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1 Short history of the problem

Hausdorff [14] proved in 1914 that one can subdivide the 2-sphere minus a countable set of
points into 3 parts A, B, C, such that each of these three parts can be obtained from each
of the other two parts by a rotation, and the union of two of these parts can be obtained
by rotating the third part. This implied that one cannot define a finitely additive measure
on the 2-sphere which is invariant under the group SO(3). In 1924 Banach and Tarski [3]
generalized Hausdorff’s result by proving, in particular, that in R

3, every two bounded sets
A, B with non-empty interiors can be decomposed A =

⋃n

i=1
Ai, B =

⋃n

i=1
Bi such that Ai

can be rotated to Bi, i = 1, ..., n (the so called Banach-Tarski paradox). Von Neumann [20]
was first who noticed that the cause of the Banach-Tarski paradox is not the geometry of R

3

but an algebraic property of the group SO(3). He introduced the concept of an amenable
group (he called such groups “measurable”) as a group G which has a left invariant finitely
additive measure µ, µ(G) = 1, noticed that if a group is amenable then any set it acts upon
freely also has an invariant measure and proved that a group is not amenable provided it
contains a free non-abelian subgroup. He also showed that groups like PSL(2, Z), SL(2, Z)
contain free non-abelian subgroups. So analogs of Banach-Tarski paradox can be found in
R

2 and even R. Von Neumann showed that the class of amenable groups contains abelian
groups, finite groups and is closed under taking subgroups, extensions, and infinite unions
of increasing sequences of groups. Day [9] and Specht [31] showed that this class is closed
under homomorphic images. The class of groups without free non-abelian subgroups is also
closed under these operations and contains abelian and finite groups.

The problem of existence of non-amenable groups without non-abelian free subgroups
probably goes back to von Neumann and became known as the “von Neumann problem”
in the fifties. As far as we know, the first paper where this problem was formulated was
the paper by Day [9]. It is also mentioned in the monograph by Greenleaf [11] based on his
lectures given in Berkeley in 1967. Tits [32] proved that every non-amenable matrix group
over a field of characteristic 0 contains a non-abelian free subgroup. In particular every
semisimple Lie group over a field of characteristic 0 contains such a subgroup.
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First counterexamples to the von Neumann problem were constructed by Ol’shanskii
[24]. He proved that the groups with all proper subgroups cyclic constructed by him, both
torsion-free [22] and torsion [23] (the so called “Tarski monsters”), are not amenable. Later
Adian [1] showed that the non-cyclic free Burnside group of odd exponent n > 665 with at
least two generators (that is the group given by the presentation 〈a1, ..., am | un = 1〉 where
u runs over all words in the alphabet {a1, ..., am}) is not amenable. Notice that examples in
[24] and [1] are based on Grigorchuk’s criterion of amenability [12], which is a refined version
of Kesten’s criterion from [16].

Both Ol’shanskii’s and Adian’s examples are not finitely presented: in the modern ter-
minology these groups are inductive limits of word hyperbolic groups, but they are not
hyperbolic themselves. Since many mathematicians (especially topologists) are mostly in-
terested in groups acting “nicely” on manifolds, it is natural to ask if there exists a finitely
presented non-amenable group without non-abelian free subgroups. This question was ex-
plicitly formulated, for example, by Grigorchuk in [18] and by Cohen in [8]. This question is
one of a series of similar questions about finding finitely presented “monsters”, i.e. groups
with unusual properties. Probably the most famous problem in that series is the problem
about finding a finitely presented infinite torsion group. Other similar problems ask for
finitely presented divisible group (group where every element has roots of every degree),
finitely presented Tarski monster, etc. In each case a finitely generated example can be con-
structed as a limit of hyperbolic groups (see [25]), and there is no hope to construct finitely
presented examples as such limits.

One difficulty in constructing a finitely presented non-amenable group without free non-
abelian subgroups is that there are “very few” known finitely presented groups without free
non-abelian subgroups. Most non-trivial examples are solvable or “almost” solvable (see
[17]), and so they are amenable. The only known examples of finitely presented groups
without free non-abelian subgroups for which the problem of amenability is non-trivial, are
R.Thompson’s group F and its close “relatives”. The fact that F does not contain free
non-abelian subgroups was proved by Brin and Squier in [5]. A conjecture that F is not
amenable was formulated first by Geoghegan [10]. A considerable amount of work has been
done to prove this conjecture (see [6]) but it is still open.

