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Actions of pointed Hopf algebras on quantum torus
V. A. Artamonov
Moscow State University
artamon@bk.ru

Let Oq the associative algebra with a unit element over a field k generated
by elements X±1

1 , . . . , X±1
r , Xr+1, . . . , Xn subject to defining relations XiX

−1
i =

X−1
i Xi = 1, 1 6 i 6 r and XiXj = qijXjXi, 1 6 i, j 6 n. Here qij are

element of k such that qii = qijqji = 1 for all i, j. The algebra Oq is an algebra
of quantum polynomials. It is a generic algebra of quantum polynomials if all
multiparameters qij with 1 6 i < j 6 n, are independent in the multiplicative
abelian group k∗ of the field k. The algebra Oq can be considered as a coordinate
algebra of product of a quantum torus and a quantum plane [BrG, M].

In non-commutative algebraic geometry an action of a “finite quantum group”
on a quantum space means an action of some finite dimensional Hopf algebra H
on Oq. In my talk I shall consider the case when H is a pointed Hopf algebra.
It is shown that there exists a class of standard cocommutative pointed finite
dimensional Hopf algebra acting on Oq. An action of H is a composition of
Hopf algebra homomorphism from H onto some standard algebra and an action
of the standard one on Oq. It follows that an action of H on Oq is reduced to
action of some automorphism group and some skew derivations of Oq. Moreover
the subalgebra of invariants of this action is left and right Noetherian and Oq

is finitely generated left and right module over the subalgebra of invariants.
In the case when the number n of variables is at least three was considered

in [A]. It is interesting to mention that in the case n = r = 2 a classification
of automorphism group of Oq is similar to a classification of two-dimensional
crystallographic groups.

[A] Artamonov V. A., Pointed Hopf algebras acting on quantum polynomi-
als, J. Algebra 259(2003), N 2, 323-352.

[BrG] Brown K. A., Goodearl K. R., Lecture on algebraic quantum groups.
Birkhäuser, Basel, Boston, 2002.

[M] Montgomery,S.: Hopf Algebras and Their Actions on Rings, Regional
Conf. Ser. Math. Amer. Math. Soc., Providence RI, 1993.

Relatively hyperbolic groups are C*-simple
Goulnara N. Arzhantseva
University of Geneva
Goulnara.Arjantseva@math.unige.ch

We characterize relatively hyperbolic groups whose reduced C∗-algebra is
simple as those, which have no non-trivial finite normal subgroups.
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On embeddings of free Burnside groups of odd exponent n ≥ 1003
Varujan Atabekian
Yerevan State University
avarujan@ysu.am

We proved the following theorem: for each odd number n ≥ 1003 each non
cyclic subgroup of the 2-generated free n-Burnside group B(2, n) contains a
subgroup isomorphic to the free n-Burnside group B(∞, n) of countable rank.
This theorem, which strengthens the earlier result obtained by the author for
n > 1080, extends the class of those free Burnside groups for which the hy-
pothesis of A. Yu. Olshanskii formulated in Kourovka Notebook (8.53 b) has a
positive answer.

Gradings by Groups on Classical Simple Algebras
Yuri Bahturin
Memorial University of Newfoundland and Moscow State University
yuri@math.mun.ca

If A is an algebra over a field F and G a group then a very general fact is
that the gradings of A by G are equivalent to the natural actions of a Hopf
algebra H=(FG)* dual to the group algebra FG. The structure of the coproduct
in H is not simple but in certain cases H is just the group algebra of the group
of characters of G, in some others H is a restricted enveloping algebra of a Lie
algebra of derivations of FG with values in F, etc. In our talk we would like to
discuss the methods arising and the results on the gradings of simple algebras
of various classes which have been obtained using these methods.

Global fixed points for actions on CAT(0) spaces
Angela Barnhill
The Ohio State University
abarnhill@math.ohio-state.edu

A group G has Farb’s property FAn if every action of G on every CAT(0)
n-complex has a global fixed point. This is a generalization of Serre’s property
FA with applications to representation theory and to the study of complex of
groups decompositions. We will consider many examples.
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Residually torsion-free-nilpotent groups
Gilbert Baumslag
City College of New York
gilbert.baumslag@gmail.com

I will talk about various aspects of residually torsion-free-nilpotent groups,
in particular various algorithmic problems.

Thick metric spaces, relative hyperbolicity, and quasi-isometric rigid-
ity.
Jason Behrstock
University of Utah
jason@math.utah.edu
Coauthors: Cornelia Druţu and Lee Mosher

In this talk we will introduce a new quasi-isometry invariant of metric spaces
which we call thick. We show that any thick metric space is not (strongly) rela-
tively hyperbolic with respect to any non-trivial collection of subsets. Further,
we show that the property of being (strongly) relatively hyperbolic with thick
peripheral subgroups is a quasi-isometry invariant. The class of thick groups
includes many important examples such as mapping class groups of all sur-
faces (except those few that are virtually free), the outer automorphism group
of the free group on at least 3 generators, SL(n,Z) with n > 2, and others.
We shall also discuss some ways in which thick groups behave rigidly under
quasi-isometries.

Rips construction and Kazhdan property (T)
Igor Belegradek
Georgia Tech
ib@math.gatech.edu
Coauthors: Denis Osin (CUNY)

We note that the small cancellation theory over hyperbolic groups yields an
attractive version of the Rips construction: for each non-elementary hyperbolic
group H and a finitely presented group Q there is a short exact sequence

1 → N → G→ Q→ 1

where N is a quotient of H, and G is hyperbolic. This also has a relatively hyper-
bolic version where H, G are relatively hyperbolic and Q is finitely generated.
Sample applications:
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1) Any finitely generated group embeds as a finite index subgroup in Out(N)
where N has property (T) (or more generally a quotient of any given non-
elementary relatively hyperbolic group). One can also arrange thatOut(Aut(N)) =
1.

2) There exists a large torsion-free hyperbolic group G and an element g in
G such that the group 〈G | gn〉 is not large for all odd n.

3) There is a torsion-free hyperbolic group that is representation rigid, but
not representation superrigid.

4) Property (T) is not recursively recognizable in the class of hyperbolic
groups.

A universal, minimal, non-solvable subgroup of PLo(I) and of R.
Thompson’s Group F
Collin Bleak
Binghamton University
collin@math.binghamton.edu

There has been research into the question of whether the group PLo(I)
(piecewise-linear, orientation preserving homeomorphisms of the unit interval
under the operation of composition) admits a universal minimal non-solvable
subgroup. We will outline an argument which demonstrates that the answer to
this is “Yes.” We give a description of this group W , and we note the following
two corollaries; first, R. Thompson’s group F also contains a copy of W as a
universal minimal non-solvable subgroup, and second, given any non-solvable
subgroup N of PLo(I) or F , and any solvable subgroup S of PLo(I) or F , we
have that S embeds in N .

Periodic points of self-maps of algebraic varieties and their applica-
tions to group theory.
Alexander Borisov
Penn State University
borisov@math.psu.edu
Coauthors: Mark Sapir (Vanderbilt)

Together with Mark Sapir, we proved that all mapping tori of free group
automorphisms are residually finite. The proof uses periodic points of self-maps
of algebraic varieties over finite fields. I will explain the main ideas of the proof
without going into the technical algebraic geometry details.
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A generalization of the prime geodesic theorem to counting conjugacy
classes of free subgroups.
Lewis Bowen
Indiana University
lpbowen@indiana.edu

The prime geodesic theorem gives an asymptotic formula (as x tends to
infinity) for the number of conjugacy classes of elements of pi1(M) of geometric
translation length at most x where M is a hyperbolic manifold. We generalize
this formula in the direction of counting conjugacy classes of finitely generated
free subgroups of pi1(M) with general geometric constraints. There are many
open questions.

