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Abstract

The undecidable problems of the title are concerned with the question :- is a
given finite semigroup embeddable in a given type of completely 0-simple semi-
groups? It is shown, for example, that the embeddability of a (finite) 3-nilpotent
semigroup in a finite completely 0-simple semigroup is decidable yet such embed-
dability is undecidable for a (finite) 4-nilpotent semigroup. As well the membership
of the pseudovariety generated by finite completely 0-simple semigroups (or alter-
natively by finite Brandt semigroups) over groups from a pseudovariety of groups
with decidable membership is shown to be decidable.

1 Introduction

One of the most important classes of semigroups is the class of 0-simple finite semi-
groups. Recall that a semigroup is called 0-simple if it does not have ideals except itself
and possibly {0}. Every finite semigroup may be obtained from 0-simple semigroups
by a sequence of ideal extensions. The classic theorem of Sushkevich [3] (which was
arguably the first theorem in the algebraic theory of semigroups) shows that finite 0-
simple semigroups have the following structure. Let G be a group, let L and R be two
sets and let P = (pr`) be an |R|× |L|-matrix over the group G with 0 adjoined such that
every row and every column of P contains a non-zero element. Let M 0(G;L,R, P ) be
the set (L×G× R) ∪ {0} with the following binary operation:

(`, g, r)(`′, g′, r′) =

{

(`, gpr`′g
′, r′) if pr`′ 6= 0;

0 if pr`′ = 0.

Then M0(G;L,R, P ) is a 0-simple semigroup, and every finite 0-simple semigroup is iso-
morphic to M0(G;L,R, P ) for some G,L,R, P (necessarily finite). Not every infinite 0-
simple semigroup can be described in this way. By the theorem of Rees-Sushkevich a (not
necessarily finite) semigroup is isomorphic to a semigroup of the form M 0(G;L,R, P ) if
and only if it is 0-simple and has a minimal non-zero idempotent. Such semigroups also
play a very important role in semigroup theory; they are called completely 0-simple.
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Notice that the semigroup M 0(G;L,R, P ) is finite if and only if G, L and R are
finite. For ease of identification let us call M 0(G;L,R, P ) the |R| × |L| completely 0-
simple semigroup over the group G with sandwich matrix P. If L = R and P is the
identity matrix then M 0(G;L,R, P ) is called the |L| × |L| Brandt semigroup over the
group G. It is denoted by BL(G). Brandt semigroups are precisely the completely 0-
simple inverse semigroups. As one can see the structure of finite 0-simple semigroups
and finite 0-simple inverse semigroups is extremely clear. This is why the class of finite 0-
simple semigroups is considered to be one of the most transparent classes of semigroups.
If |L| = m, |R| = n we shall write M 0(G;m,n, P ) and Bm(G) instead of M 0(G;L,R, P )
and BL(G).

Thus the following results of Kublanovsky were very unexpected.

Theorem 1.1 (Kublanovsky, 1994). The set of all subsemigroups of (finite) completely
0-simple semigroups is not recursive. The set of subsemigroups of direct products of
(finite) completely 0-simple semigroups is also not recursive.

Kublanovsky uses the unsolvability of the uniform word problem for finite groups
(Slobodskoii [14]). Recall that if K is a class of universal algebras of some type then the
uniform word problem for this class asks whether there exists an algorithm which, given
a system of relations ui = vi, i = 1, 2, ..., n and a relation u = v, where all ui, vi, u, v are
words over some alphabet X, decides if u is equal to v in every X−generated algebra
from K in which all relations ui = vi hold.

A class of universal algebras is called a pseudovariety if it is closed under taking
subsemigroups, homomorphic images and finite direct products.

There exists an important connection between the uniform word problem in a pseu-
dovariety and finite partial algebras. This connection was found by Evans (see [5] or [10;
Connection 2.2]). Recall that a partial universal algebra is a set with partial operations.
If A is a partial universal algebra, B is a universal algebra of the same type, A ⊆ B and
every operation of A is a restriction of the corresponding operation of B then we say
that the partial algebra A is embedded in the algebra B.

Theorem 1.2 (Evans, [5]). Let V be a pseudovariety of universal algebras. The uni-
form word problem is solvable in V if and only if the set of finite partial algebras embed-
dable in algebras from V is recursive.

Using the ideas of the proof of Theorem 1.1 we prove here the following result which
is stronger than Theorem 1.1.

Recall that a semigroup S with a zero element is called n-nilpotent if the product of
any n elements of S is equal to zero.

Theorem 1.3 For every pseudovariety of groups V and for any natural numbers n,m
the following conditions are equivalent.

1. The uniform word problem in V is solvable.

2. The set of finite subsemigroups of completely 0-simple semigroups over groups in
V is recursive.
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3. The set of finite subsemigroups of Brandt semigroups over groups in V is recursive.

4. The set of finite 4-nilpotent subsemigroups of finite completely 0-simple semigroups
over groups in V is recursive.

5. The set of finite 3-nilpotent subsemigroups of finite Brandt semigroups over groups
in V is recursive.

6. The set of finite 4-nilpotent subsemigroups of direct products of finite completely
0-simple semigroups over groups in V is recursive.

7. The set of finite 3-nilpotent subsemigroups of direct products of finite Brandt semi-
groups over groups in V is recursive.

8. The set of finite subsemigroups of m × n completely 0-simple semigroups over
groups in V is recursive provided m ≥3, n ≥3.

9. The set of finite subsemigroups of m ×m Brandt semigroups over groups in V is
recursive provided m ≥3.

10. The set of finite 4-nilpotent subsemigroups of m×n completely 0-simple semigroups
over groups in V is recursive provided m ≥4, n ≥4.

11. The set of finite 3-nilpotent subsemigroups of m×m Brandt semigroups over groups
in V is recursive provided m ≥3.

12. The set of finite 4-nilpotent subsemigroups of direct products of m× n completely
0-simple semigroups over groups in V is recursive provided m ≥4, n ≥4.

13. The set of finite 3-nilpotent subsemigroups of direct products of m × m Brandt
semigroups over groups in V is recursive provided n ≥3.

A substantial amount of information is known about pseudovarieties of groups with
undecidable uniform word problem (see [10]). The undecidability of the uniform word
problem in the class of all groups was proved by Novikov [12]. The undecidability of
the uniform word problem in the class of finite groups has been proved by Slobodskoii
[14]. The following results of Kharlampovich imply that many other pseudovarieties of
groups also have undecidable uniform word problem.

Let G be the class of all finite groups. Let N be the class of all nilpotent groups, Nk

be the class of all nilpotent groups of step ≤ k, let N2A be the class of all extensions of
groups from N2 by Abelian groups and let ZN2A be the class of all groups G such that
the factor of G over its centre belongs to N2A. Let X be an arbitrary variety of groups
such that ZN2A ⊆ X.

Theorem 1.4 (Kharlampovich, [8], [9]). The uniform word problem is undecidable for
the following classes of groups: G; N; G ∩ N; G ∩ X; N ∩ X; N ∩ X ∩ G.
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Thus if one takes V in Theorem 1.3 to be one of the classes, the sets of finite semi-
groups mentioned in this theorem are not recursive; in other words, the membership of
the sets is undecidable.

On the other hand the universal word problem is solvable, for example, in any variety
of groups where every finitely generated group is residually finite and also in the set of
finite groups from this variety (see [10]). In particular, this problem is solvable in the
variety Nk and in the pseudovariety G∩Nk. It is also solvable in the pseudovariety of all
finite groups of any fixed exponent (this is a corollary of the Theorem of Zelmanov giving
a positive solution of the Restricted Burnside Problem, see [10]). Thus, in particular,
the set of all finite subsemigroups of finite completely 0-simple semigroups over groups
in G ∩ Nk is recursive for any fixed k ≥ 1.