One approach to constructing a finitely presented counterexample to the von Neumann
problem would be in using the Higman embedding theorem which states that every recur-
sively presented group can be embedded into a finitely presented group. So one can take a
known finitely generated non-amenable group without non-abelian free subgroups and embed
it into a finitely presented group. Of course, the resulting group will be non-amenable since
the class of amenable groups is closed under taking subgroups. Unfortunately all known
constructions of Higman embeddings (see, for example, [4], [28]) use amalgamated products
and non-ascending HNN extensions, which immediately leads to non-abelian free subgroups.
Nevertheless Higman-like embeddings play an important role in our construction.

Our main result is the following.

Theorem 1.1. For every sufficiently large odd n, there exists a finitely presented group G

which satisfies the following conditions.
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1. G is an ascending HNN extension of a finitely generated infinite group of exponent n.

2. G is an extension of a non-locally finite group of exponent n by an infinite cyclic group.

3. G contains a subgroup isomorphic to a free Burnside group of exponent n with 2 gen-

erators.

4. G is a non-amenable finitely presented group without free subgroups.

Notice that parts 1 and 3 of Theorem 1.1 immediately imply part 2. By a theorem of
Adian [1], part 3 implies that G is not amenable. Thus parts 1 and 3 imply part 4.

Note that the first example of a finitely presented group which is a cyclic extension of
an infinite torsion group was constructed by Grigorchuk [13]. But the torsion subgroup in
Grigorchuk’s group does not have a bounded exponent and his group is amenable (it was
the first example of a finitely presented amenable but not elementary amenable group).

2 The scheme of the proof

Let us present the main ideas of our construction. We first embed the free Burnside group
B(m, n) = 〈B〉 of odd exponent n >> 1 with m > 1 generators {b1, ..., bm} = B into a
finitely presented group G′ = 〈C | R〉 where B ⊂ C. This is done in a similar way as in our
papers [27], [28] but we need a more complicated S-machine than in [27] (S-machines were
introduced by Sapir in [30]). Then we take a copy A = {a1, ..., am} of the set B, and a new
generator t, and consider the group given by the following three sets of relations.

(1) the set R or relations over a set C, corresponding to our S-machine S (it is denoted in
the paper by Z(S, Λ)), i.e. the relations of the finitely presented group G′ containing
B(m, n);

(2) (u-relations) y = uy, where uy, y ∈ C, is a certain word in A (we shall discuss the
choice of these words later, for now one can think of them as satisfying a very strong
small cancellation condition); these relations make G′ ( and B(m, n)) embedded into a
finitely presented group generated by A;

(3) (t-relations) t−1ait = bi, i = 1, ..., m; these relations make 〈A〉 a conjugate of its
subgroup of exponent n (of course, the group 〈A〉 gets factorized).

The resulting group G is obviously generated by the set A ∪ {t} and is an ascending HNN
extension of its subgroup 〈A〉 with the stable letter t. Every element in 〈A〉 is a conjugate
of an element of 〈B〉, so 〈A〉 is an m-generated group of exponent n. This immediately
implies that G is an extension of a group of exponent n (the union of increasing sequence of
subgroups ts〈A〉t−s, s = 1, 2, ...) by a cyclic group.

Hence it remains to prove that 〈A〉 contains a copy of the free Burnside group B(2, n).
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In order to prove that, we construct a list of defining relations of the subgroup 〈A〉. As
we have pointed out, the subgroup 〈A∪C〉 = 〈A〉 of G clearly satisfies all Burnside relations

of the form vn = 1. Thus we can add all Burnside relations.

(4) vn = 1 where v is a word in A ∪ C.

to the presentation of group G without changing the group.
If Burnside relations were the only relations in G among letters from B, the subgroup of

G generated by B would be isomorphic to the free Burnside group B(m, n) and that would
be the end of the story. Unfortunately there are many more relations in the subgroup 〈B〉 of
G. Indeed, take any relation r(y1, ..., ys), yi ∈ C, of G. Using u-relations (2), we can rewrite
it as r(u1, ..., us) = 1 where ui ≡ uyi

. Then using t-relations, we can substitute each letter
aj in each ui by the corresponding letter bj ∈ B. This gives us a relation r′ = 1 which will
be called a relation derived from the relation r = 1, the operator producing derived relations
will be called the t-operator. We can apply the t-operator again and again producing the
second, third, ..., derivatives r′′ = 1, r′′′ = 1, ... or r = 1. We can add all derived relations

(5) r′ = 1, r′′ = 1, ... for all relations r ∈ R

to the presentation of G without changing G.
Now consider the group H generated by C subject to the relations (1) from R, the

Burnside relations (4) and the derived relations (5). (In the paper, this group is denoted
by Hkra(∞).) The structure of the relations of H immediately implies that H contains
subgroups isomorphic to B(2, n). Thus it is enough to show that the natural map from H
to G is an embedding.

So far our argument was completely generic. We have not used any specific properties of
words uy, and the S-machine S. Let us explain now (in general terms) what these properties
are and how they come into play.