Hurewicz Theorem for Nagata-Assouad dimension
Nikolay Brodskiy
University of Tennessee
brodskiy@math.utk.edu
Coauthors: Jerzy Dydak, Michael Levin, Atish Mitra

Given a function f : X → Y of metric spaces, its asymptotic dimension
asdim(f) is the supremum of asdim(A) such that A ⊂ Y and asdim(f(A)) = 0.
Our main result is

Theorem A: asdim(X) ≤ asdim(f) + asdim(Y ) for any coarse function
f : X → Y .

As an application we prove
Theorem B: asdim(G) ≤ asdim(K)+asdim(H) for any short exact sequence

1 → K → G→ H → 1 of countable groups.
Both Theorems A and B generalize results of Bell and Dranishnikov in which

f is Lipschitz and X is geodesic and G,K are finitely generated, respectively.
We provide analogs of A and B for linearly controlled asymptotic dimension and
Nagata-Assouad dimension.

The Dimension of the Torelli Group for Out(Fn)
Kai-Uwe Bux
University of Virginia
bux 2002@kubux.net
Coauthors: Mladen Bestvina and Dan Margalit

Abelianizing induces a natural homomorphism from Out(Fn) to GLn(Z).
This homomorphism is surjective. In analogy to the situation in mapping class
groups, we call its kernel the Torelli subgroup of Out(Fn), and we denote it by
Tn. We show:
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Theorem. For n ≥ 3, the following hold:

1. The Torelli subgroup Tn has an Eilenberg-Mac Lane complex of dimension
2n− 4.

2. Its integral homology in top dimension, H2n−4(Tn;Z), is not finitely
generated. In particular, Tn is not of type FP2n−4.

Our approach is purely geometric: we construct an Eilenberg-Mac Lane
space of dimension 2n − 3 as a quotient of the spine of Outer Space. Then,
we use combinatorial Morse theory to show that it is homotopy equivalent to
a space of dimension 2n− 4. Finally, we exhibit explicitly an infinite family of
independent homology classes.

We note that our methods also yield a geometric proof of the classical fact
(due to Magnus) that Tn is finitely generated.

We also note that a spectral sequence argument allows one to deduce similar
statements for the Torelli subgroup of Aut(Fn).

Toward Outer Space for Right Angled Artin Groups
Ruth Charney
Brandeis University
charney@brandeis.edu
Coauthors: Karen Vogtmann and John Crisp

Right-angled Artin groups are finitely generated groups whose only relations
are commutator relations between pairs of generators. This class of groups may
be thought of as interpolating between free groups (no generators commute)
and free abelian groups (all generators commute). Thus, automorphism groups
of right-angled Artin groups interpolate between Aut(Fn) and GL(n,Z). We
study the automorphism group of a right-angled Artin group A in the case where
the defining graph is connected and triangle-free. We establish some algebraic
properties of Aut(A) and construct a candidate “outer space” by considering
actions of A on 2-dimensional CAT(0) complexes.
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Strongly bounded groups
Yves de Cornulier
Penn State Univ.
cornulie@math.psu.edu

A group is strongly bounded if it has no isometric action on any metric space
with unbounded orbits. The notion has only emerged since a recent paper by G.
Bergman, although there are plenty of examples, including infinite symmetric
groups and infinite powers of finite simple groups, endowed with the discrete
topology.

Boundary of foliations
Maciej Czarnecki
Uniwersytet Lodzki, Wydzial Matematyki
maczar@math.uni.lodz.pl

I shall talk on foliations of Hadamard manifolds with a short 2nd fundamen-
tal form. Leaves of such foliations are Hadamard manifolds and we can embed
their ideal boundaries into the ideal boundary of the manifold. Some examples
and geometric properties will be provided.

Second order Dehn functions of Pride Groups
Peter John Davidson
University of Glasgow
p.davidson@maths.gla.ac.uk

A class of groups (known as Pride groups) given by presentations in which
each defining relator involves at most two types of generators was introduced
in [1]. I will talk about the generators of the second homotopy module of
such groups and from this obtain an upper bound for their second order Dehn
function.

[1] Stephen J. Pride. The (co)homology of groups given by presentations in
which each defining relator involves at most two types of generators. J. Austral.
Math. Soc. Ser. A, 52(2), 205-218, 1992
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Free actions of elementary abelian groups on tori.
Karel Dekimpe
K.U.Leuven Campus Kortrijk, Universitaire Campus, B-8500 Kortrijk, Belgium
Karel.Dekimpe@kuleuven-kortrijk.be
Coauthors: Penninckx Pieter (K.U.Leuven Campus Kortrijk, Universitaire Cam-
pus, B-8500 Kortrijk, Belgium)

The main result we prove is the following:
Theorem: Suppose that Zh

p (p prime) acts freely on an n-dimensional torus,
then h is less than or equal to n.
This generalizes a result due to Goncalves D.L. and Vieira J.P. who proved the
above result in case h is smaller than 4.
The proof boils down to finding an upper bound on the minimal number of
generators of Bieberbach group, with an elementary abelian holonomy group.
It turns out to be essential to make a difference between the cases p = 2 and
p > 2.

Multiplicative groups of Engel associative algebras
Galina Deryabina
Department of Computational Mathematics and Mathematical Physics, Bau-
man Moscow State Technical University, 5 Second Baumanskaya St., 105005,
Moscow, Russia
galina deryabina@podlipki.ru
Coauthors: Alexei Krasilnikov

Let R be an associative ring. Let [R] denote the associated Lie ring of R
(with [a, b] = ab − ba) and let U(R) denote the multiplicative group of R. It
is known that if [R] is nilpotent of class c then the group U(R) is nilpotent of
class at most c (Gupta and Levin, 1983) and if [R] is metabelian then U(R)
is metabelian (Krasilnikov, 1992, and independently Sharma and Srivastava,
1992). Our main result is as follows.
Theorem. Over each field of characteristic 2 there exists an associative algebra
R such that its associated Lie algebra [R] is 3-Engel but its multiplicative group
U(R) is not 3-Engel.
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Complexity and decidability results for some free inverse monoids
Volker Diekert
Universitt Stuttgart, FMI
diekert@fmi.uni-stuttgart.de
Coauthors: Markus Lohrey, Universitt Stuttgart, Nicole Ondrusch, Universitt
Stuttgart

Margolis and Meakin have shown that the word problem for free inverse
monoids modulo a finite idempotent presentation is decidable. Later another,
more direct proof was given by da Silva. In the lecture we present a proof for
this result using rewriting techniques over finite subsets of trees which leads to
optimal algorithms for solving the word problem in the uniform and non-uniform
setting.

Moreover, we show that the membership in rational subsets is decidable for
these monoids. This implies that the generalized word problem is decidable,
too. As matter of fact, our techniques can be extended to cope with virtually
free groups as starting point. (This is interesting, for example because virtually
free groups correspond exactly to the class of groups where the monadic second
order logic of the Cayley graphs is decidable).

The results are closely related to the journal version for the MFCS 2005
contribution of Lohrey and Ondrusch.

Embedding of groups into the product of binary trees
Alexander Dranishnikov
University of Florida
dranish@math.ufl.edu
Coauthors: Sergei Buyalo and Viktor Schroeder

Every hyperbolic group of asymptotic dimension n can be embedded quasi-
isometrically into the product of n binary trees.

Golod-Shafarevich groups with property (T) and Kac-Moody groups
Mikhail Ershov
Institute for Advanced Study
ershov@ias.edu

A finitely generated group is called a Golod-Shafarevich group if it has a
presentation < X|R > with the following property:

There exists a prime number p and a real number 0 < t0 < 1 such that
1−|X|t0 +

∑∞
i=1 rit

i
0 < 0 where ri is the number of defining relators which have

degree i with respect to the dimension p-series.
Golod-Shararevich groups are always infinite and moreover behave like free

groups in many ways. On the other hand, it is not clear if a Golod-Shafarevich
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group must have ’a lot of’ finite quotients. The following is a well-known ques-
tion of this type:

Is it true that Golod-Shafarevich groups never have property (tau)?
By a recent work of Lackenby, an affirmative answer to this question would

have implied Thurston’s virtual positive Betti number conjecture for arithmetic
hyperbolic 3-manifolds. In this talk I will show that the answer to the above
question is negative in general. Explicit examples of Golod-Shafarevich groups
with property (tau) (in fact, (T )) are given by lattices in certain Kac-Moody
groups over finite fields.