Theorem 1.3 will be proved in the next section. This theorem together with Theorem
1.4 imply that the set of finite 4-nilpotent subsemigroups of finite 0-simple semigroups
is undecidable. We will prove that embeddability of (finite) 3-nilpotent semigroups in
(finite) completely 0-simple semigroups is decidable.

Theorems 1.3 and 1.4 show that the set of subsemigroups of finite direct products
of finite 0-simple semigroups is undecidable. It turns out that if we close this set under
homomorphic images then we obtain a decidable collection of finite semigroups. This
collection is closed under subsemigroups, finite direct products and homomorphisms so
it is a pseudovariety of finite semigroups [4] generated by the set of all finite 0-simple
semigroups. Let V be a pseudovariety of groups. Define CS0 (V) and B (V) to be the
pseudovarieties generated respectively by finite 0-simple semigroups over groups from
V and finite Brandt semigroups over groups from V. In the final section the following
theorem will be proved.

Theorem 1.5 Let V be a pseudovariety of groups with decidable membership. Then
CS0 (V) and B (V) have decidable membership. Moreover the membership problems in
CS0 (V) and B (V) are polynomial time reducible to the membership problem of V.

In section 3 we also determine a sequences of identities that ultimately define CS 0,
B and some of their sub-pseudovarieties. As well we show that CS0 (V) is the semidirect
product of the pseudovariety of semilattices of groups over V by the pseudovariety of
right zero semigroups.

2 Proof of Theorem 1.3

A set A with a partial binary operation · on it and a distinguished element 1 such that
1 · a = a · 1 = a for all a ∈ A will be called a partial group.

Let us take a pseudovariety of groups V in which the uniform word problem is
unsolvable. We have to prove that each of the sets of finite semigroups listed in conditions
2 – 13 of Theorem 1.3 is not recursive. This will be done in a series of reductions. We
shall prove even more.

Proposition 2.1 Let V be a pseudovariety of groups in which the uniform word problem
is not solvable.
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(a) Every set of finite semigroups which contains the set of finite subsemigroups
of 3×3 Brandt semigroups over groups from V and is contained in the set of finite
subsemigroups of direct products of arbitrary completely 0-simple semigroups over groups
from V is not recursive.

(b) Every set of finite 3-nilpotent semigroups which contains the set of finite 3-
nilpotent subsemigroups of 3×3 Brandt semigroups over groups from V and is contained
in the set of finite subsemigroups of direct products of arbitrary Brandt semigroups over
groups from V is not recursive.

(c) Every set of finite semigroups which contains the set of all finite 4-nilpotent
subsemigroups of 4×4 Brandt semigroups over groups from V and is contained in the
set of finite subsemigroups of direct products of arbitrary completely 0-simple semigroups
over groups from V is not recursive.

First of all notice that by Theorem 1.2 the following problem is undecidable:

Given a finite partial group A, decide whether or not A is embeddable in
a group from V.

Let us call a partial group A symmetric if for every a ∈ A there exists a unique
element a′ ∈ A such that aa′ = a′a = 1. A partial group B > A is called a symmetric
extension of A if B is symmetric and for every element b ∈ B either b or b′ belongs to
A. Thus the order of every symmetric extension of A does not exceed 2|A| so every
finite partial group has only finitely many symmetric extensions and all of them may be
effectively listed. It is clear that a partial group A is embeddable in a group if and only
if one of its symmetric extensions is embeddable in this group. Therefore the following
problem is undecidable:

Given a finite symmetric partial group A, decide whether or not A is
embeddable in a group from V.

Let B be a partial group and let A be a subset of B. For every i = 1, 2 . . . let us
define a subset Ai of B. Let A1 = A and for every i > 1 let Ai+1 = Ai ·A. We shall call
B an extension of A of rank k if:

• 1 is the identity element for B.

• for all numbers i and j between 1 and k such that i+ j ≤ k and for every pair of
elements x ∈ Ai and y ∈ Aj the product xy exists in B and belongs to Ai+j.

• all products x · y where x ∈ Ai\
⋃i−1

s=1A
s, y ∈ Aj\

⋃j−1
s=1A

s and i + j > k are
undefined unless x = 1 or y = 1.

• For every x ∈ Ai, y ∈ Aj, z ∈ Am such that i + j + m ≤ k both (xy)z and x(yz)
are defined and (xy)z = x(yz).

• B =
⋃k

s=1A
s.
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It is clear that for every k there are only finitely many extensions of rank k of any
finite partial group A and all of them may be effectively listed.

It is also clear that for any natural number k a partial group A is embeddable in a
group G if and only if some extension of A of rank k is embeddable in G.

Let En = (er`) be the identity n×n matrix, let C be any partial group and let Bn(C)
be the set n×C×n (where n stands for the set {1, 2, . . . , n}) with the following partial
operation:

(`, g, r)(`′, g′, r′) =

{

(`, gg′, r′) if er`′ = 1 and gg′ is defined ;
0 if er`′ = 0.

Lemma 2.2 If a partial group A is embeddable in a group G then for every k > 1, n ≥ 1
there exists an extension C of A of rank k such that Bn(C) is embeddable in the Brandt
semigroup Bn(G).

Proof. It is enough to compare the definitions of Bn(G) and Bn(C).

Now let A be a finite symmetric partial group, let A′ be extension of A of rank
2 and let A′′ be any extension of A of rank 3. Let us define the following three sets
S1 ⊆ B3(A

′), S2 ⊆ B3(A
′), S3 ⊆ B4(A

′′).

S1 = ({1} × A× {2}) ∪ ({2} × A× {3}) ∪ ({1} × A′ × {3})
∪{(1, 1, 1)} ∪ {(2, 1, 2)} ∪ {(3, 1, 3)} ∪ {0};

S2 = ({1} × A× {2}) ∪ ({2} × A× {3}) ∪ ({1} × A′ × {3}) ∪ {0};

S3 = ({1} × A× {2}) ∪ ({2} × A× {3}) ∪ ({3} × A× {4})
∪({1} × (A2 ∪ A) × {3}) ∪ ({2} × (A2 ∪ A) × {4}) ∪ ({1} × A′′ × {4}) ∪ {0}.

It is easy to check that each of these sets is a subsemigroup of B3(A
′) or B4(A

′′)
respectively, that is the operation is everywhere defined and associative on each of these
sets.

Notice that the semigroup S2 is 3-nilpotent and the semigroup S3 is 4-nilpotent. The
semigroup S1 is an extension of S2 and S1\S2 consists of three idempotents (1, 1, 1),
(2, 1, 2) and (3, 1, 3) which we shall call e1, e2 and e3 respectively. It is easy to check
that e1 is a left unit for {1} × A × {2} and for {1} × A′ × {3}, e2 is a left unit for
{2}×A×{3} and a right unit for {1}×A×{2} and e3 is a right unit for {2}×A×{3}
and {1} × A′ × {3}.

