Math 194 MIDTERM TEST 2. Solutions

Problem 1. Let $\vec{v}_1 = (1, 2, 3)^T$, $\vec{v}_2 = (1, 1, -1)^T$, $\vec{v}_3 = (0, -1, -2)^T$. (a) Show that these vectors form a basis in \mathbb{R}^3 ,

Solution. The determinant of the matrix A whose columns are $\vec{v}_1, \vec{v}_2, \vec{v}_3$ is not zero, so the columns are linearly independent. Since the dimension of \mathbb{R}^3 is 3, these vectors form a basis of \mathbb{R}^3 .

(b) Find the transition matrix from the standard basis to that basis,

Solution. Let \mathcal{B} be that basis. Then the matrix A is the transition matrix $[\mathcal{B} \to \mathcal{S}]$. The transition matrix $[\mathcal{S} \to \mathcal{B}]$ is then A^{-1} .

(c) Use the transition matrix to find coordinates of the vector $(2,3,1)^T$ in that basis. Solution. The answer: $A^{-1}(2,3,1)^T$.

Problem 2. How many solutions will the linear system Ax = b have

(a) if b is in the column space of A and the columns of A are linearly independent?

(b) if b is not in the column space of A

Explain your answer.

Solution.

(a) Since b is in the column space of A, it is a linear combination of columns of A, hence there is a solution of the system Ax = b. Since the columns of A are linearly independent in the reduced row echelon form of A every column will have a pivot. Therefore the system Ax = b does not have free unknowns, hence it has exactly one solution.

(b) Since b is not in the column space of A, it is not a linear combination of columns of A, hence Ax = b has no solutions.

Problem 3. Find the matrix of the projection of \mathbb{R}^3 onto the the plane x - y - z = 0. Solution. A normal vector of the plane is $\vec{n} = (1, -1, -1)^T$. The vectors $\vec{a} = (1, 1, 0)^T$, $\vec{b} = (1,0,1)^T$ are parallel to the plane. These three vectors $\vec{n}, \vec{a}, \vec{b}$ form a basis \mathcal{B} of \mathbb{R}^3 . Let $[\mathcal{B} \to \mathcal{S}]$ be the corresponding transition matrix. In the basis \mathcal{B} , the matrix of the projection is $P = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (because the projection of \vec{n} is $\vec{0}$, the projection of \vec{a} is \vec{a} ,

the projection of \vec{b} is \vec{b} . Then the matrix of the projection is $[\mathcal{B} \to \mathcal{S}]P[\mathcal{B} \to \mathcal{S}]^{-1}$.

Problem 4. (a) Is it possible for a matrix to have the vector (1, 2, 3) in its row space and the vector $(2, -1, -1)^T$ in its null space?

Solution. No, it is not possible. If a vector \vec{a} in the row space of a matrix, then it is a linear combination $\alpha_1 \vec{r_1} + \ldots + \alpha_n \vec{r_n}$ of the rows of the matrix. If \vec{b}^T is in the null space of the matrix, then $\vec{r_i}\vec{b}^T = 0$ for each *i*. Therefore $\vec{a}\vec{b}^T$ should be equal to 0, but $(1,2,3)(2,-1,-1)^T = -3 \neq 0.$

(b) Give an example of a matrix having (1,2,3) in its row space and $(-2,1,0)^T$ in its null space.

Solution. Let A be the 1×3 matrix consisting of one row (1, 2, 3). Then $A(-2, 1, 0)^T =$ 0, hence $(-2, 1, 0)^T$ is in the null space of A. Clearly, (1, 2, 3) is in the row space of A.

Problem 5. Find the matrix of the linear transformation of \mathbb{R}^2 which is the composition of dilation by 1/2, rotation through 60 degrees and reflection about the line y = x.

Solution. The basic vectors (1,0), and (0,1) are mapped by this linear transformation as follows (we first apply the dilation, then the rotation, then the reflection):

$$(1,0)^T \to (\frac{1}{2},0)^T \to \begin{pmatrix} \cos(60^\circ) & -\sin(60^\circ) \\ \sin(60^\circ) & \cos(60^\circ) \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} \\ \frac{\sqrt{3}}{4} \end{pmatrix}$$

$$\to \begin{pmatrix} \frac{\sqrt{3}}{4} \\ \frac{1}{4} \end{pmatrix}$$

$$(0,1)^T \to (0,\frac{1}{2})^T \to \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{3}}{4} \\ \frac{1}{4} \end{pmatrix} \to \begin{pmatrix} \frac{1}{4} \\ -\frac{\sqrt{3}}{4} \end{pmatrix}$$

Therefore the matrix of this linear transformation is

$$\left(\begin{array}{cc}\frac{\sqrt{3}}{4} & \frac{1}{4}\\ \frac{1}{4} & -\frac{\sqrt{3}}{4}\end{array}\right).$$

Problem 6. Prove that if A, B, C are square matrices of the same size, and A is similar to B, B is similar to C, then A is similar to C.

Solution. Since A is similar to B, there exists a matrix S such that $A = S^{-1}BS$. Since B is similar to C, there exists a matrix T such that $B = T^{-1}CT$. Therefore $A = S^{-1}T^{-1}CTS = (TS)^{-1}C(TS)$. Thus A is similar to C.

Problem 7. Consider functions $1 + x^2$, x - 1, $x^2 + x + 1$ as elements of the vector space C[0, 1]. Are these functions linearly independent? Explain your answer.

Solution. The Wronskian of these functions is the determinant of the matrix

$$\left(\begin{array}{rrrr} 1+x^2 & x-1 & x^2+x+1\\ 2x & 1 & 2x+1\\ 2 & 0 & 2 \end{array}\right)$$

which is equal to -2. Since it is not equal to 0, the functions are linearly independent.