The Action of Thompson’s Group on a CAT(0) Boundary
Daniel Farley
Max Planck Institute for Mathematics
farley@mpim-bonn.mpg.de

One way to prove that Thompson’s group is non-amenable is to show that
it acts isometrically on a proper CAT(0) space without fixing any points at
infinity.

I will consider a natural CAT(0) cubical complex on which F acts and show
that it fixes an arc at infinity of Tits length π/2.

The talk will also include a description of the CAT(0) boundary for F in
terms of semigroup pictures.

Twisted Burnside-Frobenius theorem for discrete groups
Alexander Fel’shtyn
Boise State University
felshtyn@diamond.boisestate.edu
Coauthors: Evgenij Troitsky

It is proved for a wide class of groups including polycyclic and finitely gen-
erated polynomial growth groups that the Reidemeister number of an automor-
phism is equal to the number of finite-dimensional fixed points of induced map
on the unitary dual space, if one of these numbers is finite. This theorem is
a natural generalization to infinite discrete groups of the classical Burnside-
Frobenius theorem. On other hand it has important consequences in dynamics
and topology. We also present some counterexamples to this statement for in-
finite discrete groups with extreme properties (HNN-group, Osin group, Ivanov
group).

Paper reference: Preprint 46, Max-Planck-Institut fur Mathematik, 2005.
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Categorified Associahedra and alternate blueprints for a free group
element.
Stefan Forcey
Tennessee State University
sforcey@tnstate.edu

The boundary of the nth associahedron K(n) is topologically equivalent to
the (n−3)–sphere. The boundary of the nth composihedron CK(n) is topolog-
ically equivalent to S(n− 2). One way of describing the indexing of vertices of
the composihedra is by referring to equivalent binary lists of words, as opposed
to binary lists of generators as in the associahedra. Another way is to refer to
binary trees with weighted leaves, where the weights of the leaves sum to n.
This generalizes the indexing of the associahedra by binary trees with n leaves.
This last point of view allows us to count the vertices of the composihedra by
the binomial transform of the Catalan numbers. It also allows us to construct
a realization of CK(n) as a convex polytope, using methods recently developed
by Loday for the associahedra. The new polytopes can be seen as a version of
Stasheff’s associahedra where sets have been replaced by objects in a general
category.

When labeling vertices of the composihedra with bracketed lists of gener-
ators and words, we can view the nth polytope as representing an arbitrary
reduced group element in the free group. Each vertex describes a sequence of
concatenations for building that element from shorter ones. If the group is not
free then the group element will instead be represented by a complex of poly-
topes, with faces identified in which the same rewriting of the same words has
occurred between each vertex of those faces. The topology of such complexes is
shown for some small examples.

High dimensional filling invariants of groups
Max Forester
University of Oklahoma
forester@math.ou.edu
Coauthors: Noel Brady, Martin Bridson, Krishnan Shankar

I will discuss a new method for bounding high dimensional Dehn functions.
This is used to show that the spectrum of k-dimensional isoperimetric exponents
of groups contains all rational numbers greater than or equal to 1 + 1/k.
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The asymptotic dimension of a curve graph is finite
Koji Fujiwara
Tohoku University
fujiwara@math.tohoku.ac.jp
Coauthors: Greg Bell

The asymptotic dimension, asdim, of a metric space was defined by Gromov
as a quasi-isometric invariant. It was known that a delta-hyperbolic space with
bounded geometry has finite asdim. An example is a word-hyperbolic group.
We show that the curve graph of a compact surface has finite asdim. A curve
graph is delta-hyperbolic but does not have bounded geometry.

Hanoi Tower Groups and Schreier Graphs
Rostislav Grigorchuk
Texas A& M Univeristy
grigorch@math.tamu.edu
Coauthors: Zoran Sunik

We will associate with a famous puzzle known as Hanoi Tower Game on
k-pegs a group which plays a role of the renorm group for this game. Some
properties of Hanoi groups will be discussed including generation by a finite
automaton and branching. A spectral properties of the Schreier graph in case
of three pegs will be described as well.

Metric and growth properties of R.Thompson’s group F
Victor Guba
Vologda State University
guba@uni-vologda.ac.ru

We will give a review of results that concern metric and growth properties
of R.Thompson’s group F and its generalizations. We are going to discuss
algorithms to find the length of a given element, to review recent progress in
finding the growth functions of the groups and their positive monoids. Also we
want to talk about the Hilbert space compression of F and mention some recent
results that concern the amenability question, which remains open.
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Coarse decompositions for boundaries of cubulated CAT(0) spaces
Dan Guralnik
Vanderbilt University
dan.guralnik@vanderbilt.edu

In this talk we shall introduce a combinatorial notion of boundary <H for a
cubing C(H) arising as the dual of a discrete ω-dimensional poc-set H. <H has
a natural median algebra structure, as well as a natural ordering whose intervals
coincide with its intervals as a median algebra. Endowed with this structure,
we call <H the Roller boundary of the cubing C(H).

When H happens to be a (discrete) G-invariant system of halfspaces in a
CAT(0) space X endowed with a geometric action by a group G, we show
how one can use <H for producing a topologically meaningful decomposi-
tion/stratification of the CAT(0) boundary ∂X of X, having much to do with
both the cone and Tits topologies on ∂X.

The sets into which ∂X is decomposed are defined as the fibers of a (dis-
continuous) map ρ of ∂X into <H; this map is actually well-defined for any
reasonably discrete halfspace system in X, but has more interesting properties
in the presence of a G-action.

Finally, we provide a criterion (in terms of the image of ρ) for G to act
co-compactly on the cubing dual to H. This criterion links the co-compactness
of the action of G on C(H) with the quality of the approximation of boundary
points by the halfspaces of H.

Our constructions and results provide a setting in which several issues of
interest to geometric group theory are tied together: the end structure of semi-
splittable groups, CAT(0) boundary topology, co-compact cubulations. In view
of the results by Niblo-Reeves, Williams and Caprace, Coxeter groups supply a
particularly good example of a setting to which this machinery can be applied in
hopes of understanding their CAT(0) boundaries and the connections between
boundary topology and, say, visual splittings of the corresponding group.

Nagata-Assouad dimension via Lipschitz extensions
Jose Higes
Universidad Complutense de Madrid, Spain.
josemhiges@yahoo.es
Coauthors: Nikolay Brodskiy (University of Tennessee) Jerzy Dydak (University
of Tennessee) Atish Mitra (University of Tennessee)

In the first part we show how to relate several dimension theories (asymptotic
dimension with Higson property, asymptotic dimension of Gromov, and capacity
dimension of Buyalo) to Nagata-Assouad dimension. This is done by applying
two functors on the Lipschitz category of metric spaces: microscopic and macro-
scopic. In the second part we identify (among spaces of finite Nagata-Assouad
dimension) spaces of Nagata-Assouad dimension at most n as those for which
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the n-sphere Sn is a Lipschitz extensor. Large scale and small scale analogs of
that result are given.

On balanced presentations of the trivial group
Sergei Ivanov
University of Illinois
ivanov@uiuc.edu

To solve problems of Magnus and Stallings stated in the 1960s, we construct
a balanced presentation of the trivial group such that no defining relator of this
presentation could be replaced by a free generator and the group, given by the
altered presentation, would still be trivial. Some other related problems and
results on balanced presentations of the trivial group will be discussed.