Lemma 2.3 (a) If S1 is a subsemigroup of a direct product of completely 0-simple semi-
groups over groups Gi, i ∈ I then A is embeddable in the direct product

∏

iGi.
(b) If S2 is a subsemigroup of a direct product of Brandt semigroups over groups

Gi, i ∈ I then A is embeddable in the direct product
∏

iGi.
(c) If S3 is a subsemigroup of a direct product of completely 0-simple semigroups over

groups Gi, i ∈ I then A is embeddable in the direct product
∏

iGi.
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Proof. (a) Let φ be a homomorphism from S1 into a completely 0-simple semigroup
M = M0(G;L,R, P ). Then φ(ei) is idempotent for i = 1, 2, 3. Suppose φ({1} × A′ ×
{3}) 6= {0}. Then φ(ei) 6= 0. Indeed, if φ(e1) = 0 then φ({1}×A′ ×{3}) = {0} because
e1 is a left unit for {1}×A′×{3}. If φ(e3) = 0 then φ({1}×A′×{3}) = {0} because e3 is a
right unit for {1}×A′×{3}. If φ(e2) = 0 then φ({1}×A×{2}) = {0} = φ({2}×A×{3})
because e2 is a right unit for {1}×A×{2} and a left unit for {2}×A×{3}. Therefore
φ({1} × A′ × {3}) = φ({1} × A× {2})φ({2} × A× {3}) = 0.

Let φ(ei) = (`i, gi, ri). Since e1(1, a, 2)e2 = (1, a, 2), e2(2, a, 3)e3 = (2, a, 3) and
e1(1, a

′, 3)e3 = (1, a′, 3) for every a ∈ A and every a′ ∈ A′ we have that

(`1, g1, r1)φ(1, a, 2)(`2, g2, r2) = φ(1, a, 2),

(`2, g2, r2)φ(2, a, 3)(`3, g3, r3) = φ(2, a, 3),

(`1, g1, r1)φ(1, a′, 3)(`3, g3, r3) = φ(1, a′, 3).

Therefore

φ(1, a, 2) ∈ {(`1, f(a), r2), 0} ,

φ(2, a, 3) ∈ {(`2, g(a), r3), 0} ,

φ(1, a′, 3) ∈ {(`1, h(a
′), r3), 0}

for some (possibly partial) functions f, g : A→ G and h : A′ → G.
Notice that since e2e2 = e2 6= 0, pr2`2 6= 0. It is known (see [3]) that if we multiply all

entries of a row (a column) of the matrix P by any element x ∈ G from the left (right)
and obtain a new matrix P ′ then the semigroups M 0(G;L,R, P ) and M0(G;L,R, P ′)
are isomorphic. Thus we can assume that the entry pr2`2 of the matrix P is equal to 1.

Since φ({1} × A′ × {3}) 6= {0} there exists z ∈ A′ such that φ(1, z, 3) 6= 0. Since
z = 1 · z = z · 1 we have that

0 6= φ(1, z, 3) = φ(1, 1, 2)φ(2, z, 3) = φ(1, z, 2)φ(2, 1, 3). (1)

Now suppose that there exists an element c ∈ A′ such that φ(1, c, 3) = 0. By
definition of an extension of rank 2, c = xy for some x, y ∈ A. Then 0 = φ(1, c, 3) =
φ(1, x, 2)φ(2, y, 3). Since pr2`2 6= 0, one of the elements φ(1, x, 2) or φ(2, y, 3) is equal to
0. Let us suppose, without loss of generality that φ(1, x, 2) = 0.

Since A is symmetric there exists x−1 ∈ A such that xx−1 = 1 (the identity ele-
ment of A). Then φ(1, 1, 3) = φ(1, x, 2)φ(2, x−1, 3) = 0. Therefore 0 = φ(1, 1, 3) =
φ(1, 1, 2)φ(2, 1, 3). Hence one of the elements φ(1, 1, 2) or φ(2, 1, 3) is equal to 0. In both
cases

φ(1, z, 3) = φ(1, 1, 2)φ(2, z, 3) = φ(1, z, 2)φ(2, 1, 3) = 0

which contradicts (1).
Thus φ(1, c, 3) 6= 0 for every c ∈ A′. From this, one can easily deduce that φ(1, a, 2) 6=

0 and φ(2, a, 3) 6= 0 for every a ∈ A. Therefore

φ(1, a, 2) = (`1, f(a), r2), φ(2, a, 3) = (`2, g(a), r3), φ(1, b, 3) = (`1, h(b), r3)
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for every a ∈ A, b ∈ A′. Hence the functions f, g, h are everywhere defined.
For every a, b ∈ A we have

(`1, f(a), r2)(`2, g(b), r3) = (`1, f(a)g(b), r3).

On the other hand since φ is a homomorphism we must have

(`1, f(a), r2)(`2, g(b), r3) = (`1, h(ab), r3).

Notice that here we used the fact that ab is defined in A′. Therefore for every a, b in A
we have

f(a)g(b) = h(ab).

¿From this we can deduce that f(1)g(a) = h(a) = f(a)g(1) for every a ∈ A. There-
fore f(a) = h(a)g(1)−1, g(a) = f(1)−1h(a) and h(a)g(1)−1f(1)−1h(b) = h(ab). Thus

h(a)(g(1)−1f(1)−1)h(b)(g(1)−1f(1)−1) = h(ab)(g(1)−1f(1)−1).

We conclude that the mapping ψ : A → G which takes a to h(a)(g(1)−1f(1)−1) is a
homomorphism of A.

Now suppose that the homomorphism φ separates two elements (1, a, 3) and (1, b, 3)
with a, b ∈ A. Therefore the image of one of these elements is not 0. Then as we have
shown before the images of all elements from {1} × A× {3} are non-zero. Therefore

φ(1, a, 3) = (`1, h(a), r3) 6= (`1, h(b), r3) = φ(1, b, 3).

Hence h(a) 6= h(b) and therefore ψ is a homomorphism of A into G which separates
a and b.

Suppose now that S1 is a subsemigroup of the direct product
∏

iM
0(Gi;Li, Ri, Pi)

with Gi ∈ V. Then every two distinct elements (1, a, 3) and (1, b, 3) with a, b ∈ A are
separated by a projection φi into M0(Gi;Li, Ri, Pi) for some i. Therefore a and b are
separated by some homomorphism from A into Gi. Thus every two distinct elements
a, b ∈ A can be separated by a homomorphism into a group from V. Hence A is
embeddable in a direct product of groups from V. Since A is finite, we can suppose that
this direct product has finitely many factors. Since V is closed under taking finite direct
products, A is embeddable in a group of V.

(b) Let φ be a homomorphism from S2 into a Brandt semigroup Bn(G) such that
φ(1, z, 3) 6= 0 for some z ∈ A. The same argument as above shows that φ(1, b, 3) 6= 0 for
every b ∈ A′ (when we proved this fact in part (a), we did not use elements e1, e2 and
e3). This implies that φ(1, a, 2) 6= 0, φ(2, a, 3) 6= 0, φ(1, b, 3) 6= 0 for every a ∈ A, b ∈ A′.

Then for every a ∈ A we have

φ(1, a, 2) = (`1(a), f(a), r1(a)),

φ(2, a, 3) = (`2(a), g(a), r2(a)),

φ(1, b, 3) = (`3(b), h(b), r3(b))

8



for some functions `1, `2 : A → L, `3 : A′ → L, r1, r2 : A → R, r3 : A′ → R,
f, g : A→ G, h : A′ → G.

Since φ is a homomorphism and since every entry of the matrix of a Brandt semigroup
is either 0 or 1, we have f(a)g(b) = h(ab) for every a, b ∈ A such that ab ∈ A′.

Notice also that since 1 · a = a = a · 1 for every a ∈ A we have:

(`3(a), h(a), r3(a)) = (`1(a), f(a), r1(a))(`2(1), g(1), r2(1))
= (`1(1), f(1), r1(1))(`2(a), g(a), r2(a)).