The idea is to consider another two auxiliary groups. The group G1 generated by A ∪ C

subject to the relations (1) from R, u-relations (2), the Burnside relations (4), and the
derived relations (5). We are not claiming so far that G1 is the subgroup of G generated
by A (although it is going to be so). It is clear that G1 is generated by A and is given by
relations (1) and (5) where every letter y ∈ C is replaced by the corresponding word uy in the
alphabet A plus all Burnside relations (4) in the alphabet A. Let L be the normal subgroup
of the free Burnside group B(A, n) (freely generated by A) generated as a normal subgroup
by all relators (1) from R and all derived relators (5) where letters from C are replaced by
the corresponding words uy. Then G1 is isomorphic to B(A, n)/L.

Consider the subgroup U of B(A, n) generated (as a subgroup) by {uy | y ∈ C}. The
words uy, y ∈ C, are chosen in such a way that the subgroup U is a free Burnside group
freely generated by uy, y ∈ C, and it satisfies the congruence extension property, namely
every normal subgroup of U is the intersection of a normal subgroup of B(A, n) with U .
(The existence of such a subgroup with infinite number of generators is non-trivial. It is also
of independent interest because it immediately implies, in particular, that every countable
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group of exponent n is embeddable into a finitely generated group of exponent n. This was
first proved by Obraztsov (see [25]).)

All defining relators of G1 are inside U . Since U satisfies the congruence extension prop-
erty, the normal subgroup L̄ of U generated by these relators is equal to L ∩ U . Hence U/L̄
is a subgroup of B(A, n)/L = G1. But by the choice of U , there exists a (natural) isomor-
phism between U and the free Burnside group B(C, n) generated by C, and this isomorphism
takes L̄ to the normal subgroup generated by relators from R and the derived relations (5).
Therefore U/L̄ is isomorphic to H (since, by construction, H is generated by C subject to
the Burnside relations, relations from R and derived relations)! Hence H is a subgroup of
G1. Let G2 be the subgroup of H generated by B.

Therefore we have
G1 ≥ H ≥ G2.

Notice that the map ai → bi, i = 1, ..., m, can be extended to a homomorphism φ1,2 :
G1 → G2. Indeed, as we mentioned above G1 is generated by A subject to Burnside relations,
all relators from R and all derived relators (5) where letters from C are replaced by the
corresponding words uy. If we apply φ1,2 to these relations, we get Burnside relations and
derived relations which hold in G2 ≤ H.

The main technical statement of the paper shows that φ1,2 is an isomorphism, that is
for every relation w(b1, ..., bm) of G2 the relation w(a1, ..., am) holds in G1. This implies that
the HNN extension 〈G1, t | t−1G1t = G2〉 is isomorphic to G. Indeed, this HNN extension is
generated by G1 and t, subject to relations (1), (2), (4), (5) of G1 plus relations (3). So this
HNN extension is presented by relations (1)-(5) which is the presentation of G. Therefore G1

is a subgroup of G, hence H is a subgroup of G as well.
The proof of the fact that φ1,2 is an isomorphism requires a detailed analysis of the group

H. This group can be considered as a factor-group of the group H ′ generated by C subject
to the relations (1) from R and derived relations (5) (this group is denoted in the paper
by Hkra) over the normal subgroup generated by Burnside relations (4). In other words, H
is the Burnside factor of H ′. Burnside factors of free groups and free products have been
studied first by Adian and Novikov in [21],[2]. Geometric approach based on the notion of
A-map was employed in the study of Burnside factors of these and more complicated groups
in [25]. Papers [26], [15] extends this approach to Burnside factors of hyperbolic groups. The
main problem we face in this paper is that H ′ is “very” non-hyperbolic. In particular, the set
of relations R contains many commutativity relations, so H ′ contains non-cyclic torsion-free
abelian subgroups which cannot happen in a hyperbolic group.

Nevertheless (and it is one of the main ideas of the proof) one can make the Cayley graph
of H ′ look hyperbolic if one divides the generators from C into two sets and consider letters
from one set as zero letters, and the corresponding edges of the Cayley graph as edges of
length 0. Thus the length of a path in the Cayley graph or in a van Kampen diagram over
the presentation of H is the number of non-zero edges of the path.

More precisely, the group H ′ is similar to the group G(S) of [30], [28], [27]. As we
mentioned above it corresponds to an S-machine S. The set C consists of tape letters (the
set A), state letters (the set K) and command letters (the set R). Recall that unlike an
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ordinary Turing machine, an S-machine works with elements of a group, not elements of the
free semigroup.