Certain quotients of HNN-extensions which are HNN-extensions.
Arye Juhasz
Technion,Haifa, Israel
arju@tx.technion.ac.il

Let G be a group with an HNN-presentation P = 〈H, t ‖ t−1Ut = V 〉. Let
R be a cyclically reduced word in G and let N be its normal closure in G. We
give a sufficient condition on R in order that G/N has an HNN presentation
Q = 〈K, t | t−1Lt = M〉,where H < K, U < L, V < M . We apply this to the
case when G is a one-relator group and get a family of two relator groups with
HNN-presentation.Under certain conditions this leads to a solution of the word
problem and related problems.

Generalized triangle inequalities and their applications
Michael Kapovich
University of California, Davis
kapovich@math.ucdavis.edu

I will explain how to generalize the usual triangle inequalities and how to
apply them to basic problems in linear algebra and theory of algebraic groups.
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Orthogonal systems in graphs and free partially commutative groups
Ilya Kazachkov
McGill University
kazachkov@math.mcgill.ca
Coauthors: Andrew Duncan, Vladimir Remeslennikov

Let Γ be a finite graph and GΓ be the corresponding free partially commu-
tative group. We construct orthogonality theory for graphs and free partially
commutative groups and then use it to construct a nice theory of parabolic and
quasiparabolic subgroups.

As applications we obtain a description of the centralizer of an arbitrary
subset of GΓ and compute the height of the lattice of centralizers of GΓ.

Isomorphism and other algorithmic problems for fully residually free
groups
Olga Kharlampovich
McGill University
olga@math.mcgill.ca

I will talk about the effectiveness of the JSJ decomposition for finitely gen-
erated fully residually free groups (joint result with A. Myasnikov), about the
decidability of the isomorphism problem (joint result with I. Bumagin and A.
Myasnikov) and about other algorithmic problems (joint results with D. Serbin)

One-relator relative presentations
Anton Klyachko
Moscow State University
klyachko@daniil.math.msu.su

Adding two generators and one arbitrary relator to a nontrivial torsion-free
group, we always obtain an SQ-universal group.

I shall discuss this and other properties of one-relator relative presentations.

15



Bigroups and a Limit Variety of Groups
Alexei Krasilnikov
Department of Mathematics, University of Brasilia, Brasilia-DF, 70904-970,
Brazil
alexei@mat.unb.br

It follows easily from Zorn’s lemma that if a variety of groups V is not finitely
based then it contains a subvariety V∗ such that all proper subvarieties of V∗

are finitely based, but V∗ itself is not. Any variety with these properties is
called a limit or a just non-finitely based variety. In this sense limit varieties of
groups form a “border” between those which are finitely based and those which
are not. It is known that infinitely many such varieties exist (Newman, 1971)
although no explicit examples are known.

In 2001 the first example of a limit variety V of bigroups was constructed by
C.K.Gupta and the speaker. A bigroup is a pair (H,π) consisting of a group H
and an idempotent endomorphism (projection) π of H. One can consider π as
a unary operation on H so a bigroup is a universal algebra.

Let U be the variety of groups defined by

U = var {H | H = (H,π) ∈ V for some projection π : H → H}.

In other words, the variety of groups U is generated by all the bigroups H ∈ V
if we consider them as groups and “forget” about the additional operation π on
H. C.K.Gupta and the speaker conjectured that U is a limit variety of groups,
that is, (i) U is a non-finitely based variety and (ii) each proper subvariety of
U is finitely based. Our main result confirms the item (i) of the conjecture.
Theorem. The variety of groups U described above is non-finitely based.

On some infinite demensional linear groups
Leonid Kurdachenko
Dnipropetrovsk University, Ukraine
lkurdachenko@hotmail.com
Coauthors: Igor Subbotin, National University, USA

The theory of finite dimensional linear groups is one of the best developed in
Algebra. Because of the rich interplay between geometrical and algebraic ideas
associated with finite dimensional linear groups they have played an important
role in Group Theory. If the dimension is infinite, a situation is totally different.
The study of the subgroups of infinite dimensional linear groups in this case
is impossible without some essential additional restrictions. The series of the
brilliant constructions developed by A. Yu. Olshanskii and his students is a
very valuable argument supported this statement. The circumstances here are
similar to those, which appeared in the early period of the development of
Infinite Group Theory. One of the fruitful approaches there consisted from the
application of finiteness conditions. The theory of finitary linear groups has
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been successfully developed on this way. The subgroup G of GL(F,A) (where
F is a field, A is a vector space over F ) is called finitary if for each element g
from G the (subspace) centralizer of g in A has finite codimension in A. We
consider another finiteness condition sporadically mentioned in some works but
did not systematically studied yet. A subgroup G of GL(F,A) is said to be the
linear group with finite orbits if the set aG = {ag : g ∈ G} is finite for every
element a of A. Similarly, we can consider not only G-orbits of the elements,
but G-orbits of the subspaces as well. A subgroup G of GL(F,A) is said to be
the linear group with finite orbits of subspaces if the set {Bg : g ∈ G} is finite
for every subspace B of A. In this case the index of the normalizer of B in G
is finite for every subspace B of A. In particular, if the dimension of A in F
is finite, then a linear group with finite orbits of subspaces is almost diagonal,
thus it is abelian-by-finite. As the first step here we consider some classes of
soluble linear groups with finite bounded orbits of elements (respectively finite
bounded orbits of subspaces).

Homology identities of nilpotent groups have the finite basis prop-
erty.
Yuri Kuzmin
Department of applied mathematics, Moscow State University of Transport Com-
munications
yukuzmin@mail.ru
Coauthors: -

We define a notion of homological identity and discuss the theorem given in
the title.

On descriptions of canonical left cells in extended affine Weyl groups
Namhee Kwon
Louisiana state University
knh@math.lsu.edu
Coauthors: N/A

Let G be the general linear group defined over the complex numbers. In this
paper we study descriptions of canonical left cells containing a unique element
of minimal length in the double cosets of the Weyl group of G parametrized by
the dominant weight of G
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Growth of self-similar groups
Yuriy Leonov
Odessa National Academy of Telecommunications
leonov yu@yahoo.com

Let Td is d-regular rooted tree and G ≤ AutTd. Let u be a vertex of Td and
g ∈ G. Let us denote by ψu(g) the restriction of the action of the element g on
the tree Td to the subtree T (u) with root u. Let us define ψu(G) = {ψu(g); g ∈
G}. A group G is called self-similar if for any vertex u ψu(G) = G after the
identification of the tree Td with a subtree T (u). We denote T

(k)
d = {u ∈

Td ; dist(u) = k}, where dist(u) is a distance between u and the root vertex of
the tree Td. We say that a finitely generated self-similar group G is ordinary if
there is system of generators S and a natural k such that

lS(g) ≤
∑

u∈T
(k)
d

lS(ψu(g)),

where l(∗) is the length of an element ∗ with respect to the set of generators
S. For an ordinary group G and for a natural number k we consider the set
without contracting:

FG,S,k(n) = {g ∈ G | lS(g) =
∑

u∈T
(k)
d

lS(ψu(g)) ≤ n}.

Denote fG,S,k(n) = |FG,S,k(n)|. A function γG,S(n) = |{g; lS(g) ≤ n}| is called
the growth function of the group G for the set of generators S. A non decreasing
function t(n) has a subexponential growth if

lim
n→∞

n
√
t(n) = 1.

Theorem. Let
lim

n→∞
n

√
fG,S,k(n) = 1

for some natural k, then

lim
n→∞

n

√
γG,S(n) = 1.