Therefore r3(a) = r2 (a) = r2(1) and `3(a) = `1 (a) = `1(1) for every a ∈ A. Next
suppose b ∈ A′\A, so b = xy for some x, y ∈ A. Hence

(`3 (b) , h (b) , r3 (b)) = (`1 (x) , f (x) , r1 (x)) (`2 (y) , g (y) , r2 (y))

and we have r3 (b) = r2 (1) , `3 (b) = `1 (1) .
Now we can complete the proof in the same way as in part (a).
(c) Let φ be a homomorphism from S3 into M0(G;L,R, P ) such that φ(1, z, 4) 6= 0

for some z ∈ A. Then in the same way as above we can prove that φ(1, a, 2), φ(2, a, 3),
φ(3, a, 4), φ(1, b, 3), φ(2, b, 4), φ(1, c, 4) are not equal to 0 for every a ∈ A, b ∈
A ∪ A2, c ∈ A′′ and that φ (2, x, 4) = (` (x) , k (x) , r) for all x ∈ A ∪ A2. It follows that

φ(3, x, 4) = (`1(x), g(x), r) and likewise φ(1, y, 3) = (`, f(y), r1), φ(1, t, 4) = (`, h(t), r)

where r, r1 and ` do not depend on x, y or t, g : A → G, f : A ∪ A2 → G, h : A′′ → G
are some mappings.

Then for every a, b ∈ A we have

f(a)pr1`1(b)g(b) = h(ab). (2)

As we mentioned above, we can multiply each column of the matrix P by an element
of G without changing the completely 0-simple semigroup (the resulting semigroup will
be isomorphic to the original one). Therefore we can assume that the r1th row of P
consists of zeroes and ones. Thus each of pr1`1(b) in (2) is equal to 1 (it cannot be equal to
0 because otherwise φ(1, ab, 4) would be equal to 0). Therefore we have f(a)g(b) = h(ab)
and we can complete the proof in the same way as above.

The lemma is proved.

Proof of Proposition 2.1. Let A be any finite symmetric partial group. If A is
embeddable in a group G from V then some extension A′ of rank 2 and some extension
A′′ of rank 3 is embedded in G. Then by Lemma 2.2, S1 and S2 are embeddable in
B3(G) and S3 is embeddable in B4(G).

On the other hand suppose that A is not embeddable in a group from V. Then by
Lemma 2.3, S1 and S3 are not embeddable in a direct product of completely 0-simple
semigroups over groups from V and S2 is not embeddable in a direct product of Brandt
semigroups over groups from V.

Since the problem of whether a finite symmetric partial group is embeddable in a
group from V is undecidable, we conclude that every set of finite semigroups mentioned
in Proposition 2.1 is not recursive.
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The proposition is proved.

In order to complete the proof of Theorem 1.3, we need to prove that if the uni-
form word problem is decidable in the pseudovariety V then each of the sets of finite
semigroups mentioned in Theorem 1.3 is decidable.

We shall use the following connection between the uniform word problem and the
universal theory of a pseudovariety (see [10], Connection 2.2). Recall that the universal
theory of a class V is the set of all universal formulae that hold in V.

Lemma 2.4 Let V be a pseudovariety of universal algebras. The uniform word problem
in V is solvable if and only if the universal theory of V is decidable.

Now let V be a pseudovariety of groups with solvable uniform word problem. Then
by Lemma 2.4 the universal theory of V is decidable.

Let S be a finite semigroup. If S does not have a zero, we can formally add zero 0
to S and obtain the semigroup S0. It is clear that every homomorphism φ from S into
a completely 0-simple semigroup such that |φ(S)| 6= 1 can be uniquely extended to a
homomorphism of S0. Thus we shall always assume that S contains zero.

A pair of equivalence relations λ, ρ ⊆ S × S will be called admissible if

1. (x, xy) ∈ λ for every x, y ∈ S provided xy 6= 0;

2. (x, yx) ∈ ρ for every x, y ∈ S provided yx 6= 0;

3. for every x, y, z, t ∈ S if (x, z) ∈ ρ, (y, t) ∈ λ and xy = 0 then zt = 0.

For example, let φ be an embedding of S into a completely 0-simple semigroup
M0(G;L,R, P ). Then the preimage of 0 is 0. If φ(x) 6= 0 for some x ∈ S then φ (x) =
(`(x), g(x), r(x)) where `(x) ∈ L, g(x) ∈ G, r(x) ∈ R. Let us define two equivalence
relations λ and ρ:

(x, y) ∈ λ if and only if `(x) = `(y) or x = y = 0;

(x, y) ∈ ρ if and only if r(x) = r(y) or x = y = 0.

Then it is easy to check that the pair (λ, ρ) is admissible.
It is also easy to check that the following formula θ(λ, ρ) holds in G:

θ(λ, ρ) ⇀↽ ∃xρ∈S/ρ,yλ∈S/λ,xy 6=0pxρyλ ∃x∈S,x 6=0g(x)
∧

x,y∈S,xy 6=0 g(x)pxρyλg(y) = g(xy) ∧
∧

x,y∈S,xλ=yλ,xρ=yρ,x6=y g(x) 6= g(y).

Now suppose that the formula θ(λ, ρ) holds in a group G for some admissible pair
(λ, ρ). Let α be a symbol which does not belong to S/λ or S/ρ. Let L = S/λ∪{α} if S
has a non-zero element x such that xy = 0 for every y ∈ S otherwise let L = S/λ. Let
R = S/ρ∪{α} if S has a non-zero element x such that yx = 0 for every y ∈ S otherwise
let R = S/ρ. Consider the following R× L-matrix Q:

qxρyλ =

{

pxρyλ if xy 6= 0;
0 if xy = 0;

qαyλ = qαα = qxρα = 1.
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Every row of this matrix contains a non-zero element. Indeed if x is such that xy = 0
for every y ∈ S then L contains α and the row number xρ contains 1 = qxρα. If for some
y ∈ S xy 6= 0 then qxρyλ = pxρyλ 6= 0. Similarly every column of Q has a non-zero
element. Thus the semigroup M 0(G;L,R,Q) is completely 0-simple.

Now define the following map φ : S →M 0(G;L,R,Q):

φ(x) =
{

(xλ, g(x), xρ) if x 6= 0; 0 if x = 0.

Formula θ (λ, ρ) and the definition of Q show that for every x, y ∈ S, xy 6= 0

g(x)qxρyλg(y) = g(x)pxρyλg(y) = g(xy).

Since the pair (λ, ρ) is admissible xλ = (xy)λ, (xy)ρ = yρ for every x, y ∈ S such that
xy 6= 0. This implies that φ(xy) = φ(x)φ(y) for every x, y ∈ S, xy 6= 0. If xy = 0
then by the definition of Q we have that qxρyλ = 0 so φ(x)φ(y) = 0 = φ(xy). Thus φ
is a homomorphism. Since for every x, y ∈ S, where x 6= y either xλ 6= yλ or xρ 6= yρ

or g(x) 6= g(y), this map is one-to-one. Therefore φ is an embedding of S into the
completely 0-simple semigroup M 0(G;L,R,Q).

Thus a finite semigroup S is embeddable into a completely 0-simple semigroup over
a group from V if and only if for some admissible pair of equivalences λ, ρ the formula
θ(λ, ρ) holds in some group of V. Notice that the negation of formula θ(λ, ρ) is a universal
formula, so we can algorithmically check whether or not θ(λ, ρ) holds in V. This gives
us an algorithm to check whether or not S is a subsemigroup of a completely 0-simple
semigroup over a group from V and proves conditions 2 and 4 of Theorem 1.3.

