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The covering dimension

Definition (approximate). The dimension of a space X is at most
n if for every ǫ > 0 there exists an (open) coloring in at most n+ 1
colors such that every monochromatic path has diameter at most ǫ.
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The definition

Definition Let Γ be a graph. Let λ > 1. Let k = k(λ) be the
minimal number of colors so that we can color vertices of Γ in k

colors and there are no arbitrary long monochromatic λ-paths
without repeated vertices.Then k(λ)− 1 is called the dimension

growth function of Γ. The number d such that
d = maxλ(k(λ)− 1) is called the asymptotic dimension of Γ (both
concepts were introduced by Gromov).

A λ-path is a sequence of vertices with distances between
consecutive vertices ≤ λ, so it is a path on the Rips complex Rλ.
For example if Γ is Z (or the square lattice Z

n), then k(1) = 2.
Color even vertices in white, odd vertices in black.

The growth rate of k(λ) is a q.i. invariant.
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Examples

For many groups, the dimension growth is constant: hyperbolic,
toric relatively hyperbolic, RAAGs, the mapping class group,
nilpotent groups, etc.

Z ≀ Z, the Grigorchuk group, the R. Thompson group F , etc. have
infinite asymptotic dimension and the question about dimension
growth is natural for these groups.
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The controlled dimension growth

If D > 0, then the (λ,D)-dimension of X is the minimal k as
above where all clusters have diameters ≤ D. If D(λ) is an

increasing function, then we can define the D-controlled dimension
growth k(λ) as before, but demanding that all clusters have
diameters ≤ D(λ). The notion was also introduced by Gromov. If

D(λ) is linear, and k(λ) is constant, we get the Assouad-Nagata
dimension.
We do not know any finitely generated group where more than
exponential control is needed.
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How large should the brick be?

The Assouad-Nagata dimension of Zn is n

The size of the bricks are at most quadratic in the dimension n.

Problem. What is the smallest size of a brick (as a function in n)?
What if we color in a different way (not by bricks)?
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there are strictly monotone tending to infinity functions
ρ1, ρ2 : R+ → R+ and a number r > 0 such that

ρ1(dX (x , x
′)) ≤ dY (φ(x), φ(x

′)) ≤ ρ2(dX (x , x
′))

for all x , x ′ ∈ X with d(x , x ′) ≥ r .



Connection with quasi-isometry and coarse embeddings

A map of metric spaces φ : X → Y is called a coarse embedding if
there are strictly monotone tending to infinity functions
ρ1, ρ2 : R+ → R+ and a number r > 0 such that

ρ1(dX (x , x
′)) ≤ dY (φ(x), φ(x

′)) ≤ ρ2(dX (x , x
′))

for all x , x ′ ∈ X with d(x , x ′) ≥ r . Example: inclusion of a finitely
generated subgroup in a finitely generated group both supplied
with the word metrics.



Connection with quasi-isometry and coarse embeddings

A map of metric spaces φ : X → Y is called a coarse embedding if
there are strictly monotone tending to infinity functions
ρ1, ρ2 : R+ → R+ and a number r > 0 such that

ρ1(dX (x , x
′)) ≤ dY (φ(x), φ(x

′)) ≤ ρ2(dX (x , x
′))

for all x , x ′ ∈ X with d(x , x ′) ≥ r . Example: inclusion of a finitely
generated subgroup in a finitely generated group both supplied
with the word metrics.

Let φ : X → Y be a coarse embedding with functions ρ1, ρ2: Then

(λ,D)-dim(Y ) ≥ (ρ−1
2

(λ), ρ−1
1

(D))-dim(X ).
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Connection with the volume growth

Proposition. The dimension growth of a finitely generated group
G does not exceed its volume growth.
Proof Let f be the volume growth function. We consider a graph
with vertices elements of G where every two vertices at distance
≤ λ are joined by an edge. Then the valency of this graph is
≤ f (λ). The graph has chromatic number ≤ f (λ) + 1.
Corollary. The dimension growth of any finitely generated group is
at most exponential (with any control since the size of every
cluster is 1, does not depend on λ).



Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is
subexponential, then the group satisfies G. Yu’s property A, hence
it is coarsely embeddable into a Hilbert space, etc.



Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is
subexponential, then the group satisfies G. Yu’s property A, hence
it is coarsely embeddable into a Hilbert space, etc.



Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is
subexponential, then the group satisfies G. Yu’s property A, hence
it is coarsely embeddable into a Hilbert space, etc.

t t



Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is
subexponential, then the group satisfies G. Yu’s property A, hence
it is coarsely embeddable into a Hilbert space, etc.

t t



Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is
subexponential, then the group satisfies G. Yu’s property A, hence
it is coarsely embeddable into a Hilbert space, etc.

t t



Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is
subexponential, then the group satisfies G. Yu’s property A, hence
it is coarsely embeddable into a Hilbert space, etc.

t t



Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is
subexponential, then the group satisfies G. Yu’s property A, hence
it is coarsely embeddable into a Hilbert space, etc.

t t

Problem. Is the opposite implication true?



Connection with functional analysis

Theorem. (Ozawa) If the dimension growth of a group is
subexponential, then the group satisfies G. Yu’s property A, hence
it is coarsely embeddable into a Hilbert space, etc.

t t

Problem. Is the opposite implication true?
Hence Gromov random groups containing expanders have
exponential asymptotic dimension growth.
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Connection with expansion in graphs

Suppose there exists a number ε > 0 such that for every r a graph
G contains a finite subgraph Gr with the following property

(Pr (ε)) For every subset A of vertices of Gr of diameter (in G )
≤ r , |∂Gr

(A)| ≥ ε|A| where ∂Gr
= {v ∈ Gr | dist(v ,A) = 1}

denotes the boundary in Gr .