This result allows us to prove that well-known p-groups of Gupta-Sidki and
Gupta’s group have intermediate growth.
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Biautomaticity and Nonpositively Curved Piecewise Euclidean Com-
plexes
Rena Levitt
UCSB
rmhull@math.ucsb.edu

I will discuss a condition implying that a locally CAT(0) piecewise Euclidean
2-complex has biautomatic fundamental group. This result relies on a theorem
relating paths in the 1-skeleton of the universal cover, and includes results by
Gersten-Short and Niblo-Reeves (in dimension 2) as corollaries.

SO(n)-invariants of several matrices and quivers
Artem Lopatin
Institute of Mathematics, Omsk
artem lopatin@yahoo.com

Suppose that a group G < GL(n) acts on the direct sum M(n)d = M(n)⊕
· · · ⊕M(n) of n× n matrices by the diagonal conjugation. This action induces
the action of G on the coordinate ring R = K[M(n)d] in a natural way. Denote
by RG the algebra of invariants. We proved that over an infinite field of the
characteristic different from 2 the algebra RSO(n) is generated by the pfaffians
and the coefficients of the characteristic polynomial of products of the generic
matrices and the transpose generic matrices. Similar result we also obtained for
quivers. So the problem of describing generators of the algebra of invariants of
a quiver is solved for a product of any classical groups, i.e., for GL(n), O(n),
Sp(n), SL(n), SO(n), where the characteristic of the base field is different from
2 wherever we talk about O(n) and SO(n).

Linear representations of the automorphism group of a free group
Alex Lubotzky
Hebrew University of Jerusalem
alexlub@math.huji.ac.il

Let F be a free group on n > 2 generators. The group A = Aut(F ) is a much
studied group but very little seems to be known on its (finite dimensional) linear
representations. We present a very rich collection of new representations which
show that the representation theory of Aut(F ) is much richer than assumed
before. By studying the action of suitable finite index subgroups of A of the
relation module of carefully chosen finite groups we show that many interesting
arithmetic groups appear as images of representations of A. Joint work with
Fritz Grunewald.
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Finite groups and hyperbolic manifolds
Alex Lubotzky
Hebrew University of Jerusalem
alexlub@math.huji.ac.il

The isometry group of a closed hyperbolic n-manifold is finite. We prove
that for every n > 1 and every finite group G there is an n-dimensional closed
hyperbolic manifold whose isometry group is G. This resolves a long standing
problem whose low dimensional cases n=2 and n=3 were proved by Greenberg
(’74) and Kojima (’88) resp. The proof is nonconstructive; it uses a ’probabilistic
method’, i.e. counting results from the theory of ’subgroup growth’. The talk
won’t assume any prior knowledge on the subject. Based on joint work with M.
Belolipetsky (Inven. Math. Dec. 2005)

Olshanskii method and positive laws in groups
Olga Macedonska
Silesian University of Technology, Poland
Olga.Macedonska@polsl.pl

There are many problems solved by means of Olshanskii geometric method.
Some of these problems, concerning positive laws in groups, will be presented.
The open problems will be formulated.

Path-components of Morse mappings spaces of surfaces
Sergey Maksymenko
Kiev, Institute of Mathematics, NAS of Ukraine
maks@imath.kiev.ua

Let M be a connected compact surface, P be either R1 or S1, and F (M,P )
be the space of Morse mappings M → P with compact-open topology. The
classification of path-components of F (M,P ) was independently obtained by
S. V. Matveev and V. V. Sharko for the case P = R1, and by the author for
orientable surfaces and P = S1. We present an independent proof of this clas-
sification based on the structure of the mapping class group of a surface. The
main observation is that “elementary” diffeomorphisms like Dehn twists and
Y -diffeomorphisms that generate mapping class group preserves some Morse
function. Our approach has a close relationship to the representation of the
mapping class group obtained by A.Hatcher and W.Thurston via Morse func-
tions.
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Kazhadn constant for automorphisms of nilpotent groups
Keivan Mallahi-Karai
Yale University
keivan@yale.edu

Let G = F (k, c) be the free nilpotent group of class c on k generators.
Luboztky and Pak have shown that the group of the automorphisms of G which
is generated by the set S consisting of Nielsen transformations has the Kazhdan
property T. In this talk we propose a method for computing a lower bound for
the Kazhdan constants with respect to S.

Combinatorial horoballs, quasi-geodesic bicombings, and relative hy-
perbolicity
Jason Manning
Caltech
manning@caltech.edu
Coauthors: Daniel Groves

Relatively hyperbolic groups were first defined by Gromov. Since then, many
equivalent characterizations have been given. I will discuss a new characteriza-
tion of relatively hyperbolic groups which is close to Gromov’s original definition,
but made concrete in such a way that combinatorial tools originally developed
for hyperbolic groups can be adapted to relatively hyperbolic groups. If time
permits, applications to “Dehn filling” of relatively hyperbolic groups will also
be discussed. This is joint work with Daniel Groves.

Algorithmic problems in amalgams of finite groups
Luda Markus-Epstein
Technion, Haifa, Israel
epstin@macs.biu.ac.il

It turns out that finitely generated subgroups of amalgams of finite groups
can be effectively represented by finite cannonical graphs. These graphs posses
all the essensial information about the subgroups, which enables one to use
them in order to solve various algorithmic problems: the membership problem,
the finite index problem, the conjugacy of subgroups, the freeness problem, the
separability problem, the reading of Kurosh decomposition (in the case of free
products) and others.

We’ll present some problems of the above list and their solutions.
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From idempotent-generated semigroups to 2-complexes
John Meakin
University of Nebraska
jmeakin@math.unl.edu

In 1973 Nambooripad introduced the notion of a biordered set as an ax-
iomatic characterization of the set of idempotents of a semigroup relative to
certain basic products. By associating a 2-complex with a biorderd set in a
natural way, we are able to prove that every finitely presented group arises as
a maximal subgroup of the free idempotent-generated semigroup on a finite
biordered set, thus disproving a conjecture of Easdown about the structure of
these groups. It follows that the word problem for the free idempotent-generated
semigroup on a finite biordered set is undecidable.

On elementary theories of free groups
Alexei Miasnikov
McGill University
amiasnikov@gmail.com
Coauthors: O.Kharlampovich

In this talk I am going to discuss some classes of groups and several new
techniques that play a key part in recent solution of the Tarski’s problems on
elementary theories of free groups.

Decompositions of Coxeter groups over minimal splittings
Michael Mihalik
Vanderbilt University
michael.l.mihalik@vanderbilt.edu
Coauthors: Steven Tschantz

The first “accessibility” questions for finitely generated groups arose from
Stallings’ splitting theorem for infinite ended groups. Later Dunwoody proved
that finitely presented groups are indeed accessible with respect to splittings
over finite groups. Bestvina and Feighn followed Dunwoody’s result with an
accessibility result for finitely presented groups when splittings subgroups are
“small”. The notion of JSJ-decompositions of finitely presented groups arose
from geometrical/algebraic decompositions of closed 3-manifolds over certain
embedded separating surfaces. For 1-ended finitely presented groups Rips and
Sela showed the existence of (unique) JSJ decompositions over 2-ended split-
tings. Dunwoody and Sageev introduced the notion of minimal virtually abelian
splitting subgroups into the JSJ arena.

We introduce a notion of “strong accessibility” over minimal splittings of
groups that naturally generalizes the original accessibility results over finite and
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small splitting subgroups. We discuss two results. The first is a strong accessi-
bility result for finitely generated Coxeter groups over minimal splittings. The
second is a “best possible” JSJ-result for splitting finitely generated Coxeter
groups over virtually abelian splitting subgroups. Splittings over minimal vir-
tually abelian subgroups plays an important role in the JSJ result. Both results
are “visual” in the sense that the critical decompositions involved can be “seen”
geometrically in the presentation diagram of a Coxeter group.