In order to check whether or not a finite semigroup S is a subsemigroup of a direct
product of completely 0-simple semigroups over groups from V it is enough to check for
every pair of distinct elements a, b and every congruence σ on S such that (a, b) 6∈ σ
whether or not S/σ is embeddable in a completely 0-simple semigroup. Since S is finite
there are only finitely many triples (a, b, σ) to check. This proves condition 6 of Theorem
1.3.

Now let us fix natural numbers m and n and consider an embedding φ : x →
(`(x), g(x), r(x)) of S in a completely 0-simple semigroup M 0(G;m,n, P ). Then the
relations λ and ρ defined as above form an admissible pair and |S/λ| ≤ m, |S/ρ| ≤ n.
Suppose that S contains an element x 6= 0 such that xy = 0 for every y ∈ S. Then
pr(x)`(y) = 0 for every y 6= 0 from S. Therefore L contains an element which is not equal
to `(y) for any y ∈ S. Thus |S/λ| ≤ m − 1. Similarly, if S contains an element x such
that yx = 0 for every y ∈ S then |S/ρ| ≤ n − 1. As above the formula θ(λ, ρ) holds in
the group G.

On the other hand let (λ, ρ) be an admissible pair of equivalence relations on S.
Suppose that

(a) |S/λ| ≤ m if for every x ∈ S, x 6= 0 there exists y ∈ S such that xy 6= 0 or
|S/λ| ≤ m− 1 otherwise;

(b) |S/ρ| ≤ n if for every x ∈ S, x 6= 0 there exists y ∈ S such that yx 6= 0 or
|S/ρ| ≤ n− 1 otherwise;

Then construct the sets L and R and the R × L-matrix Q as above. As before, the
semigroup M0(G;L,R,Q) is completely 0-simple and S is embeddable in this semigroup.
Notice that by definition |L| ≤ m, |R| ≤ n.
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Therefore a semigroup S is embeddable in a completely 0-simple semigroup over a
group from V if and only if there exists a pair of admissible equivalence relations (λ, ρ)
on S satisfying the conditions (a) and (b) and such that the formula θ(λ, ρ) holds in a
group of V.

A semigroup S is embeddable in a direct product of m × n completely 0-simple
semigroups over groups from V if and only if for every pair of distinct elements (a, b) in
S there exists a congruence σ on S such that S/σ is embeddable in an m×n completely
0-simple semigroup over groups from V.

This proves conditions 8, 10 and 12 of Theorem 1.3.
In order to deal with Brandt semigroups, instead of arbitrary completely 0-simple

semigroups we have to change the definition of an admissible pair of equivalence relations.
We shall call a pair (λ, ρ) admissible if

1. (x, xy) ∈ λ for every x, y ∈ S provided xy 6= 0;

2. (x, yx) ∈ ρ for every x, y ∈ S provided yx 6= 0;

3. for every x, y, z, t ∈ S if (x, z) ∈ ρ, (y, t) ∈ λ and xy = 0 then zt = 0;

4. xy 6= 0 and xz 6= 0 implies (y, z) ∈ ρ;

5. xy 6= 0 and zy 6= 0 implies (x, z) ∈ λ.

The first three of these conditions are the same as above and the reason for the other
two conditions is that a Brandt semigroup has an identity matrix: it has exactly one
non-zero element in each column and in each row. We need to use the following new
definition of the formula θ(λ, ρ):

θ(λ, ρ) ⇀↽ ∃x∈S,x 6=0g(x)
∧

x,y∈S,xy 6=0 g(x)g(y) = g(xy) ∧
∧

x,y∈S,xλ=yλ,xρ=yρ,x6=y g(x) 6= g(y).

We also need to change the definition of the sets L,R and the matrix Q.

L = S/λ ∪ {αx | xy = 0 for all y ∈ S},

R = S/ρ ∪ {βx | yx = 0 for all y ∈ S},

qxρyλ =

{

1 if xy 6= 0;
0 if xy = 0;

qβxx = 1 if βx exists; qβxy = 0 if y 6= x;

qxαx
= 1 if αx exists; qyβx

= 0 if y 6= x;

qαxβy
= 0 for every x, y.

In order to prove conditions 3, 5, 7, 9, 11 and 13, one has to almost literally repeat
the above arguments replacing the old definitions by the new ones and we leave this to
the reader as an exercise. This completes the proof of Theorem 1.3.
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We have seen that embeddability of 4-nilpotent semigroups in completely 0-simple
semigroups is undecidable; now it will be shown that the opposite is the case for 3-
nilpotent semigroups.

A semigroup S with zero is categorical at zero if and only if for all a, b, c ∈ S, abc = 0
implies that ab = 0 or bc = 0.

Theorem 2.5 A (finite) 3-nilpotent semigroup S is embeddable in a (finite) completely
0-simple semigroup if and only if S is categorical at zero.

Proof. The condition is necessary since any completely 0-simple semigroup is cate-
gorical at zero.

Suppose S is categorical at zero. We must show that S embeds in a completely
0-simple semigroup. Let

A = {a ∈ S; ax 6= 0 for some x ∈ S} ,

B = {b ∈ S; yb 6= 0 for some y ∈ S} .

Then A ∩ B = ∅; otherwise, since S is categorical at zero, ybx 6= 0 for some b ∈ A ∩ B
and x, y ∈ S which contradicts the requirement S3 = 0. Now let

C = S2\ {0} , D = S\
(

A ∪B ∪ S2
)

.

It is clear that S is the disjoint union A∪B ∪C ∪D∪{0} . Notice that D∪{0} is a null
semigroup and S is the 0-direct union of A∪B ∪C ∪ {0} with D ∪ {0} . Since a 0-direct
union of completely 0-simple semigroups is completely 0-simple (see [3]) it suffices to
embed A ∪B ∪ C ∪ {0} in a completely 0-simple semigroup; of course D ∪ {0} embeds
in a completely 0-simple semigroup.

Suppose A = {a1, a2, ..., ah} , B = {b1, b2, ..., bk} and C = {c1, c2, ..., cm} for some
ordinals h, k and m. Let G be any group containing at least m distinct elements
g1, g2, ..., gm and with identity 1. Put Λ = {0, 1, ..., h} , I = {0, 1, ..., k} and define a
Λ × I matrix P over G0 as follows: for all i ∈ I\ {0} and λ ∈ Λ\ {0} ,

p00 = pλ0 = p0i = 0, pλi =
{

0 if aλbi=0
gj if aλbi=cj .

Let M = M(G; I,Λ;P ), a Rees matrix semigroup; of course M embeds in a regular Rees
matrix semigroup (that is, in a completely 0-simple semigroup). So it suffices to embed
A∪B ∪ C ∪ {0} in M .

Define an injective map φ : (A ∪B ∪ C ∪ {0}) →M by

φ(0) = 0, φ(aλ) = (0, 1, λ) , φ (bi) = (i, 1, 0) , φ (cj) = (0, gj, 0) .

Notice that

(0, pλi, 0) =
{

0 if aλbi=0
(0,gj ,0) if aλbi=cj .

Hence φ (aλbi) = (0, pλi, 0) = (0, 1, λ) (i, 1, 0) = φ (aλ)φ (bi) . But A2 = B2 = C2 =
BA = S3 = 0 while AB = C, so φ is an embedding.

Observe that in the above, if S is finite we may choose M and a completely 0-simple
extension of M to be finite.
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3 Pseudovarieties generated by 0-simple semigroups

It is convenient to prove many of the following results for varieties of semigroups and to
then derive the analagous pseudovariety results. A bold capital V will always denote a
variety. A script capital V denotes a pseudovariety of semigroups.