Then the dimension growth of G is exponential.
Proof. Let VG = ∪k+1

i=1
Ui be a coloring of the vertices of G in

k + 1 colors such that all λ-clusters U j
i have diameters at most d .

Take r > d + λ and consider the graph Gr = (Vr ,Er ). Let
W

j
i = U

j
i ∩ Gr . We have ∪W j

i equal to the set Vr of all vertices of

Gr . Note that Nλ/2(W
j
i ) has at least (1 + ε)λ/2 elements. Since

different λ-clusters of the same color are λ-disjoint, we have that
the sum of |Nλ/2(W

j
i )| is at most |Vr |(k + 1). On the other hand,

that sum is at least (1 + ε)λ/2 times the sum of cardinalities |W j
i |,

i.e. at least |Vr |(1 + ε)λ/2. Hence k + 1 ≥ (1 + ε)λ/2.
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Connection with the Ramsey theory

Theorem.(Panov, Moore) Let Γ = Z
∞ with l1-metric. Then

kΓ(2) = ∞.
Proof. Every finite subset M of N corresponds to a vector v(M)
from Z

∞ with coordinates 0, 1 in the natural way. Choose any
k ≥ 1. Let Pk(N) denote the set of all k-element subsets of N.
Every finite coloring of Z∞ induces a finite coloring of Pk(N). By
Ramsey there exists a subset M ⊆ N of size 2k such that all
k-element subsets of M have the same color. Therefore we can
find subsets T1,T2, . . . ,Tk of size k from M such that the
symmetric distance between Ti and Ti+1 is 2, i = 1, . . . , k − 1,
and T1,Tk are disjoint. Then the vectors v(T1), . . . , v(Tk) from
Z
∞ form a monochromatic 2-path of diameter ≥ 2k .
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The dimension growth of Zn.

Let G be the binary cube {0, 1}n with the ℓ1-metric. Then for
every r > 0, such that ε = n

r+1
− 2 > 0, G satisfies property

(Pr (ǫ)).

[The controlled 4-dimension of a binary n-cube] The binary
n-cube {0, 1}n , n > 64, cannot be colored by n colors such that
each 4-cluster of every color has diameter less than ≤ √

n/4, i.e.
(4,

√
n/4)-dim (Zn) = n for n > 64.
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The main open problem.

Problem. Is it true that for some α > 0, kZn(λ) = O(nα) for every
λ.
If “yes”, then the asymptotic dimension growth of F is exponential.
We do not know the answer for λ = 2, α = 1. We also do not
know whether kZn(λ) is bounded for every λ as a function of n.
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Connection with the game of Hex

Consider the n-dim cube [1,m]n with ℓ∞-metric (more precisely,
the Hex metric) and n players, each has his own two opposite sides
of the cube and his own color. Players color unit cubes in their
colors.
A player wins if there exists a monochromatic path connecting his
sides of the cube.

Theorem. There is always a winner in the game of Hex. Hence if
we color Zn with ℓ∞-metric in n colors there is always arbitrary
long monochromatic paths. Thus 1-dim(Zn, ℓ∞) = n for every n.
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A connection with a Brouwer-type fixed point theorem?

The Hex theorem is equivalent to the Brouwer fixed point theorem.
Is there a fixed point theorem that gives a bound for the
2-dim(Zn, ℓ1)?

Remark. The game of Hex on the plane corresponds to the
hexagonal tessellation of the plane and the graph metric on its
dual graph. As we know from percolation theory (Smirnov),
hexagonal lattice is much easier than square lattice.
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The dimension growth of the R. Thompson group F .

The group Z
2n embeds into F with quasi-isometric constants

O(n),O(1) (using the Burillo length estimate).

Hence the dimension growth of F with some exponential control is
exponential.

What is the dimension growth of F? Is super-exponential control
required?
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dimension
We say that Kolmogorov-Ostrand dimension of X is ≤ n if for
every m ≥ 0 there exists a coloring of X in m + n colors (every
point may be colored in many colors) such that the diameters of all
λ-clusters are uniformly bounded.

This can be traced back to the work of Kolmogorov and Ostrand
on Hilbert’s 13-th problem.

Theorem. The Kolmogorov-Ostrand dimension growth of the
direct product X × Y does not exceed the sum of
K − O-dimension growths of X and Y .

For Assouad-Nagata dimension it was proved by Brodskiy, Dydak,
Levin, and Mitra.

Proof. Suppose KO − dim(X ) = n1,KO − dim(Y ) = n2. Consider
colorings of X and Y in n1 + n2 +m colors (as required by the
definition). Then color (x , y) in color i if both x and y has color i .
This gives a required coloring of X × Y .
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The dimension growth of solvable subgroups of F

By C. Bleak, every solvable subgroup of F is a subgroup of a direct
product of iterated wreath products (...(Z ≀ Z) ≀ ...) ≀ Z.

Using W. Parry’s description of the metric on wreath products and
the Kolmogorov-Ostrand dimension we prove that the
K-O-dimension growth (hence the ordinary dimension growth) is
polynomial where the degree of the polynomial does not exceed
the degree of solvability of the group.

Problem. What is the dimension growth of Z ≀ Z?