Continuum varieties of groups and verbal embeddings of groups
Vahagn H. Mikaelian
Yerevan State University
mikaelian@member.ams.org

In this talk we would like to show a few applications of the argument devel-
oped by Ol’shanskii for construction of continuum sets of varieties of groups to
the concept of verbal embeddings of groups. The embedding ϕ of the group H
into the group G is verbal for the given word set V ⊆ F∞ if the isomorphic copy
ϕ(H) lies in the verbal subgroup V (G). Using appropriately chosen groups H
with appropriate word sets V we build continuum sets of soluble 3-generator
non-Hopfian groups which are non-isomorphic and, moreover, generate pairwise
distinct varieties of groups.

On the engulfing property for word hyperbolic groups
Ashot Minasyan
University of Geneva
aminasyan@gmail.com

A group G engulfs its subgroup H, if there exists a proper finite index
subgroup K ≤ G such that H ≤ K. We will say that a hyperbolic group has
the Engulfing Property if it engulfs every proper quasiconvex subgroup.

Let G be a group satisfying the Engulfing Property. We prove that each
quasiconvex subgroup H ≤ G has a finite index in its profinite closure H∗ in G.
If, in addition, G is residually finite (or torsion-free) we show that H∗ = H. In
particular, this generalizes results of D. Long and G. Niblo-B. Williams.
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Relative hyperbolicity and bounded cohomology
Igor Mineyev
UIUC
mineyev@math.uiuc.edu
Coauthors: A. Yaman

1. Several characterizations of relatively hyperbolic groups will be given in
terms of relative bounded cohomology.
2. It is certainly known to the participants of this conference that proving
anything about relatively hyperbolic groups requires a lot of time and space. I
will attempt presenting a language that streamlines statements about relatively
hyperbolic groups. We will discuss angles, snake metrics, fine triangles, tuples,
and ideal complexes.

Dimension zero at all scales
Atish Mitra
University Of Tennessee - Knoxville
ajmitra@math.utk.edu
Coauthors: N. Brodskiy, J. Dydak, J. Highes

We consider the notion of dimension in two categories: the category of sep-
arable metric spaces and Lipschitz maps, and the category of separable metric
spaces and uniform maps. A uniform treatment is given to the large scale dimen-
sion and the small scale dimension. We show that in both categories a space has
dimension zero if and only if it is equivalent to an ultrametric space. There is
a universal zero-dimensional space in both categories. Spaces of dimension zero
are characterized by means of extensions of maps to the unit 0-sphere and by
means of retractions to subspaces. Any countable group of asymptotic dimen-
sion zero is coarsely equivalent to a direct sum of cyclic groups. We construct
uncountably many examples of coarsely inequivalent ultrametric spaces.

Splitting and CAT(0) superrigidity for lattices in products
Nicolas Monod
University of Geneva
nicolas.monod@unige.ch

CAT(0) spaces generalize notably symmetric spaces and Bruhat-Tits build-
ings. Therefore, one can reformulate Margulis’ superrigidity theorem in terms of
actions on CAT(0) spaces. We propose such a generalization for irreducible lat-
tices in products. The proof uses a general Lawson-Yau/Gromoll-Wolf splitting
theorem.
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Infinite simple groups of large commutator width
Alexey Muranov
Vanderbilt University Deptartment of Mathematics 1326 Stevenson Center
alexey.muranov@vanderbilt.edu

In 1977, I. M. Isaacs asked if there exists a non-abelian simple group con-
taining an element which is not a commutator. In terms of commutator width,
the question is whether there exist simple groups of commutator width greater
than 1.

We show how to construct simple groups of arbitrarily large commutator
width, presenting such groups by generators and defining relations.

Simply connected subsets of buildings
Bernhard Mühlherr
Universit Libre de Bruxelles
bmuhlher@ulb.ac.be
Coauthors: Alice Devillers (Brussels)

Buildings have been introduced by Tits in order to study groups of Lie-type.
There are essentially two points of view. One can see buildings as simplicial
complexes or as chamber systems. In my talk I will choose the second one.
Chamber systems arise naturally as a sort of generalized Cayley graphs and it is
therefore not surprising, that they are quite useful for investigating presentations
of groups.

In my talk I will present a criterion for the simple connectivity of a subset of
a simply connected chamber system which is based on filtrations. I will present
two applications to group theory, one of which is turns out to be very useful in
the classification of the finite simple groups

A minimal Cantor set in the space of 3-generated groups
Volodymyr Nekrashevych
Texas A& M University
nekrash@math.tamu.edu

I will describe a family of just-infinite branch 3-generated groups parame-
trized by infinite binary sequences, which originates from a problem in holo-
morphic dynamics. Two groups in this family are isomorphic if and only if the
corresponding sequences are cofinal. No two groups of the family can be dis-
tinguished by finite sets of relations. Other interesting properties of the groups
will be discussed.
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Obstructions to splitting
Graham Niblo
University of Southampton
g.a.niblo@soton.ac.uk
Coauthors: Peter Scott, Michah Sageev and Gadde Swarup

Stallings’ theorem asserts that a group G splits over a finite subgroup as a
non-trivial amalgamated free product or HNN extension if and only if the pair
(G, {e}) has more than one end. We examine obstructions to splitting a finitely
generated group over an arbitrary subgroup or class of subgroups using a recent
adaptation of Sageev’s cube complex associated to a group pair (G,H) with
more than one end. This yields some splitting theorems which generalise results
from low dimensional topology to the class of all finitely generated groups.

Van Kampen diagrams, machines, and asymptotic behavior of groups
Alexander Olshanskii
Vanderbilt and also Moscow State
alexander.olshanskiy@vanderbilt.edu
Coauthors: M.V.Sapir

Mostly I will speak on the results obtained jointly with M.V.Sapir after I
moved to the Vanderbilt in 1999.

Consider a finite presentation of a group G in terms of generators and rela-
tors: < A,R >. Then for every word w in the group alphabet A, vanishing in
G, there is a planar van Kampen diagram responsible for some deduction of the
equality w = 1 from the defining relations r = 1 where r ∈ R. The Dehn func-
tion d(n) gives the upper bound of areas of (minimal) diagrams whose perimeters
≤ n. Up to a natural equivalence, it does not depend on the choice of the finite
presentation for G. The asymptotic behavior of f(n) is an important invari-
ant of a finitely presented group G, connected to geometric and algorithmic
properties of G.

It is not difficult to prove that every Dehn function is a time function of
a Turing machine, but, unfortunately, the converse claim is false, and to in-
vestigate Dehn functions one is to work hard and discover new properties of
diagrams and new types of them. Our method presents answers to a number
of long-standing problems in Group Theory,in particular, on the complexity of
computations in groups, on the algorithmic conjugacy problem, and on a prob-
lem about amenability of finitely presented groups. Our recent papers present
examples of groups with strange behavior of their Dehn functions. These results
are also applicable to the theory of asymptotic cones of groups.
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Embedding theorems for countable groups and relative hyperbolicity
Denis Osin
The City College of the City University of New York
denis.osin@gmail.com

I will give a brief and elementary survey of the small cancellation theory over
relatively hyperbolic groups and discuss some applications. In particular, we
will establish a uniform approach to proving embedding theorems for countable
groups. Our method allows to obtain many new results as well as to reprove
some well-known theorems originally proved by Alexander Olshanskii and his
students.

Cut points and splittings of CAT(0) groups
Panos Papasoglu
University of Athens
panos@math.uoa.gr
Coauthors: Eric Swenson

We show how to associate to a continuum an R-tree which encodes all pairs
of points that separate the continuum. We apply this in the case of CAT(0)
groups and we show that if a pair of points separates the boundary of a CAT(0)
group then the group splits over a 2-ended group. We discuss how can one see
the JSJ decomposition of a CAT(0) group from its boundary.