Let us denote by CS0, CS,B,SG,LSG,G,Sl,RZ and T , respectively the semigroup
pseudovarieties generated by finite 0-simple semigroups, completely simple semigroups,
Brandt semigroups, semilattices of groups, local semilattices of groups, groups, semilat-
tices, right zero semigroups and trivial semigroups. Recall that a semigroup is a semi-
lattice of groups if it is a union of groups and its idempotents commute. A semigroup S
is a local semilattice of groups if eSe is a semilattice of groups for each idempotent e of
S.

A variety of groups H is said to have exponent n ≥ 1 if xn = 1 is an identity for H.
If H has no finite exponent we say H has exponent 0. Likewise for pseudovarieties.

For n ≥ 1 let Gn be the variety of all groups of exponent n and let Gn be the
pseudovariety of all finite groups of exponent n. We write G1 = T and G1= T .

The aim now is to prove Theorem 1.5. We present two quite different proofs that
CS0 (V) has decidable membership when the pseudovariety V has decidable membership.
This is because from one of the proofs we obtain sequences of identities that ultimately
define CS0 and CS0 (Gn) (and B and B (Gn)) while from the other proof we get useful
decompositions of CS0 (V).

In [11] G. Mashevitzky describes a basis of identities for the variety CS0(H) gen-
erated by completely 0-simple semigroups over groups from the variety H of groups of
exponent n ≥ 1. Unfortunately there are gaps in the proof in [11]; we will fill the gaps
here to obtain an equivalent result.

Lemma 3.1 For n ≥ 1 the identities

xn+2 = x2, (xy)n+1 x = xyx, xyx (zx)n = x (zx)n yx (3)

and
xn+2 = x2, (xy)n+1 x = xyx, xyz (xhz)n = (xhz)n xyz (4)

determine the same variety of semigroups.

Proof. From (3) z (xy) z ((xh) z)n = z ((xh) z)n (xy) z. But then

xyz (xhz)n x = x (yz) x (hzx)n = x (hzx)n (yz)x = (xhz)n xyzx.

Now, by (3) and these identities

xyz (xhz)n = xyz (xhz)2n = (xhz)n xyz (xhz)n = (xhz)2n xyz = (xhz)n xyz.

Hence (4) is a consequence of (3).
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Conversely from (4)

xyx (zx)n = xyx (zx)3n = [x (yx) z] [x (zx) z]n (xz)n−1 x = [x (zx) z]n [x (yx) z] (xz)n−1 x

= (xz)2n xyx (zx)n = x (zx)2n yx (zx)n = x (zx)2n yx (zx)2n

= x
[

z
(

(xz)2n−1 xy
)

x
]

[z (xz) x]n = x [z (xz) x]n
[

z
(

(xz)2n−1 xy
)

x
]

= x (zx)4n yx = x (zx)n yx.

Lemma 3.2 . Let V be the variety of semigroups determined by the identities (3). For
any S ∈ V and distinct regular elements a, b ∈ S there exists a completely 0-simple
semigroup K and a surjective homomorphism φ : S → K such that φ (a) 6= φ (b) .

Proof. . For each regular element z ∈ S let Iz = {u ∈ S; z /∈ S1uS1} ; Iz is an ideal
of S. Define equivalence relations ρz and λz on S by

ρz = {(x, y) ∈ S × S; for all t ∈ SzS, xt = yt (modulo Iz)} ,

λz = {(x, y) ∈ S × S; for all t ∈ SzS, tx = ty (modulo Iz)} .

Clearly ρz and λz are congruences on S; in fact, they are the kernels of the Schützenberger
representations for S (see [3]).

Suppose a /∈ SbS; since b is a regular element of S then b ∈ Ia and since a has an
inverse a′ ∈ S then a′a ∈ SaS, a (a′a) = a /∈ Ia and b (a′a) ∈ Ia, whence (a, b) /∈ ρa.
Alternatively suppose a ∈ SbS and b ∈ SaS; that is, a and b are in the same J−class
SaS\Ia of S. Since a is regular and S is periodic by (3) then Ka = SaS/ (Ia ∩ SaS) is a
completely 0-simple semigroup. But then either ba′a 6= a or aa′b 6= a whence (a, b) /∈ ρa

or (a, b) /∈ λa respectively.
It remains to prove that S/ρa and S/λa are completely 0-simple semigroups. We will

check this for S/ρa where a 6= 0. By definition ρa contains the Rees congruence modulo
Ia. Hence we may assume Ia = {0} or Ia is empty. Then SaS ∼= Ka is a 0-minimal ideal
of S and hence is a completely 0-simple semigroup. Therefore SaS/ρa is a completely
0-simple semigroup and in order to complete the proof we need only prove that for each
x ∈ S there exists y ∈ SaS such that (x, y) ∈ ρa.

Now suppose x ∈ S; without loss of generality we may assume x /∈ SaS. Since x /∈ Ia

then a = pxq for some p, q ∈ S1 and therefore a = pxqa′pxq. Put w = qa′p, then
w ∈ SaS and xwx 6= 0. Let t ∈ SaS and t 6= 0. Since SaS is completely 0-simple then
t = uxwxv for some u, v ∈ SaS. Now, applying the identities (3) we get

xt = xuxwxv = xu (xw)n+1 xv = xux (wx)n wxv = x (wx)n uxwxv = (xw)n xt.

Thus (x, (xw)n x) ∈ ρa. Since (xw)n x ∈ SaS the Lemma is proved.

We can now prove Mashevitzky’s result.

Proposition 3.3 . Let Gn be the variety of all groups of exponent n ≥ 1. Then
CS0(Gn) has (3) (or (4)) for a basis of identities.
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Proof. In [11] a word of length greater than 1 from the free semigroup F (X) on a
denumerable set X is said to be covered by cycles if each subword of length 2 is included
in a subword where the first and last letter are the same. An identity u = v is covered
by cycles if and only if u and v are covered by cycles. In the proof of [11; Lemma 7] it
is shown that any identity u = v of CS0(Gn) is a consequence of identities of CS0(Gn)
that are covered by cycles. Hence CS0(Gn) is determined by identities covered by cycles.

Let V be the variety of semigroups determined by (3). It is easy to see that V ⊇
CS0(Gn). By [11; Lemma 6] if S ∈ V, φ : F (X) → S is a homomorphism and
u ∈ F (X) is covered by cycles then φ (u) is regular in S.

Now suppose u = v is an identity covered by cycles for CS0(Gn) and that there
exists S ∈ V such that S does not satisfy the identity. So there is a homomorphism
φ : F (X) → S such that φ (u) 6= φ (v) , while φ (u) and φ (v) are regular elements of
S. By Lemma 3.2 there is a surjective homomorphism of S onto a completely 0-simple
semigroup that separates φ (u) and φ (v) . But then u = v is not an identity for CS0(Gn),
which is a contradiction. Therefore V = CS0(Gn).

Suppose u = u (x1, x2, ..., xm) is a word from the free semigroup F (X) on a countably
infinite set X, where x1, x2, ..., xn ∈ X are the variables that appear in u. Then define
un = u (xnx1x

n, xnx2x
n, ..., xnxmx

n) for some x ∈ X\ {x1, x2, ..., xm} and n ≥ 1.
In a variety of groups H of exponent n ≥ 1, identities of a basis of identities can be

expressed in the form v = 1 where v is a word from F (X). Mashevitzky, in [11], went
on to prove the following extension of Proposition 3.3.

Theorem 3.4 (Mashevitzky [11]). Let H be a variety of groups of exponent n ≥ 1, with
basis of identities vγ = 1; γ ∈ Γ. Then CS0 (H) has a basis of identities

xn+2 = x2, x (yx)n+1 = xyx, xyx (zx)n = x (zx)n yx,
(

v2
γ

)

n
= (vγ)n ; γ ∈ Γ.

