\
2 x & 1 & 2 x+1 \\
2 & 0 & 2
\end{array}\right)
$$

which is equal to -2 . Since it is not equal to 0 , the functions are linearly independent.

