Math 194
Midterm Test 1.
Solutions

Problem 1. Consider a linear system of equations

$$
\left\{\begin{array}{l}
x+y+z=2 \\
x+2 y+3 z=3 \\
x+3 y+a z=b
\end{array}\right.
$$

(a) For which values a and b will this system have infinitely many solutions?
(b) For which values of a and b will this system be inconsistent?

Solution. The augmented matrix can be reduced to the matrix where the last row is $(0,0, a-5 \mid b-4)$ (the other rows have pivots not in the last column). Thus if $a \neq 5$, all variables are pivotal, hence one solution, if $a=5, b=4$, then the system has an independent unknown and no pivots in the last column, hence infinitely many solutions, and if $a=5, b \neq 4$, there are no solutions because there will be a pivot in the last column.

Problem 2. Let A be a non-zero symmetric 2×2-matrix. Is it possible that A^{2} is the zero matrix? Justify your answer.

Solution. No. A symmetric matrix has this form $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. If its square is 0 , then $a^{2}+b^{2}=0$ and $b^{2}+c^{2}=0$, hence $a=b=c=0$ and the matrix is zero.

Problem 3. Consider the following graph:

How many walks of length 3 are from vertex 1 to vertex 4? Justify your answer.
Solution. Consider the (1, 4)-entry of the 3 -d power of the incidence matrix. The answer is 5 .

Problem 4. Express the matrix

$$
\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]
$$

as a product of elementary matrices.
Solution. Reduce the matrix to RREF. Let E_{1}, E_{2}, E_{3} be elementary matrices corresponding to the row operations used in this reduction. Then the matrix is equal to $E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}$. One possible answer: $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$

Problem 5. Find the inverse of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 1 & 0 \\
3 & 2 & 1
\end{array}\right]
$$

Solution. The inverse is $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 2 & -1 & 0 \\ -1 & -1 & 1\end{array}\right)$.
Problem 6. Let A be an 4 by 4 matrix with entries $a_{i j}$. In the expression of the determinant of A what is the sign of the product $a_{13} a_{22} a_{34} a_{41}$?

Solution. The corresponding permutation is $(3,2,4,1)$. One needs two switches to get $(1,2,3,4)$ from it: switch the first and the fourth numbers, then switch the third and the fourth numbers. The number of switches is even, so the sign is + .

Problem 7. Let A be the n by n matrix with 1's on the main diagonal, 1 's on the diagonal above the main diagonal, -1 's on the diagonal just below the main diagonal, and 0 's everywhere else. Show that the determinant of A is a Fibonacci number.

Solution. For $n=1$, the determinant is 1 , for $n=2$ the determinant is 2 . Note that 1 and 2 are the first two Fibonacci numbers. For an arbitraty $n \geq 3$ let F_{n} be the determinant. Expand along the first column, we get the sum of two determinants, of which the first one is F_{n-1}. The second determinant, after expanding along the first row, turns into F_{n-2}. Thus $F_{n}=F_{n-1}+F_{n-2}$ for every $n>2$ which is the Fibonacci recurrence relation. Therefore F_{n} is a Fibonacci number for every n.