(5)

Corollary 3.5 Let H be a variety of groups of exponent n ≥ 1 and let V be the largest
subvariety of CS0(Gn) such that V ∩ G = H. Then V = CS0 (H) .

Proof. Let LSG(H) be the variety of local semilattices of groups from H and assume

H has a basis of identities vγ = 1; γ ∈ Γ. Of course
(

v2
γ

)

n
= (vγ)n ; γ ∈ Γ are identities for

LSG(H). Hence, by Theorem 3.4, LSG(H)∩CS0(Gn) ⊆ CS0 (H). But any completely
0-simple semigroup over a group from H is in LSG(H) ∩ CS0(Gn) so CS0 (H) =
LSG(H) ∩ CS0(Gn). It follows that CS0 (H) ∩ G ⊆ H so CS0 (H) ⊆ V ⊆LSG(H) ∩
CS0(Gn) = CS0 (H) . The Corollary is proved.

Let F (X) denote the free semigroup on a countably infinite set X. A semigroup
S satisfies the identity u = v for some u, v ∈ F (X) if φ (u) = φ (v) in S for every
homomorphism φ : F (X) → S. A pseudovariety V of semigroups is equationally defined
by some set of identities if V consists precisely of those finite semigroups that satisfy
the set of identities. There are many pseudovarieties that are not equationally defined.
However, Eilenberg and Schützenberger, in [4], have shown that every pseudovariety V
of semigroups is ultimately defined by identities in the sense that there is a sequence of
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identities (ui = vi)i≥1 over F (X) such that S ∈ V if and only if S satisfies the identity

ui = vi for all sufficiently large i. It is usual to denote the sequence
(

un!
)

n≥1
by uω

for any u ∈ F (X). Then, for example, Gn is defined by xωy = y, yxω = y; that is, the

sequence
(

xn!y = y, yxn! = y
)

n≥1
ultimately defines Gn.

A variety of algebras is called locally finite if and only if each of its finitely generated
members is finite. A variety that is generated by a finite set of finite algebras is locally
finite [2] .

Theorem 3.6 (i) CS0 is defined by

xω+2 = x2, (xy)ω+1 x = xyx, xyx (zx)ω = x (zx)ω yx. (6)

(ii) For any n ≥ 1, CS0 (Gn) is defined by

xn+2 = x2, (xy)n+1 x = xyx, xyx (zx)n = x (zx)n yx. (7)

Proof. (i) Let V be the pseudo-variety of semigroups that satisfy (6). It is easy to
verify that any finite 0-simple semigroup S ∈ CS 0 satisfies the pseudo-identities (6).
Hence V ⊇ CS0.

Now suppose S ∈ V, so S is finite and satisfies (7) for some n > 1. Let G(S) be the
variety of groups generated by the subgroups of S. Since G(S) is locally finite its free
object of finite rank r has finite order, say m (r) . It follows from the universal property
of the free object that any r-generated members of G(S) have order ≤ m (r). But then
there is a natural number m′ (r) ≤ r2m (r) such that any r-generated subsemigroup
of a completely 0-simple semigroup over groups in G(S) has order ≤ m′ (r) ; this is
because any such semigroup embeds in an r× r completely 0-simple semigroup over a t-
generated group from G(S) , for some t ≤ r. There are only finitely many non-isomorphic
semigroups of orders ≤ m′ (r), so any r-generated subdirect product of completely 0-
simple semigroups, with its groups in G(S), is finite and is therefore in CS0 (G (S) ∩ G) .
Furthermore, since the rank r free object in CS0 (G (S)) is a homomorphic image of such
a subdirect product, it is also in CS0 (G (S) ∩ G). It follows that the finite members,
including S, of CS0 (G (S)) are in CS0 (G (S) ∩ G) ⊆ CS0, so V ⊆ CS0 and the result
follows.C

(ii) Let V be the pseudo-variety of semigroups that satisfy (7). Clearly V ⊇ CS 0 (Gn).
By the same argument as used in (i), V ⊆ CS0 (Gn) .

Corollary 3.7 Let H be a pseudovariety of groups and let V be the largest subpseudova-
riety of CS0 such that V ∩ G = H. Then V=CS0 (H) .

Proof. Let SR (H) be the pseudovariety of locally semilattices of groups from H.
Then V = SR (H) ∩ CS0 ⊇ CS0 (H). By the argument of the second paragraph of
the last proof, S ∈ V only if S ∈ CS0 (G (S) ∩ G) . But the finite members of G(S)
are homomorphic images of finitely generated subdirect products of groups from H so
G (S) ∩ G⊆H. Thus V ⊆ CS0 (H) . The Corollary is proved.

Corollary 3.8 Membership of the pseudovariety CS0 (H) is decidable for any pseudova-
riety of groups H that has decidable membership.
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Proof. Observe that S ∈ CS0 (H) if and only if S is a finite semigroup whose
subgroups are in H and S satisfies (6) or (7), depending on the exponent of H.

There is a similar result for the pseudovariety B (H) .

Proposition 3.9 Let H be a variety of groups of exponent n ≥ 1 with basis of identities
vγ = 1; γ ∈ Γ. Then the variety B(H) generated by Brandt semigroups over groups from
H has a basis of identities

xn+2 = x2, (xy)n+1 x = xyx, xnyn = ynxn,
(

v2
γ

)

n
= (vγ)n ; γ ∈ Γ.

Proof. By M. V. Volkov (see [13; Theorem 20.7]) and A. N. Trakhtman (see [13;
Theorem 20.4]), for n > 1 and n = 1 respectively, the first three of the identities
determine B(Gn) . The proof of Theorem 3.4 that is used by Mashevitzky in [11] also
proves this Proposition.

Theorem 3.10 (i) B is defined by

xω+2 = x2, (xy)ω+1 x = xyx, xωyω = yωxω. (8)

(ii) For any n ≥ 1, B (Gn) is defined by

xn+2 = x2, (xy)n+1 x = xyx, xnyn = ynxn. (9)

Proof. This theorem can be proved by the proof of Theorem 3.6(i) and (ii) with
suitable (minor) modifications.

The argument used to prove Corollary 3.5 also proves the next result.

Corollary 3.11 Let H be a pseudovariety of groups and let V be the largest subpseu-
dovariety of B such that V ∩ G = H. Then V = B (H) .

Corollary 3.12 Membership of the pseudovariety B (H) is decidable for any pseudova-
riety of groups H that has decidable membership.

The decidability part of Theorem 1.5 is a combination of Corollaries 3.8 and 3.12 and
is therefore proved. The complexity part of this theorem follows from the easy facts that
one can check if a finite semigroup unltimately satisfies identities (5) or (8) in polynomial
time and that the problem of finding maximal subgroups of a finite semigroup given by
its multiplication table is solvable in polynomial time.

Let us now consider decompositions of CS0(H) for a variety of groups H and the
analogous pseudovariety decompositions via joins and semidirect products. CS(H) is
the variety generated by completely simple semigroups over groups from H.

Lemma 3.13 CS0(H) = CS0(T)∨CS(H) for any group variety H. For any pseudova-
riety H of groups, CS0(H) = CS0(T ) ∨ CS(H).
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Proof. It is clear that CS0(H) ⊇ CS0(T) ∨ CS(H). Assume S = M 0 (G; I,Λ;P ) is
a regular Rees matrix semigroup in CS0(H). Obtain P from P by replacing all non-

zero terms by 1 (the identity of G). Obtain
∧

P from P by replacing all zero terms by

1. Put R = M0
(

{1} ; I,Λ;P
)

, T = M
(

G; I,Λ;
∧

P

)

and I = {(0, t) ∈ R× T} . Then

(R× T ) /I is a semigroup in CS0(T) ∨ CS(H) that embeds S under the assignment
(i, a, λ) 7−→ ((i, 1, λ) , (i, a, λ)) modulo I. Thus S ∈ CS0(T) ∨ CS(H) and it follows
that CS0(H) ⊆ CS0(T) ∨ CS(H). The same proof can be used for the corresponding
pseudovariety result.