Finiteness properties for the kernel of the pure motion group of n
unlinked loops
Alexandra Pettet
University of Chicago
alexandra@math.uchicago.edu

The pure symmetric automorphism group of a free group equals the pure
motion group of n unlinked loops in R3 and contains the pure braid group
as a subgroup. The homomorphism between these loop groups induced by
forgetting a loop extends the homomorphism between pure braid groups induced
by forgetting a puncture. We study the homology of the kernel of the loop
homomorphism via its action on a certain subcomplex of Autre Space.
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Some Tarskiis-type problems and logical invariants of algebras
Boris Plotkin
Hebrew University
plotkin@macs.biu.ac.il

Let Θ be a variety of algebras and G be and algebra from Θ. Denote by
LKΘ(G) the category of elementary sets, i.e., the sets defined by First Order
formulas. This category is a logical invariant of the algebra G. We are interested
in the situation when the categories LKΘ(G1) and LKΘ(G2) are isomorphic.
We will define the notion of strong elementary equivalence of algebras. It can
be seen that if the algebras G1 and G2 are strongly elementary equivalent then
they are elementary equivalent. But the converse statement is not true. Besides,
strong elementary equivalence implies geometric equivalence of algebras and an
isomorphism of the corresponding categories.

Among the numerous arising problems we will distinguish the following
Tarskiis-type problem:

Let Fn and Fm be two noncommutative free groups with n and m generators,
respectively. Now it is known that they are elementary equivalent. Is it true
that they are strongly elementary equivalent?

This problem is associated with the following question: is it true that every
free group is logically noetherian? In other words this is a question about a
generalization of Gubas theorem for free groups.

All questions above relies on a special approach to algebraic logic.

How to define the Burnside-type problems for solvability property of
groups and Lie algebras
Eugene Plotkin
Bar Ilan University
plotkin@macs.biu.ac.il
Coauthors: F. Grunewald, B. Kunyavskii, A. Shalev

In the talk we discuss the ways for posting Burnside-type problems related
to solvability property. The classical Engel-Zorn-Baer results connect Engel
and nilpotency properties of groups and Lie algebras. We describe the obtained
counterparts of the Engel-Zorn-Baer results in the solvable case. These results
constitute a ground for the corresponding Burnside-type problems.
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Matching Theorems for Systems of a Finitely Generated Coxeter
Group
John Ratcliffe
Vanderbilt University
j.g.ratcliffe@vanderbilt.edu
Coauthors: Michael Mihalik and Steven Tschantz

We prove a series of matching theorems for two sets of Coxeter generators
of a finitely generated Coxeter group that identify common features of the two
sets of generators. As an application, we describe an algorithm for finding a set
of Coxeter generators of maximum rank for a finitely generated Coxeter group.

We prove that any two Coxeter systems of maximum rank for a finitely
generated Coxeter group have the same number of visual subgroups of each
complete system isomorphism type; in other words, the presentation diagrams
of two Coxeter systems of maximum rank for a finitely generated Coxeter group
have the same number of complete subdiagrams of each isomorphism type.

Pro-p groups with non-isomorphic discrete and continuous cohomol-
ogy groups
Vladimir Remeslennikov
Omsk Branch of Institute of Mathematics, Russian Academy of Science
remesl@iitam.omsk.net.ru
Coauthors: Gustavo Fernandez-Alcober, Ilya Kazachkov

We construct examples of finitely generated pro-p groups with non-isomorphic
discrete and continuous cohomology groups.

Geometric notions of space complexity for the word problem
Tim Riley
Cornell
tim.riley@math.cornell.edu
Coauthors: Martin Bridson

A word w represents the identity element in a finitely presented group if and
only if it can be reduced to the empty word by applying relations and inserting or
deleting inverse pairs of letters. The minimal length FL(n) such that every word
w of length at most n that represents the identity can be reduced to the empty
word whilst encountering words no longer than FL(n) en route, is a (naive)
measure of the space complexity of the word problem. This function is called
filling length and has a geometric interpretation in terms of null-homotopies of
loops; its qualitative behaviour gives a quasi-isometry invariant. I will show
that relaxing the definition in natural ways (such as allowing conjugation when
reducing) can radically change the invariant.
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Free product decompositions in images of certain free products of
groups
Nikolay Romanovskiy
Institute of Mathematics, Novosibirsk, Russia
rmnvski@math.nsc.ru
Coauthors: John S. Wilson (University of Oxford)

In 1978 the speaker proved the following result:
Let G be a group which has a presentation with n generators x1, . . . , xn and

m relators, where m < n, and let S = {x1, . . . , xn}. Then some subset of n−m
elements of S freely generates a free group.

The history of this result dates back to 1930, when Magnus published his
Freiheitssatz, which is essentially the case of our statement in which m = 1.
In 2004 J.S.Wilson generalized above-mentioned result by proving a similar
statement in which S is any generating set for G. The proof was indirect,
relying on another result of the speaker.

Here we give a direct proof of a considerably more general result. Roughly
speaking, the improvement consists of the replacement of the elements xi by
subgroups, of the members of S by suitably small subgroups, and of the hy-
pothesis that S generates G by a weaker hypothesis.

On rigidity and the isomorphism problem for four strand tree braid
groups
Lucas Sabalka
University of Illinois at Urbana-Champaign
sabalka@math.uiuc.edu

Given a tree braid group BnT on n = 4 strands, we are able to reconstruct
the tree T . Thus tree braid groups B4T and trees T (up to homeomorphism)
are in bijective correspondence. That such a bijection exists is not true for
higher dimensional spaces, and is an artifact of the 1-dimensionality of trees.
We use this bijection to solve a version of the isomorphism problem for tree braid
groups with n = 4 strands. We also make some comments on the possibility of
generalizing this solution to tree braid groups with more strands.
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Groups acting on tree-graded spaces
Mark Sapir
Vanderbilt University
m.sapir@vanderbilt.edu
Coauthors: Cornelia Druţu

We develop a theory of groups acting on tree-graded spaces generalizing
the Rips-Bestvina-Feighn-Sela theory of groups acting on R-trees. Tree-graded
spaces appear as asymptotic cones of a wide class of groups including map-
ping class groups, fundamental groups of graph manifolds, geometrically finite
Kleinian groups and relatively hyperbolic groups in general. Our results allow
us to describe relatively hyperbolic groups G with infinite Out(G) (generaliz-
ing results of Rips-Sela’s and others), and establish results about splittings of
groups with infinitely many homomorphisms into a relatively hyperbolic groups.

Random Quotients of the Modular Group are Rigid
Paul E. Schupp
University of Illinois
schupp@math.uiuc.edu
Coauthors: Ilya Kapovich

We prove that quotients of the modular group, by any finite number of
additional relators, generically satisfy a very strong Mostow-type rigidity. The
associated geometric structure of such a quotient is its Cayley graph on standard
generators, a and b, of the modular group with the word metric. Generically,
two quotients are isomorphic if and only if their associated Cayley graphs are
isometric. Indeed, one can at most interchange the edge label b and b( − 1).

As a consequence, although the isomorphism problem remains unsolvable for
quotients of the modular group, it generic-case complexity is strongly polyno-
mial time. Random quotients are “essentially incompressible”. This means that
the shortest possible finite presentation of such quotients are uniformly “almost”
as long as the given presentation. Also, one can calculate the exact asymptotics
as n goes to infinity of the number of isomorphism classes of quotients with m
relators all of length n.
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Groups with regular free length functions in Zn

Denis Serbin
McGill University
serbin@math.mcgill.ca
Coauthors: Olga Kharlampovich, Alexei Myasnikov, Vladimir Remeslennikov

Finding description of finitely generated groups acting freely on Λ-trees, or,
equivalently groups having free length functions in Λ (where Λ is an ordered
abelian group) is one of the major problems in Geometric Group Theory. This
problem was solved for some special cases of Λ but still is far from being solved
in the general case. In my talk, at first, I’m going to introduce a natural
restriction on length function which is called the regularity condition. Then I’m
going to present the description of finitely generated groups with regular free
length functions in Zn, and to discuss why regularity condition is important.