It turns out that the most productive point of view is to consider an S-machine as an
inverse semigroup of partial transformations of a set of states which are special (admissible)
words of the group H∗

ka which is the free product of the free group generated by K and the
subgroup of H ′ generated by A. The generators of the semigroup are the S-rules (each one
of them simultaneously replaces certain subwords in a word by other specified subwords).
The machine S is the set of the S-rules. Every computation of the machine corresponds to
a word over S which is called the history of computation, i.e. the string of commands used
in the computation. With every computation h applied to an admissible element W , one
associates a van Kampen diagram T (W, h) (called a trapezium) over the presentation of H ′

(see Figure 1).
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Fig. 1.

The first and the last words of the computation are written on the bases the trapezium,
copies of the history of the computation are written on the vertical sides. The horizontal
strips (bands) of cells correspond to applications of individual rules in the computation.

The trapezia T (W, h) play central role in our study of the Burnside factor H of H ′. As
in [25], the main idea is to construct a graded presentation R′ of H where longer relations
have higher ranks and such that every van Kampen diagram over the presentation of H ′ has
the so called property A from [25]. In all diagrams over the graded presentation of H, cells
corresponding to the relations from R and derived relations are considered as 0-cells or cells
of rank 1/2, and cells corresponding to Burnside relations from the graded presentation are
considered as cells of ranks 1, 2,.... So in these van Kampen diagrams “big” Burnside cells
are surrounded by “invisible” 0-cells and “small” cells.

The main part of property A from [25] is the property that if a diagram over R′ contains
two Burnside cells Π1, Π2 connected by a rectangular contiguity subdiagram Γ of rank 0
where the sides contained in the contours of the two Burnside cells are “long enough” then
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these two cells cancel, that is the union of Γ, Π, Π′ can be replaced by a smaller subdiagram.
This is a “graded substitute” to the classic property of small cancellation diagrams (where
contiguity subdiagrams contain no cells).

Roughly speaking nontrivial contiguity subdiagrams of rank 0 turn out to be trapezia
of the form T (W, h) (after we clean them of Burnside 0-cells), so properties of contiguity
subdiagrams can be translated into properties of the machine S, and the inverse semigroup
described above. Three important properties of this inverse semigroup can be singled out:

• If an element W is in the domain of h2, then it is in the domain of hs for every integer
s. In other words, if a sequence of rules can be applied twice in a row, it can be applied
any number of times. That lemma is used in the geometric part of the proof when we
are cleaning contiguity subdiagrams of Burnside 0-cells.

• If a word W is stabilized by h, ghg−1 and g−1hg then it is stabilized by gshg−s for any
integer s. This fact is used when we consider long and narrow contiguity subdiagrams
with periodic top and bottom sides.

• Two words h1 and h2 in the alphabet S define the same partial transformation on the
intersection of their domains provided h1 and h2 are equal modulo Burnside relations.
Thus the work of the S-machine is “compatible” with Burnside relations.

As an intermediate step in studying the group H, we construct a graded presentation
of the Burnside factor of the subgroup of H ′ generated by R ∪ A. To avoid repeating the
same arguments twice, for H ′ and for the subgroup, we formulate certain key properties
(Z1), (Z2), (Z3) of a presentation of a group with a separation of generators into zero and
non-zero generators, so that there exists a graded presentation of the Burnside factor of the
group which satisfies property A.

In order to roughly explain these conditions, consider the following example. Let P =
FA×FB be the direct product of two free groups of rank m. Then the Burnside factor of P is
simply B(m, n)×B(m, n). Nevertheless the theory of [25] cannot be formally applied to P .
Indeed, there are arbitrarily thick rectangles corresponding to relations u−1v−1uv = 1 in the
Cayley graph of P so diagrams over P are not A-maps in the terminology of [25] (i.e. they do
not look like hyperbolic spaces). But one can obtain the Burnside factor of P in two steps.
First we factorize FA to obtain Q = B(m, n) × FB. After that we consider all edges labeled
by letters from A in the Cayley graph of Q as edges of length 0. As a result the Cayley
graph of Q becomes a hyperbolic space. This allows us to apply the theory of A-maps from
[25] to obtain the Burnside factor of Q. The real reason for the theory from [25] to work
in Q is that Q satisfies our conditions (Z1), (Z2), (Z3). But the class of groups satisfying
these conditions is much bigger and includes groups corresponding to S-machines considered
in this paper. In particular (Z3) holds in Q because all 0-letters centralize FB. This does
not happen in more complicated situations. But we associate with every cyclically reduced
non-0-element w a “personal” subgroup 0(w) consisting of 0-elements which is normalized
by w. Although in our study of Burnside factors of groups satisfying (Z1),(Z2), (Z3), we
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follow the general scheme of [25], we encounter new significant difficulties. One of the main
difficulties is that non-zero elements can be conjugates of zero elements.

The full proof of Theorem 1.1 will appear in [29].
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