There is a similar result for B(H).

Lemma 3.14 B(H) = B(T)∨H for any group variety H. For any pseudovariety H of
groups, B(H) = B(T ) ∨ H.

Proof. We have B(H) ⊇ B(T) ∨ H. Let S = M 0 (G, I, I; ∆) be a Brandt semi-
group in B(H), R = M 0 ({1} ; I, I; ∆) and J = {(0, g) ∈ R×G} . Then S embeds in
the semigroup (R×G) /J by the assignment (i, g, λ) 7−→ ((i, 1, λ) , g) modulo J . So
B(H) ⊆ B(T) ∨ H. Similarly, the pseudovariety result holds.

In the following results, use is made of semidirect and wreath products of semigroups.
Let R and S be semigroups. Suppose that each element s ∈ S acts by endomorphism

on R, r 7−→ sr such that s (r1r2) = sr1
sr2,

s (tr) = (st)r, and if S is a monoid then
1r = r, for any r, r1, r2 ∈ R and s, t ∈ S. The semidirect product R ∗ S is the semigroup
consisting of the set R× S with binary operation given by (r1, s1) (r2, s2) = (rs1

1 r2, s1s2)
for all r1, r2 ∈ R, s1, s2 ∈ S. The wreath product Rwr S is the semidirect product RS ∗S
of the cartesian power RS by S, with the action such that for any s, t ∈ S and α ∈ RS

then tα (s) = α (st) . Recall that α ∈ RS means that α : S → R is a map and if, as well,
β ∈ RS and s ∈ S then (αβ) (s) = α (s)β (s) .

For varieties of semigroups U and V define U ∗ V to be the variety generated by
{U ∗ V ; U ∈ U and V ∈ V}. Of course U wr V ∈ U ∗ V; in fact U ∗ V is generated
by U wr V for all U ∈ U, V ∈ V (see [1]). We also use the analogous notions for
pseudovarieties.

Theorem 3.15 CS0(H) = SG(H) ∗ RZ for any variety of groups H. For any pseu-
dovariety H of groups, CS0(H) = SG(H) ∗ RZ

Proof. Notice that SG(H) = Sl ∨ H. Suppose E ∈ Sl, G ∈ H and R ∈ RZ. There
is a bijection

(E ×G)R → ER ×GR; α 7−→ (αE, αG) : α (r) = (αE (r) , αG (r)) ∈ E ×G ∀r ∈ R.

Define maps
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π : (E ×G) wrR → E wrR; (α, r)π = (αE, r)
τ : (E ×G) wrR→ GwrR; (α, r) τ = (αG, r) .

Observe that for α, β ∈ (E ×G)R and r, t ∈ R we have rt = t and

(αtβ) (r) = α (r)t β (r) = α (r) β (t) = (αE (r) , αG (r)) (βE (t) , βG (t)) =
(αE (r)βE (t) , αG (r)βG (t)) = ((αE

tβE) (r) , (αG
tβG) (r)) .

It follows easily that π and τ are homomorphisms. As well, for distinct (α, r) , (β, t) ∈
(E ×G) wrR, either π (α, r) 6= π (β, t) or τ (α, r) 6= τ (β, t) . Hence (E ×G) wrR
is a subdirect product of E wrR by GwrR. We have shown that (E ×G) wrR ∈
(Sl ∗ RZ)∨ (H ∗ RZ) ; that is, SG(H) ∗RZ = (Sl ∨ H) ∗RZ ⊆ (Sl ∗ RZ)∨ (H ∗ RZ) .
Of course, the reverse inclusion is immediate so SG(H) ∗RZ = (Sl ∗ RZ) ∨ (H ∗ RZ) .

Let C2 be the 5 element 0-simple semigroup over the trivial group, with sandwich
matrix

(

1 1
1 0

)

By [13; Theorem 20.4] the variety V(C2) has (3) with n = 1 for a basis of identities; as
well by Proposition 3.3 these form a basis of identities for CS0(T) so V (C2) = CS0(T).
It is easy to check that Sl∗RZ satisfies the identities (3), with n = 1, so CS0(T) ⊇
Sl ∗ RZ. By Theorem 3.6, CS0(T ) has (3) with n = 1 for a basis of pseudo-identities,
while by [1; Corollary 10.8.3], Sl ∗ RZ also has this basis whence CS0(T ) = Sl ∗ RZ
(in [1], Sl is called Com11 and RZ is called D1). Since C2 ∈ CS0(T ) ⊆ Sl ∗ RZ then
CS0(T) ⊆ Sl ∗RZ; that is, CS0(T) = Sl ∗RZ. Since by [7], H∗RZ = CS(H) then by
Lemma 3.13 CS0(H) = SG(H) ∗ RZ.

In the corresponding proof for pseudovarieties, note that by [1; Corollary 10.6.8],
CS(H) = H ∗RZ . We get CS0(H) = SG(H) ∗ RZ.

Remark 3.16 The pseudovariety version of Theorem 3.15 allows us to prove Corollary
3.8 by a very different method to that we used previously. Since we already have the
Corollary we present below only an outline of the alternative proof. The outline should,
however, indicate the potential of this alternative proof technique.

Alternative proof for Corollary 3.8.
A semigroupoid C is defined in the same way a category is, except that each hom set,

hom(a, a) , from an object a to itself is a semigroup rather than a monoid; hom(a, a) is the
local semigroup at a. Each semigroup is the hom set of some one object semigroupoid; we
can therefore think of semigroups as being one object semigroupoids. A pseudovariety
of semigroups V is local if every semigroupoid C whose local semigroups are in V divides
a member of V; that is, if for each C there is a semigroupoid D, V ∈ V and functors
φ : D → C, ψ : D → V such that φ is bijective on objects and surjective on hom sets,
while ψ is injective on hom sets.

We first check that SG (H) is local. Let M be the pseudovariety of all monoids. By
[6: Corollary 8.2], SG (H) ∩M is local. Any semigroupoid D extends to a category C1
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by the adjoining of an identity to each hom set hom(a, a) of C. Suppose C has its local
semigroups in SG (H). Then C1 has its local monoids in SG (H) ∩M and therefore C1

divides SG (H) ∩M. It follows that C divides SG (H), whence SG (H) is local.
By [15; Theorem 8.2 and Appendix B] the membership of a semigroup S in a pseudo-

variety V ∗ W is decidable if V is local and if there is a relational morphism φ of S to
T ∈ W whose derived semigroupoid is locally in V. In particular, if V is local, if
membership of V is decidable and if there are only finitely many non-equivalent relational
morphisms of S into W, then membership of V ∗W is decidable. These conditions are
fulfilled when V = SG(H) and W = RZ; by the last paragraph SG (H) is local, while
for any locally finite pseudovariety W there is a finite free object F of rank |S| in W
and any relational morphism of S into W factors through one of the finite number of
relational morphisms of S to F.

As an immediate consequence of Theorems 3.6 and 3.10 and Corollary 3.7 and 3.11
we get the following.

Theorem 3.17 Let H be a pseudovariety of groups. Then B(H) consists of those semi-
groups from CS0(H) that have commuting idempotents.
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