On the growth in semigroup varieties
Lev Shneerson
The City University of New York
levshn@math.hunter.cuny.edu

Let S be a semigroup and let M = varS be the semigroup variety generated
by S. We study the problem: what type of growth can finitely generated M -
semigroups have. Some cases where every finitely generated M -semigroup has
polynomial growth will be considered.

Translation equivalence in free groups
Vladimir Shpilrain
The City College of New York
shpil@groups.sci.ccny.cuny.edu
Coauthors: Ilya Kapovich, Gilbert Levitt, Paul Schupp

Motivated by the work on hyperbolic equivalence of homotopy classes of
closed curves on surfaces, we investigate a similar phenomenon for free groups.
Namely, we study the situation where two elements g, h in a free group F have
the property that for every free isometric action of F on an R-tree X the trans-
lation lengths of g and h on X are equal (or have bounded ratio). This is
equivalent to the following combinatorial property: for any automorphism ϕ of
F , the cyclic lengths of ϕ(g) and ϕ(h) are equal (or have bounded ratio).
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Uniform Kazhdan Groups
Dmitriy Sonkin
University of Virginia
ds5nd@virginia.edu
Coauthors: Denis Osin

For a discrete group G and a finite subset X of G, let K(G, X) be the Kazhdan
constant of G with respect to X. We define the uniform Kazhdan constant of G
by

K(G) = min{K(G,X) |X is finite and generates G}.

We provide an example of an infinite group with non - zero uniform Kazhdan
constant.

Algebraic combinatorics, semigroup representations and random walks
on hyperplane chambers after Ken Brown
Benjamin Steinberg
Carleton University
bsteinbg@math.carleton.ca

Ken Brown observed that the eigenvalues with multiplicity for certain ran-
dom walks on the chambers of a hyperplane arrangement could be calculated
using the representation theory of finite semigroups and Rota’s theory of Möbius
inversion. The underlying idea is the same as Diaconis’ approach to random
walks on finite abelian groups: both rely on the fact that the semigroup al-
gebras in question are triangularizable and so the eigenvalues of the Markov
operator are certain character sums.

Inspired by this we have developed algebraic-combinatorial tools to com-
pute multiplicities of irreducible representations for a large class of finite semi-
groups including inverse semigroups, semigroups with commuting idempotents
and semigroups with triangularizable algebras. In particular eigenvalues can be
calculated (with multiplicity), via character sums, for random walks on finite
semigroups with abelian subgroups whose von Neumann regular elements satisfy
an identity of the form xm = x.
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Hanoi Towers group as iterated monodromy group
Zoran Sunic
Texas A& M University
sunic@math.tamu.edu
Coauthors: R. Grigorchuk, V. Nekrashevych

We present the Hanoi group on 3 pegs as iterated monodromy group of a
rational post-critical function on the Riemann Sphere. We also consider several
related groups and their associated rational functions and Julia sets. As an
application, we show that all Hanoi groups have exponential growth. We also
show that the Hanoi group on 3 pegs is a finitely generated branch group that
is not just infinite.

Automorphism groups of trees and Sylow p-subgroups of finitary sym-
metric groups
Vitaliy Sushchanskyy
Institut of Mathematics, Silesian University of Technology, Gliwice, Poland
Wital.Suszczanski@polsl.pl

In the talk we will survey some results concerning the structure of automor-
phism groups of special ended trees, and we present a full description in these
terms of Sylow p-subgroups of finitary symmetric groups over infinite sets.

The ephemeral Morita classes
Karen Vogtmann
Cornell University
vogtmann@math.cornell.edu
Coauthors: James Conant

There is a series of cocycles in the cohomology of the group of automorphisms
of a free group (first discovered by S. Morita) which have an elementary descrip-
tion in terms of finite graphs. The first two of these give nontrivial cohomology
classes, and it is conjectured that they are all nontrivial; on the other hand
according to a recent result of S. Galatius all classes must be stably trivial. We
show that a single application of the stabilization map Aut(Fn) to Aut(Fn+1)
kills these classes, so that they in fact disappear immediately after they appear.
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Spaces of Translations
Shmuel Weinberger
University of Chicago
shmuel@math.uchicago.edu

The simplest nontrivial dynamical systems are arguably irrational rotation
on the circle. In this talk, I will try to generalize their classification to other
(almost as simple) translation systems.

Sylow Objects in Finite Groups and the Factorization of Formations
Guo Wenbin
Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, P.R.China
wbguo@xznu.edu.cn

It is well known that the classic Sylow theorem is the most important result
of groups and has numerous applications. In particular, we should mention
that Sylow objects such as p-subgroups and their normalizers have played an
important role in the problems of classification of finite simple groups.

Within the framework of the theory of formations, Sylow objects also played
an important role. Remember that if a finite group G belongs to a saturated
formation F and G has a composition factor of order p, then the class Np of
all finite p-groups is contained in F. Analogy to Sylow subgroups is seen here,
therefore the formations of the Np type can be called Sylow objects in the theory
of formations.

In this report, we give a brief introduction on some of the new research along
the two directions.

Special Cube Complexes
Daniel Wise
McGill
wise@math.mcgill.ca
Coauthors: Frederic Haglund

We identify a class of “special” nonpositively curved cube complexes that are
closely related to right-angled Artin groups. We give applications to subgroup
separability and linearity, and to Coxeter groups. Some sample consequence of
our theory include:

1) Every word-hyperbolic Coxeter group has separable quasiconvex sub-
groups.

2) Let G be the group given by the HNN extension 〈a, b, t |U t = V 〉. Then
G is a subgroup of SLn(Z) unless U and V have conjugate powers.

3) For each f.p. group Q, there is a short exact sequence 1 → N → G →
Q→ 1 where G < SLn(Z) and N is f.g.
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Uniform spaces and Gromov hyperbolicity
Xiangdong Xie
University of Cincinnati
xxie@math.uc.edu
Coauthors: Nageswari Shanmugalingam, David Herron

We establish a connection between Gromov hyperbolic spaces and quasicon-
formal analysis: We characterize uniform spaces in terms of Gromov hyperbolic
spaces and the quasiconformal structure on the Gromov boundary. We use a
notion of inversions in general metric spaces. As an application, we show that
a quasimobius map between domains in metric spaces with annulus quasicon-
vexity sends a uniform domain to a uniform domain.

Scaled relators and Dehn functions for nilpotent groups
Robert Young
University of Chicago
rjyoung@math.uchicago.edu

A homogeneous nilpotent Lie group has a scaling automorphism determined
by a grading of its Lie algebra. Many proofs of upper bounds for the Dehn
function of such a group depend on being able to fill curves with discs compatible
with this grading; the area of such discs changes predictably under the scaling
automorphism. We will present combinatorial methods for finding such bounds.
Applications include constructing the first example of a torsion-free nilpotent
group of class 3 with a quadratic Dehn function.

Limits of Thompson’s group F
Roland Zarzycki
University of Wroclaw
zarzycki@math.uni.wroc.pl

Denote by F the Thompson’s group F with standard presentation: F =
〈x0, x1|[x0x

−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉 and fix a sequence {gi}i∈N, where

gi ∈ F for all i. Let Gi = 〈x0, x1, x2|[x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0], x

−1
2 gi〉

be a sequence of isomorphic copies of F marked by three elements. We inves-
tigate the convergence of such sequences and possible limit groups constructed
in this manner. It is easy to see, that at infinity we can get free and direct
products of F with Z. We study free constructions involving F and Z which
can be obtained by this procedure. In particular, we prove that no (centralized)
HNN-extensions occur as F-limit group.
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Some open problems in Ring Theory
Efim Zelmanov
UC San Diego
efim.zelmanov@gmail.com

We will review some old and new open problems in the theory of algebras
and their connections to Combinatorial Group Theory.
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